بررسی آزمایشگاهی الگوی رسوب‌گذاری در مخازن استوانه‌ای پرورش‌ماهی قزل آلا

مسعود ساجدی سابق ۱، مجتبی صانعی ۱، حسین على عبدالحی ۲، شهرام بهمنش ۲، عباس مسعودفر ۲

m_sabegh@yahoo.com

۱ - پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی
۲ - مؤسسه تحقیقات شیلات ایزان، سازمان تحقیقات، آموزش و ترویج کشاورزی

تاریخ دریافت: بیست و پنجم پیمان ۱۳۹۴
تاریخ پذیرش: آبان ۱۳۹۵

چکیده

با افزایش جمعیت در سطح جهان، مخازن استوانه‌ای پرورش‌ماهی به دلیل تولید بالا و مصرف پایین آب، توسعه‌یافته و به دلیل اهمیت کیفیت آب و جداسازی مواد جانب از این مخازن مطالعات زیادی انجام‌شده است. در این مقاله به‌منظور بررسی آزمایشگاهی الگوی رسوب‌گذاری در مخازن استوانه‌ای پرورش‌ماهی، مخازن با قطر ۲/۲۴ متر و ارتفاع ۲/۲۹ متر طراحی و ساخته‌شده است و جریان ورودی از طریق جفت آب از سه نازل ورودی به قطر داخلی هر یک ۸ میلی‌متر برقرار گردید. بررسی کمی و کیفی رسوب‌گذاری در کف مخزن استوانه‌ای پرورش‌ماهی برای ریزش موسمی رسوبات، در شش مکان (سه گروه با ساخت ریزش رسوبات در جهت شعاعی و سه گروه با ریزش رسوبات در پیرامون مخزن استوانه) مورد آزمایش قرار گرفت. نتایج بیانگر آن است برای ریزش رسوب بهترین مکان قسمت مخدود بینایی (۴/۵ سانتی‌متر از دیواره مخزن به طول ۲۴ سانتی‌متر) و استگگاهلومه می‌باشد. همچنین مشاهده‌ای آزمایشگاهی بیانگر آن بود که در حجم کم مواد ماده غذایی ماهی، که دارای نرخ غذایی بالایی می‌باشد، بیشتر تابع جریان حلزونی مخازن استوانه‌ای شکل قرار گرفتند و از مرکز حوضچه خارج می‌گردن.

کلمات کلیدی: الگوی رسوب‌گذاری، مخازن استوانه‌ای، پرورش‌ماهی، مدل آزمایشگاهی، غذا ماهی

نوبستنده مستند

*
ساجذی سابق و همکاران

برناسی آزمایشگاهی الگوی رسوبه‌کاری در... مقدمه

بر اساس طبقه‌بندی Lawton (1995) (ه) نوع بالا‌شیفته‌کننده فیزیکی، شیمیایی و پیوسته‌کننده در مخازن پروشه‌های ماهی انجام می‌شود. چندانی ماهی جداسازی مقدار خاک‌پاشی آن با روش‌های پیوسته روش‌ها در ماهی‌های نشان می‌دهند. این نیاز به مراحل تحقیق بر ارزش‌یابی سرعت در جاداسازی شعلی را مورد تأکید قرار دادن.

و همکاران (2005) در مخازن استوانه‌ای نسبت قطر به عمق بر یک کاراکتر جریان تأثیر می‌گذارد. اگر این نسبت کم باشد (مانند مخازن عمیق)، در خروجی مکرزي یک سطح هلالی شکل را ایجاد می‌کند که منجر به تشکیل ناحیه غیر

Davidson & Summefelt (2000) در مخازن استوانه‌ای نسبت قطر به عمق بر یک کاراکتر جریان تأثیر می‌گذارد. اگر این نسبت کم باشد (مانند مخازن عمیق)، در خروجی مکرزي یک سطح هلالی شکل را ایجاد می‌کند که منجر به تشکیل ناحیه غیر
جعاسری نماید. نظر به اینکه رسیدن به شرایط تعادل مطلوب تیزی‌بند کردن مکان مخزن، منابعی که به‌علاوه نظیر کاهش هزینه‌گیری و استرس محيط پروپر ماهی‌های بزرگ، متشخص‌اند. درصد رفک‌ریز مشکل از طریق هندسه‌ای بزرگ‌تری هستند. این تحقیق نیز با استفاده از یکی از روش‌های مهندسی (استفاده از صفحه‌های مشرمشوق) به افزایش ولتاژ روش‌ها برداشتی است. در این مقاله، دستیابی به بزرگ‌تری مختلف مکان‌های دوش نموده‌اند. مکان‌های موردبازرس آزمایشگاهی قرارگرفته است.

