سطح فلزات سنگین (سرب، کادمیوم، کروم و روی) در باتفی عضله و کبد ماهی کبوتر (1758)
سواحل استان گلستان

(ANOVA) Tukey

(WHO, UK, MAFF, NHMRC)

چکیده
در این مطالعه برای بررسی غلظت چهره فلز سنگین (سرب، کادمیوم، کروم و روی) در عضله و کبد ماهی کبوتر معمولی در فصول زمستان، بهار و تابستان در 11 استانگ در سواحل غربی، شرقی، تالاب گلبیات و خلیج گلبیات در سالهای 1386-1388 تمرین برداری انجام شد. پس از تمرین برداری و زیستسنجی، بافت‌های عضله (100 نمونه) و کبد (36 نمونه) ماهی بصورت منجمله شده برای اندازه‌گیری غلظت فلزات آن به آزمایشگاه اندازه‌گیری داده شدند. برای اندازه‌گیری فلزات در این بافت‌ها به روش خاکستر شکنگ و با بکارگیری دستگاه اسکیتروفوومتری چند امتی دلی 400 پرکین آنالیس انجام شد.

برای تجزیه و تحلیل داده‌ها از آنالیز واریانس (ANOVA) و آماره تست‌های گدردی (Tukey) استفاده گردید. میزان غلظت فلزات سنگین در ماهی کبوتر در سواحل غربی، شرقی، تالاب گلبیات و خلیج گلبیات داده که فلز روی بالاترین سطح را در بافت عضله ماهی کبوتر داد. ماهی کبوتر معمولی در فصول تابستان و بهار نسبت به سرب، کادمیوم و کروم در مرحله بعدی و ماهی کبوتر در فصول زمستان و بهار در ماهی کبوتر موجود می‌باشد. مقایسه غلظت فلزات سنگین در بافت عضله ماهی کبوتر در سواحل غربی، شرقی، تالاب گلبیات و خلیج گلبیات داده که مقادیر آنها در بافت عضله و کبد ماهی کبوتر کمتر از حد مجاز است.

لغات کلیدی: سلامت غذا، آلودگی، اکولوژی
مقدمه
فضای سنتی آب‌پیمایی پاییزه‌ای متأهل که بر خلاف ترکیبات آبی یا اثر فرایندهای شیمیایی که در بعضی از شیمیایی روی آن جزیی نشسته‌اند. از دسته می‌تواند فضای سنتی مقدار زیادی در زنجیره غذایی دارای مقدار کمی مواد غذایی باشد. پیشنهاد می‌شود تحقیق بیشتری در این زمینه صورت بگیرد. (Chale, 2002) از دیگر مواد غذایی نیز، جوهر (Cd), Cu, Zn, Cr, Pb, Ni, می‌باشند. این عناصر در (Pb) و نیکل (Ni) موجود گردید. DNA جلوگیری از جمع بندی این مواد غذایی می‌باشند.

مواد و روش کار
همان‌طور که قبلاً مطالعه شده که هر گونه مواد غذایی، باید مورد بررسی قرار گیرد. در این مطالعه از ۲۵ گرم از ماهی فرآوری شده و توزیع شده قرار داده شد و با ترکیبی از ۱۰۰ گرم از مواد غذایی و از میان ۲۵ گرم از مواد غذایی در فرآوری ۵، ۸۰ درجه سانتی‌گراد به صورت یک ساعت زمانی گذاشته شده.

سطح فلزات سنتی (سرب، کادمیوم، کروم و روی) در بافت عضله و...
شکل ۱: مناطق و ایستگاه‌های نمونه‌برداری در مواضع استان گلستان

ایستگاه‌های نمونه‌برداری با حروف انگلیسی در نظر نشان داده شده است.

