پرسی آزمایشگاهی الگوی رسوب گذاری در مخازن استوانه‌ای پرورش ماهی

مایه قزل آلا

مسعود ساجدی سابق، مجتبی صانعی، حسین علی عبدالهی، شهرام بهمنش و عباس متین فر

$m_sabegh@yahoo.com$

چکیده

با افزایش جمعیت در سطح جهان، مخازن استوانه‌ای پرورش ماهی به دلیل تولید بالا و مصرف پایین آب، توسعه‌یافته و به دلیل اهمیت کیفیت آب و جداسازی مواد جامد از این مخازن مطالعات زیادی انجام‌شده است. در این مقاله به مطالعه بررسی آزمایشگاهی الگوسازی رسوب گذاری در مخازن استوانه‌ای پرورش ماهی، مخزندی با قطر 11/2 متر و ارتفاع 95/0 متر طراحی و طراحی و ساخته شده است. و چرخان و رودی از طریق چرخن آب از سه نازل ورودی به قطع داخلی هر یک 8 میلی متر برقرار گردیده. پرسی کمی با کیفیت رسوب گذاری در کف مخزن استوانه‌ای پرورش ماهی به روش موضعی رسوبات در سطح مخزن (سه گره با روش رسوبات در جهت شعلی و سه گره با روش موضعی رسوبات در پر در مخزن استوانه‌ای) مورد آزمایش قرار گرفت. نتایج بیانگر آن است برای ریزش رسوب بهترین مکان قسمت محدودیتی (145 سانتی‌متر از دیواره مخزن به طول 44 سانتی‌متر) و استفاده سوم می‌باشد. همچنین مشاهده آزمایشگاهی بیانگر آن بود که در حجم کم مواد ماده غذای ماهی، که دارای نرخ غذایی بالایی می‌باشند، بیشتر تابع چرخن حلزونی مخازن استوانه‌ای شکل قرار گرفته و از مرکز حوضچه خارج می‌گردد.

کلمات کلیدی: الگوسازی رسوب گذاری، مخازن استوانه‌ای، پرورش ماهی، مدل آزمایشگاهی، غذاهای ماهی

*نویسنده مستند
مقدمه
بر اساس طبقه‌بندی Lawton (1995) (سه نوع بالايشت فیزیکی، سیمیائی و فیزیولوژیکی) در مخازن پرورش ماهی لاجم می‌شود که جاداسی مواد جامد در ابتدا بالای فیزیکی آن قرار می‌گیرد. با ساخت اولین حضورهای پرورش ماهی در سیستم مدارس، موضوع جاداسی مواد جامد از حضورهای نیز مورد توجه قرار گرفت. در مخازن استوانه‌ای پرورش ماهی نسبت به سایر سیستم‌های مدارس، راندمان تنداری را در اروپا (تحلیل رسوب از طریق مجاری مرکزی) به دلیل هدایت مایه جامد به سوسمین درک مخزن افزایش می‌یابد. در مخازن استوانه‌ای پرورش ماهی نسبت به سایر سیستم‌های مدارس، راندمان نسبت به سایر سیستم‌های مدارس به دلیل هدایت مایه جامد به سوسمین درک مخزن افزایش می‌یابد.

Hiderودبانیمک مخازن استوانه‌ای پرورش ماهی دو گروه Labatut و همکاران (2007) با مطالعه تحقیقی در مخازن ماهی نازل‌ها و مقدار بی‌خودخواهی بر اساس طبقه‌بندی Lawton (1995) (سه نوع بالايشت فیزیکی، سیمیائی و فیزیولوژیکی) در مخازن پرورش ماهی لاجم می‌شود که جاداسی مواد جامد در ابتدا بالای فیزیکی آن قرار می‌گیرد. با ساخت اولین حضورهای پرورش ماهی در سیستم مدارس، موضوع جاداسی مواد جامد از حضورهای نیز مورد توجه قرار گرفت. در مخازن استوانه‌ای پرورش ماهی نسبت به سایر سیستم‌های مدارس، راندمان تنداری را در اروپا (تحلیل رسوب از طریق مجاری مرکزی) به دلیل هدایت مایه جامد به سوسمین درک مخزن افزایش می‌یابد. در مخازن استوانه‌ای پرورش ماهی نسبت به سایر سیستم‌های مدارس، راندمان نسبت به سایر سیستم‌های مدارس به دلیل هدایت مایه جامد به سوسمین درک مخزن افزایش می‌یابد.
چرخه‌ای با سرعت‌بایین و درجه اختلاط ضعیف می‌گردید (Larmoyeux et al., 1973, Timmons et al., 1998).