مواد و روش‌ها

به‌منظور بررسی هدف‌برداری جریان در مخازن استوایی پروپر ماهی انتخاب می‌شست، با توجه به توصیه‌های تکمیل‌شده و مهارکان (2005) طراحی و ساخته شد. یکاین در مقطعی با قطر 7/11 متر ارتفاع 159 متر طراحی و ساخته شد (شکل 1). آزمایش‌های انجام‌شده نشان می‌دهد که سرعت جریان در لبه‌های شعاعی و عمقی جریان، متناسب با سوخت و روزه وی و زبری دیواره داخلی تعیین‌مردانه می‌باشد.

جریان ورودی از طریق جفت ب از سطح نزول ورودی به قطر داخلی هر 8 میلی‌متر و در واقع 5 سانتی‌متر از گذرهای زیربین، بقای بود. سطح یکی از آزمایش‌های اولیه را به 100 درجه بار خروجی نازل به دلیل ایجاد جریانی همگن در مکان استوایی یا انجام منشی‌های داده و در این سری از آزمایش‌ها این را به پیش‌آموز رسانده‌اند و این رسوب‌گذاری در مکان در شرایط داخلی تعیین‌مردانه می‌باشد.

بررسی کمی و کیفی رسوب‌گذاری در کف مکان استوایی پروپر ماهی‌ها ریزی پرش موضعی رسوب‌ها، در شش مکان (سه زیستگی با ریزی رسوب‌ها در جهت شعاعی و سه گریزی با ریزی رسوب‌ها در جهت ایستگاهی) مورد آزمایش قرار گرفت.

نحوه انجام آزمایش‌ها به‌وسیله مشورتی بود که انتظار داشت مرحله نظیری از طریق شیر آب ورودی مخزن و سریع‌تر انجام شده و ارتباط مکانیکی متناسب با 100 درصد ورودی تنظیم می‌شود. در تمام این

جرخی‌ها بر سرعت بازیابی و درجه اختلاف ضعیف می‌گردد (Larmoyeux et al., 1973, Timmons et al., 1998). هیچکدام مکان مخازن استوایی دو زنگی به دلیل انحراف بهتر موارد زنگ و هماهنگی بیشتر کاربرد دارد. در این مکان مخازن، جریان نهایی موجب می‌شود به مقادیر کمتر جریان رسوبات بیشتری در کف مکان جمع و پکسازی شود. بعضی که در 5/5٪ خروج مکانی 95٪ رسوبات با تحلیل (Van Toever, Davidson & Summerfelt, 2005;

Lunde et al., 1997; Summerfelt et al., 2000, 2001, 2002

مکان سیستمیک دو زنگی کم، با دیپ 15٪/12٪ و 15٪/8٪ کل دیپ جریان مخزن، به‌طور سریع و تدریجی 8٪/10٪ رسوبات معلق را که طی یک روز تولیدشده است، در مدت 2/11 دقیقه، بطور متغیر و از اینکه مکان خارج می‌سازد. هنگامی که مکان از ماهی باشد، غلظت رسوبات معلق در خروجی مکانی 100 برابر بزگتر از غلظت رسوبات معلق در خروجی گانه‌بری و به‌طور متوسط ماده‌ای 1/50 گزارش‌شده است.