چینی در داخل کوره ۲۴ ساعت می‌باشد نمونه‌های خاک‌شتر شده را از کوره خارج کرده و پس از سرد شدن به منظور عباری نمونه‌ها از کربن، به آنها ۲ میلی لیتر اسید نتریترک غلیظ اضافه می‌کنیم (Hot plate) نمونه و روی صفحه داغ اسید را تبخیر کرده تا یک سیکل کنند. دوباره نمونه‌ها را به کوره می‌رسانیم کرده و درجه حرارت کوره به آرامی تا ۴۵۰ درجه سانتی‌گراد به همان روش فوق الذکر افزایش می‌یابد. سپس بونه‌های چینی را از کوره برون آورده و پس از سرد شدن در صورتیکه بخشی از نمونه‌ها خاک‌شتر شده صورتی به کربن شده باشد دوباره به آنها ۲ میلی لیتر اسید نتریترک غلیظ اضافه می‌کنیم و پس از تبخیر روی صفحه داغ مجدداً در کوره ۴۵ درجه سانتی‌گراد به مدت یک ساعت گذاشته می‌شوند. به نمونه‌های سفید شده ۱۰ میلی لیتر HCl تزریق اضافه کرده و روی صفحه داغ با درجه حرارت پایین بیش از ۱۰۰ درجه حرارت داده می‌کنیم. درجه حرارت پایین ۲۵ درجه ای است که در اینجا به صفحه داغ می‌شود. محلول در پالن زده ۵۰ نتایج سانتی‌گراد بالا برده شد. در مدت زمان قرار دادن بونه‌های
سطح فلز سرب در هر دو جنس نر و ماده این گونه اختلاف معنی‌داری وجود ندارد (P>0.05). در حالیکه میزان سطح فلزات کادمیوم و کروم در دو جنس نر و ماده این ماهی اختلاف معنی‌داری وجود ندارد (P>0.05).

براساس نمودار، سطح فلز روي در هر دو جنس نر و ماده ماهی کیور نشان داد که اختلاف معنی‌داری بین آنها وجود ندارد (P>0.05).

مطالعه نمودار ۳، میانگین سطح سرب در عضله ماهی کیور در چهار منطقه مورد بررسی اختلاف معنی‌داری نشان نداد (P>0.05). این نتایج رویکردی به شکل توضیحی با یکدیگر مقایسه شدند. میزان همبستگی میانگین سطح فلزات سرب در عضله ماهی در سه منطقه کبیر، متوسط و کوچک در سطح معنی‌داری نداشت (P>0.05).

مطالعه نمودار ۴، در رابطه میانگین سطح فلزات سربی با سن ماهی کیور بررسی ضرب همبستگی پیرسون مشخص شد که هیچ رابطه معنی‌داری در بین سن فلزات و سن وجود ندارد (P>0.05). هرچند که ضرب همبستگی فلزات سرب و کادمیوم با یکدیگر وجود دارد (P<0.05).

نتایج

اطلاعات مربوط به زیست‌سنجی ماهی کیور شامل طول فورک، وزن و سن در جدول ۱ آراش شده است. همچنین در جدول ۴ میزان فلزات سربی در عضله و کبد ماهی کیور در شده است. با یکدیگر محاسبه بررسی نشان داد که کروم در ماهی کیور در مناطق مورد بررسی شان داد که در

جدول ۱: خلاصه نتایج آماری حاصل از زیست‌سنجی ماهی کیور (۱۹ عدد)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>احراز معنی</th>
<th>حداقل</th>
<th>حداقل</th>
<th>طول فورک (سانتی‌متر)</th>
<th>وزن (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کروم</td>
<td>۴۴۴/۵</td>
<td>۱۱۳/۱</td>
<td>۷۶۵/۵</td>
<td>۳۸/۱</td>
<td>۸۹/۹</td>
</tr>
<tr>
<td>کادمیوم</td>
<td>۲۵۲/۵</td>
<td>۱۰/۵</td>
<td>۳۵۲/۵</td>
<td>۱۹/۵</td>
<td>۳۸/۶</td>
</tr>
</tbody>
</table>

توضیحات:

۱. میانگین‌ها با استفاده از آزمون ت‌بین نمونه (ANOVA) و برابر مقایسه با Tukey نتایج در دو گروها و مقایسه زمانی از آماره استفاده شد. همچنین تمام داده‌ها در سطح اختلال ۵ درصد بررسی شدند.
جدول ۲: میانگین (± انحراف استاندارد) فلزات سنگین در کبد و عضله ماهی کپور (پب)

<table>
<thead>
<tr>
<th></th>
<th>Zn</th>
<th>Cr</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>کبد</td>
<td>4220±708 2</td>
<td>524±78 3</td>
<td>8378±22 4</td>
<td>100±742 6</td>
</tr>
<tr>
<td>عضله</td>
<td>2778±678 2</td>
<td>729±23 4</td>
<td>759±29 5</td>
<td>799±29 5</td>
</tr>
</tbody>
</table>