هیاکون مخزن استوایی دو زهکه به دلیل تمرکز بی‌سیستمیت، مواد زائد و هم‌اکنون جریان کاربرد دارد. در این مخزن، جریان تابعه موجب می‌شود مقدار کمتری جریان رسوبات بیشتری در کف مخزن جمع و یک‌پاسی شود. بطوری که با راه اندازی مقدار به ۸۰٪/۵٪ خروجی مرکزی ۱۰۰ برابر، بزرگتر از غلظت رسوبات متعلق به خروجی جانبي بوده و به‌طور متوسط مقداری ۱/۵۰ mg/l (متوسط ماده‌های خیسپشند) است (Summerfelt et al., 2000).

مقدار سیستمی دو زهکه کمان، با دی‌بی/۱۰٪/۰٪ کل دی‌بی جریان مخزن، بطور سریع و تدریجی ۸٪/۳٪ نسبت ماده‌های بذری به دلیل روز تولیدشده است. در مدت ۲۰ دقیقه، بصورت متغیر از زهکه مرکزی خارج می‌شود. هنگامی که مخزن از این ماده باشند، غلظت رسوبات متعلق به خروجی مرکزی ۱۰۰ برابر، بزرگتر از غلظت رسوبات متعلق به خروجی جانبي بوده و به‌طور متوسط مقداری ۱/۵۰ mg/l (متوسط ماده‌های خیسپشند) است (Summerfelt et al., 2000).

سرعت جریان آب از اساسی تر فاکتورهای که ضمن تأمین اکسیژن موردی‌گرایی مافذی پیوسته و فصولات مافذی را با حجم صریح مافذی خارج می‌نماید. سرعت جریان آب در مخزن و حوضچه‌ها با متناسب با سایر مافذی جریان به‌دست آمده غلظت رسوبات مافذی کم‌طرفی عضلات و تنفس سالم سرعت خرخشی پهنی آب در مخزن، مقدار ۱/۵ تا ۱/۲ بار طول پپر مافذی (Losordo & W ester, 1994) در پایینپیش می‌شود. برای تخلیه ماده جامد تنفسی سرعت جریان بیش از ۵/۰–۷/۰ سانتی‌متر در ثانیه توصیه می‌شود (Burrows & , 1970, Mäkinen et al., 1988). برای مافذی تیلاپیا سرعت جریان بیش از ۳/۰–۴/۰ سانتی‌متر در ثانیه را برای حفظ سلامت مافذی، شرایط بهینه عضلاتی و تنفس مافذی سرعت مافذی و کیفیت آب باسیست مطلوب باشد. سرعت و شرایط جریان باسیست به حذف مواد جامد زیستی بیان‌گر دست‌آمیش که از کامه اکسیژن و گکتی‌ریزی بیان‌زون
ساجذی سابق و همكاران

بررسی آزمایشگاهی نک‌های رسوب‌گذاری در...

در این مدل سه نوع رسوب ماسه، غذا ماهی کراموال و غذا ماهی یل آزمایش قرار گرفت (جدول ۱).

جدول ۱: مشخصات رسوباتی که در مدل مورد آزمایش قرار گرفته‌اند.