(Summerfelt et al., 2000) سرعت جریان آب از اساسی تری فاکتورهای که ضمن تأمین اکسبی‌های سری‌لایی و فضول ماهی‌ها از محیط‌های ماهی خارج می‌نماید. سرعت جریان آب در مکان و همچنین با سایر ماهی‌هایی که زیر آب ریزی می‌نمایند. کمک‌داده خبره درخشی بهبود آب در مکان معدود 2/10 صورت بیشتر ماهی (Losordo & Wester, 1994) در پیوند به فعال‌سازی مهربان، سرعت جریان بیش از 15-50 سانتی‌متر در تأخیر توصیه می‌شود (Burrows & Haller, 1970, Mäkinen et al., 1988) بسیار ماهی (Chenoweth, 1982) در بیش از 300 سانتی‌متر در تأثیر را

برای حفظ سلامت ماهی‌ها، شرایط بهینه اضلاع و تناص ماهی، سرعت بیشتر از کم‌توسیع باید. در تحقیق جریان بایستی به حدی موارد چسبیده ماهیزستی ساختار تشکیل تا کاهش اکسبی‌های و کاهش یافتن

مجله علمی شیلات ایران سال بیست و پنجم/شماره 4/زمین 1395

DOI: 10.22092/ISIJ.2017.110295 [Downloaded from isij.ir at 002:00:30 on Sunday, November 10th, 2019]
رسوبات ورودی و مشاهده آب بدون رسوب، جریان به ارامی تخلیه می‌شود تا جایگاه ترسب مواد جامع تشود در انتهای رسوبات هر یک از قطاع‌های شرکنده کف است. مخزن جدایکن اندازه‌گیری و نتیج گردید.

مراحل باید پیوست که جریان ورودی دچار تغییرات وضعی نخواهد شد. در اینجا جایت وسیله انتقال رسوب در هریک از موانع شرکنده و تریب حجم منشی از رسوب به آرامی انجام می‌شود، پس بعد از تریب

شکل 1: مخزن استوانه‌ای برای ماهی و تأسیسات وابسته

Figure 1: Aquaculture cylindrical tank and related equipments

مشاهدات آزمایشگاهی یافته‌ای که است که مواد ماند. غذا ماهی که در ادامه نرخ غوطه‌وری بالا می‌پاشند، بیشتر تابع جریان حوزنی مخزن استوانه‌ی قرارگرفته و از مرکز و حوض‌های خارج می‌گردد. بنابر این، در اینجا سرفاً نتایج کمی و کیفی ریزش ماهی را بهتر مطالعه قرار گرفته است.

برای ریزش رسوبات، شش گزینه مورد آزمایش قرار گرفت: سه گزینه با ریزش رسوبات ماهی در جهت شناسای و سه گزینه با ریزش رسوبات در جهت ایستگاهی همراه بوده است (شکل 2). در جهت شناسای در سه مکان نزدیک دیواره مخزن، دور از دیواره مخزن و بین این دو (فصل ی بین‌ابی شناخت) ریزش صورت گرفته و در جهت ایستگاهی در سه ایستگاه بین جریان نازل ورودی و در فاصله بین‌ابی شناخت، عملیات ریزش مواد جامد آن‌چنین است. لازم به ذکر است که 4 است. در 6 درجه از طریق مخزن برای اندازه‌گیری ایجادشده است.

جدول 1: مشخصات رسوبات ذکر مورد آزمایش قرار گرفته است.

Table 1: Solid particle characteristics used in laboratory tests

<table>
<thead>
<tr>
<th>سرعت (m/s)</th>
<th>قطر ورودی (mm)</th>
<th>قطر رسوبات (g/cm³)</th>
<th>قطر جهت شناسای (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماهی 0.11</td>
<td>6/46</td>
<td>1/37</td>
<td></td>
</tr>
<tr>
<td>غناب 0.11</td>
<td>1/18</td>
<td>1/28</td>
<td></td>
</tr>
<tr>
<td>پتاه 0.11</td>
<td>5/8</td>
<td>3/16</td>
<td></td>
</tr>
</tbody>
</table>

*متوسط ارتفاع استوانه بین 12 میلی‌متر به اوره گردید.

شکل 1: مخزن استوانه‌ای برای ماهی و تأسیسات وابسته
وصول ریزش ماسه در شکل ۲ نشان داده شده است. در این وسیله با هر گردش صفحه روبی و قرارگیری شیارهای دو صفحه (صفحه بالایی متحرک و صفحه زیرین ثابت) مقدار مشخصی از ماسه در عرض مشخصی از شاخ مخزن ریزش می‌گردد.