جدول ۳: میزان استاندارد فلزات سنگین در غذاهای دریایی (پم)

<table>
<thead>
<tr>
<th>منبع</th>
<th>Zn</th>
<th>Cr</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO</td>
<td>100</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NHMRC</td>
<td>150</td>
<td>1/5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UK (MAFF)</td>
<td>20</td>
<td>1/3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>عضله ماهی Liza auratus در سواحل جنوبی</td>
<td>1477</td>
<td>0/37</td>
<td>0/32</td>
<td>969</td>
</tr>
<tr>
<td>عضله کپور Cyprinus carpio در سواحل کلیستان</td>
<td>2/71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نمودار ۱: غلظت سرب، کادمیوم و کپور در بادت عضله ماهی کپور به تکیه جنسیت (سال ۸۷-۸۴)

نمودار ۲: غلظت فلز روی در بادت عضله ماهی کپور به تکیه جنسیت (سال ۸۷-۸۴)
نمودار ۵. رابطه فلزات سرب، کادمیوم و کروم با سن ماهی کپور (سال‌های ۸۷-۸۶)
در خصوص عوامل مؤثر در میزان فلزات سنگین در بدن موجودات آبزی Spence و Langston (1995) در مطالعات خود اعلام داشتند که تراکم فلزات در بدن موجودات مورد مطالعه در ارتباط با نسبت سطح پوست به جسم بدن، رفتار رمز‌های غذایی و همچنین خصوصیات شیمی‌منشأه می‌باشد.

در مورد تجمع فلزات سنگین در بدن ماهی مطالعات زیادی صورت گرفته که نشان می‌دهد فلز ممکن است تجمع بیشتری در یک اندام بخصوص داشته باشد. تناوب حساسیت از بررسی فلک نشان داد که میزان فلزات سنگین در دیگر بخش‌ها محدود هستند. شرایط فیزیکی محیط مانند دما، زمانی و موضع سایر فلزات مهیا می‌شود.

این نتایج امکان رفع و غلیظ‌زدایی (1273) در مورد میزان فلزات سنگین Cr و Zn، Cu، Pb، Cd در ماهی‌های ماهی،

[DOI: 10.22092/ISFJ.2017.109955]

Concentration of heavy metals (Cd, Cr, Zn, and Pb) in muscle and liver tissues of common carp (Cyprinus carpio L., 1758) from coastal waters of Golestan Province

Bandani Gh.A. (1)*; Khoshbavar Rostami H.A. (2); Yelghi S. (3); Shokrzadeh M. (4) and Nazari H. (5)

bandany_A@yahoo.com

1,2,3- Inland Waters Aquatics Stocks Research Centre (IASRC), P.O. Box: 139 Gorgan, Iran
4- Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
5- Young Researchers Club, Gorgan Islamic Azad University, P.O. Box: 717 Gorgan, Iran

Received: February 2009 Accepted: January 2010

Keywords: Heavy metals, Cyprinus carpio, Golestan province

Abstract

Concentrations of four heavy metals (Cd, Cr, Zn, and Pb) in the common carp (Cyprinus carpio) were assessed in winter, spring and summer seasons of the years 2008. Four coastal areas in the west and east, Gomishan Marsh and Gorgan Bay including 11 sites were sampled. After biometrical measurements of the fish, specimens of muscle (104) and liver (36) tissues were immediately frozen and transferred to laboratory for assessment of heavy metal concentration. Dry ash method and atomic absorption spectrometer (AAS) of Perkin Almer (400 model, German) were used to assess metals concentration. In the process, analysis of variance (ANOVA) and Tukey-test were implemented. Heavy metals concentration in kidney tissue was higher than muscle tissue. In carp muscle tissue, level of zinc was highest and the next categories were those of lead, cadmium and chromium, respectively. A significant difference was observed between chromium concentrations in muscle tissue of Cyprinus carpio with sex (P<0.05). The concentrations of heavy metals in liver tissues were higher than those of the muscle tissues and in all cases; they were lower than mean allowable concentrations of international standards (WHO, UK, MAFF and NHMRC).

* Corresponding author