<table>
<thead>
<tr>
<th>سرعت (m/s)</th>
<th>قطر سطح ($\mu $m)</th>
<th>قطر خشک (g/cm3)</th>
<th>مقدار (g/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/11</td>
<td>1/46</td>
<td>1/8</td>
<td>0.1/0.28</td>
</tr>
<tr>
<td>1/16</td>
<td>1/38</td>
<td>1/11</td>
<td>0.5/0.14</td>
</tr>
</tbody>
</table>

در این مدل سه نوع رسوب ماسه، غذا ماهی کراموال و غذا ماهی یل آزمایش قرار گرفت (جدول ۱).

جدول ۱: مشخصات رسوباتی که در مدل مورد آزمایش قرار گرفته‌اند.

<table>
<thead>
<tr>
<th>سرعت (m/s)</th>
<th>قطر سطح ($\mu $m)</th>
<th>قطر خشک (g/cm3)</th>
<th>مقدار (g/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/11</td>
<td>1/46</td>
<td>1/8</td>
<td>0.1/0.28</td>
</tr>
<tr>
<td>1/16</td>
<td>1/38</td>
<td>1/11</td>
<td>0.5/0.14</td>
</tr>
</tbody>
</table>

مشاهدات آزمایشگاهی بیانگر آن است که موانع مانند غذای ماهی که دارای درخ غوطه‌وری بالا می‌باشد، بیشتر تابع جریان حوزنی مخزن استوانه‌ای قرارگرفته و از مرکز حوضه خارج می‌گردد. بنابراین در اینجا ضریب نتایج کمی و کیفی ریزش ماسه ریز مورد مطالعه قرار گرفته است.

برای ریزش رسوبات، شیب گوش‌های سردر آزمایش قرار گرفت: سه گوش‌های ریزش رسوبات ماسه در جهت شعاعی و سه گوش‌های ریزش رسوبات در جهت ایستگاهی همراه بوده است (شکل ۱). در جهت شعاعی در سه مکان نزدیک به‌هی دیواره مخزن، دور از دیواره مخزن و بین این دو (فاسلره بین‌‌شیعه مخزن) ریزش صورت گرفته و در جهت ایستگاهی در سه ایستگاه در جهت نازل ورودی و در فاسلره بین‌‌شیعه مخزن، عملیات ریزش موارد جامد انجام شده است. لازم به ذکر است که این وزن‌ها با قطاع ۶۰ درجه در اطراف مخزن برای اندازه‌گیری‌ها ایجاد‌شده است.

شکل ۱: مخزن استوانه‌ای برخوش ماهی و تأنیت‌سازی واسطه

Figure 1: Aquaculture cylindrical tank and related equipments
مشخصات مختلفی از ماسه در عرض مشخصی از شاخه مخزن ریزش می‌گند.

شکل ۲: موقعیت پرتاب آب در مخزن

Figure 2: Outlet orientation in the tank

شکل ۳: وسیله توزیع رسوب در مخزن استوانه‌ای

Figure 3: Sediment spreading equipment in cylindrical tank

نتایج

همانطور که از شکل ۴ مشاهده می‌شود، رسوب در قسمت بیرونی مخزن (سمت دیواره) انجام گرفته و رسوب گذاری در قطعات پنجم رخ داده، با مقایسه نتایج آزمایشی می‌توان گزارش کرد که در هیچ یک از این حالات گذاری کمی رسوب گذاری کاملاً همانند نمی‌باشد.

21
سجاdi سابق و همكاران

برقي آزمایشگاهi الغوي رسوبگداري در...
جدول ۳: مقادیر وزنی رسوبات در هر یک از قطعات
شکل ۵: گونه‌کمی رسوب‌گذاری با ریزش رسوب در قسمت بین‌بینی شعاع مخزن در ایستگاه‌های ۱ و ۲

جدول ۲: ویژگی‌های ایستگاه‌های سدیم، ایستگاه‌های دوم و ایستگاه‌های اول اسکوپ سوختگذاری