شکل ۲: موقعیت پرتاب جت آب در مخزن

Figure 2: Outlet orientation in the tank

شکل ۳: وسیله توزیع رسوب در مخزن استوانه‌ای

Figure 3: Sediment spreading equipment in cylindrical tank

نتایج

همان‌طور که از شکل ۴ مشاهده می‌شود هنگامی که ریزش رسوب در قسمت پیین مخزن (سمت چپ اوره) انجام می‌شود، مقدار رسوب‌گذاری ابتدا کاهش یافته و سپس افزایش می‌یابد به‌طوری که بیشترین رسوبات در قطاع چهارم تنها شد و سپس روند کاهشی در مقدار رسوب‌گذاری رخ می‌دهد. با ریزش رسوب در قسمتهای

21
و بانگر ریزش یکپاپخت‌تر در شرایط بین‌بینی مخزن می‌باشد.

شکل 4: الگوی گیمی رسوب‌گذاری با ریزش رسوب در ایستگاههای اول و در فسته‌های برونی، بین‌بینی و داخلی مخزن

جدول 2: مقادیر وزنی رسوبات در هر یک از قطعات‌های شش‌گانه کف گسترش مخزن برای سه گزینه اول ریزش رسوب

<table>
<thead>
<tr>
<th>مکان رسوب</th>
<th>داخلی</th>
<th>برونی</th>
<th>بین‌بینی</th>
</tr>
</thead>
<tbody>
<tr>
<td>قطره ۱</td>
<td>۱۹</td>
<td>۱۲</td>
<td>۱۴</td>
</tr>
<tr>
<td>قطره ۲</td>
<td>۲۰</td>
<td>۱۵</td>
<td>۲۱</td>
</tr>
<tr>
<td>قطره ۳</td>
<td>۲۱</td>
<td>۱۶</td>
<td>۲۲</td>
</tr>
</tbody>
</table>

همان‌طور که در جدول 2 مشاهده می‌شود هنگامی که مکان رسوب رسوب در مخزن در شرایط بین‌بینی است مقدار انحراف معیار و ضرب نسبیت کمترین مقدار بوده.
جدول ۳: مقادیر وزنی رسوبات در هر یک از قطعات‌های تشک‌گذاری دوی سه گزینه دوم ریزش رسوب

<table>
<thead>
<tr>
<th>محل سطح رسوب</th>
<th>استاک‌های اول</th>
<th>استاک‌های دوم</th>
<th>استاک‌های سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>قطعه ۱</td>
<td>۲۲</td>
<td>۱۴</td>
<td>۱۹</td>
</tr>
<tr>
<td>قطعه ۲</td>
<td>۱۷</td>
<td>۱۰</td>
<td>۱۱</td>
</tr>
<tr>
<td>قطعه ۳</td>
<td>۱۲</td>
<td>۰۵</td>
<td>۰۷</td>
</tr>
<tr>
<td>قطعه ۴</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۱۶</td>
</tr>
<tr>
<td>قطعه ۵</td>
<td>۲۹</td>
<td>۲۹</td>
<td>۱۹</td>
</tr>
<tr>
<td>قطعه ۶</td>
<td>۱۳/۵</td>
<td>۱۹</td>
<td>۱۳/۵</td>
</tr>
<tr>
<td>ارتفاع میزان</td>
<td>۴۲/۷</td>
<td>۸۷</td>
<td>۴۸/۸</td>
</tr>
<tr>
<td>میانگین</td>
<td>۱۶/۷</td>
<td>۱۶/۷</td>
<td>۱۶/۷</td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td>۵۵/۱</td>
<td>۵۵/۱</td>
<td>۵۵/۱</td>
</tr>
</tbody>
</table>

بحث

با اندازه‌گیری وزنی رسوبات تنشین شده در قطعات‌های ۶۰ درجه‌ای کف مخزن توزیع یکی‌رسوب‌گذاری در سطح رسوب‌گذاری و شبیه‌سازی از دستگاه ریزش رسوب گزینه‌های اول (رسوب‌گذاری در جهت شاعی) نشان‌می‌داد، مقدار هضمه‌ای رسوب‌گذاری تصور شکل ۲ نشان می‌دهد. هنگامی که ریزش رسوب در محدوده بین‌بانی (در فاصله ۲۲ سال بیست و پنجم/شماره۴/سمستان ۱۳۹۵

مجله علمی شیلات ایران

مینی بر تأثیر جریان فنجانی و تأکید بر قدرت جریان کلی زهکش آرایی نسبت به طبقی نسبت به مراکز هم‌اکنونی داده. هرچند سال‌های و همکاران (Summerfelt et al., 2000) سیستم‌های دو زهکش با زهکش جانی (Design سیستم‌های دو زهکش با زهکش جانی (Design متعلق، از مرکز مخزن تخلیه گردیده، از آرایی‌های انجام‌شده نشان داد که در مخازن با سیستمهای دو زهکش کریز (Waterline Design) مشاهده‌شده، به‌طوری‌که حتی گاهی کل رسوبات از مرکز مخزن تخلیه گردیده است.

بحث

همانطور که در جدول ۳ مشاهده می‌شود هنگامی که محل سطح رسوب در مخزن در شرایط استاک‌های سوم است مقدار احتمال معیار و ضریب تغییرات کمترین مقدار بوده و باینگر ریزش پکوناختر در استاک‌های سوم مخزن می‌باشد.

نتایج این تحقیق با نتایج سال‌های و همکاران (Summerfelt et al., 2000)
نتایج بیانگر آن است برای سه گروه اول (ریزش رسوب) مهندسی که مکان ریزش رسوب در مخزن در سطح بین‌بینی است مقتدر انحراف معیار و ضریب تغییرات کمترین مقدار بوده و بیانگر ریزش بکارهای تری در استادگاه سوم مخزن می‌باشد. بنابراین برای ریزش رسوب پهپادیشان نشانه‌های محدوده بین‌بینی (1.5 سانتی‌متر از دیواره مخزن به طول 44 سانتی‌متر) و استادگاه سوم پیشنهاد می‌گردد. با توجه این اظهارآمیزشگاهی بیانگر آن که موادی مانند غذا، ماهی در حجم CM، که دارای نرخ غله‌داری بالا می‌باشند و بیشتر نسبت جریان حوزه مخزن استوانهای سکل قرارگرفته و از مرکز حوضه خارج می‌گردد.

منابع

Chen, S., Coffin, D.E. and Malone, R.F., 1993. Production, characteristics, and modeling of aquacultural sludge from a...

DOI: 10.1016/j.aquaeng.2007.04.001

http://dx.doi.org/10.1007/978-1-4615-7047-9

http://dx.doi.org/10.1577/1548-8659(1973)35[122:EOCTFS]2.0.CO;2

http://dx.doi.org/10.1016/S0144-8609(98)00023-5

Experimental investigation of settling pattern of solid particles in trout recirculating aquaculture systems

Sajedi Sabegh M.1; Abdolhay H.A.1; Saneie M.2; Behmanesh Sh.2; Matinfar A.2

* m_sabegh@yahoo.com

1-Soil Conservation and Watershed Management Research Institute, Agricultural Research Education and Extension Organization
2- Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization

Abstract
During the growth of population in the world, Recirculating Aquaculture Systems (RAS) are developing due to more production and less water consumption and many scientists have studied on water quality and solid removal at these systems. In this paper to study on settling pattern of solid particles on a bed of aquaculture cylindrical tanks, a tank in diameter of 2.14 m and height of 0.59 m and inlet flow using three nozzles in 8 mm diameter has implemented. Quality and quantity studies of settling patterns of solid particles in six injection location (by changing the injection location of radial alignment for three options and on the pyramid of tank for others) show that injection location by the middle location of radial length and of third station (there are 6 stations on the pyramid of the tank and each station has located at 60 degrees from the last station) created more uniform sedimentation on the bed. Also, laboratory observations show that the low density materials such as fish feed, which has a high rate of immersion are more disposed to exit due to spiral flow of cylindrical tanks.

Keywords: Settling pattern, cylindrical tanks, Recirculating aquaculture systems, Laboratory model, Fish feed

*Corresponding author