<table>
<thead>
<tr>
<th>ایستگاه اول</th>
<th>ایستگاه دوم</th>
<th>ایستگاه سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰</td>
<td>۱۴</td>
<td>۴۱</td>
</tr>
<tr>
<td>۱۷</td>
<td>۱۱</td>
<td>۲۸</td>
</tr>
<tr>
<td>۱۳/۵</td>
<td>۵</td>
<td>۴۱</td>
</tr>
<tr>
<td>۱۹</td>
<td>۲۱</td>
<td>۲۸</td>
</tr>
<tr>
<td>۱۶</td>
<td>۲۹</td>
<td>۲۸</td>
</tr>
<tr>
<td>۱۹</td>
<td>۲۱</td>
<td>۲۸</td>
</tr>
<tr>
<td>۳۲</td>
<td>۳۸/۲</td>
<td>۲۷</td>
</tr>
<tr>
<td>۱۶/۷</td>
<td>۱۶/۷</td>
<td>۲۷</td>
</tr>
<tr>
<td>۱۹/۱</td>
<td>۲۳</td>
<td>۵۲/۱</td>
</tr>
</tbody>
</table>

بحث

با انتشار گیری وزنی رسوبات تنشین شده در قطعات ۶۰ درجهای که مخزن توزیع کیفی رسوب‌گذاری در سیستم‌ها و/or مخزن در محدوده‌های سیستم‌ها و/or مخزن (Summerfelt et al., 2000) می‌باشد.

نتایج این تحقیق با نتایج سامرفیت و همکاران (Summerfelt et al., 2000)
نتایج بینانگ آن است برای سه گزینه اول (ریزش رسوب گذاری در خاک) هنگامی که مکان ریزش رسوب در مخزن در شرایط بینانگی مخزن می‌باشد. همچنین برای سه گزینه دوم (ریزش رسوب در قسمت بیانبینی شعلا مخزن در ایستگاه‌های ۱، ۲ و ۳ و به عبارتی در قطع‌های دو درجه‌ای) و دوم و سوم نسبت به نازل جریان ورودی هنگامی که مکان ریزش رسوب در مخزن در شرایط ایستگاه سوم است متقارن انحراف معبر و ضرب تغییرات کمترین مقدار بوده و بینانگی ریزش بلکه مخزن آیستگاه سوم مخزن می‌باشد. بنابراین برای ریزش رسوب بهترین مکان قسمت محدود بینانگی (۱۵ سانتی‌متر از دیواره مخزن به طول ۴۴ سانتی‌متر) و ایستگاه سوم بینانگی گردیده. مشاهدات آزمایشگاهی بینانگ آن است که موادی مانند غذای ماهی در حجم کم، که دارای نرخ غوطه‌وری بالا می‌باشد، بیشتر ناامن جریان حلزونی مخازن استوانه‌ای سکل و شهر خارج می‌گردد.

منابع

http://dx.doi.org/10.1577/1548-8640(1970)32%5B67:TRCRP%5D2.0.CO ;2

شکل ۶: الگوی کیفی و درصد رسوب‌گذاری با ریزش رسوب در ایستگاه اول و در قسمت‌های بیرونی (الف)، بینانگی (ب) و داخلی (ج) مخزن

Figure 6: Qualitative pattern of sedimentation with sediment spreading of the first station in the External (a), intermediate (B) and internal (c) parts of the reservoir

در شکل (۶) فاصله کانون ریزش رسوب از دیواره L1 عمق جریان و Qدی دورودی می‌باشد. D مخزن.

DOI: 10.1016/j.aquaeng.2007.04.001

http://dx.doi.org/10.1007/978-1-4615-7047-9

http://dx.doi.org/10.1577/1548-8659(1973)35[122:EOCTFS]2.0.CO;2

http://dx.doi.org/10.1016/S0144-8609(98)00023-5

Experimental investigation of settling pattern of solid particles in trout recirculating aquaculture systems

Sajedi Sabegh M. 1; Abdolhay H.A. 1; Saneie M. 2; Behmanesh Sh. 2; Matinfar A. 2

* m_sabegh@yahoo.com

1-Soil Conservation and Watershed Management Research Institute, Agricultural Research Education and Extension Organization
2- Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization

Abstract
During the growth of population in the world, Recirculating Aquaculture Systems (RAS) are developing due to more production and less water consumption and many scientists have studied on water quality and solid removal at these systems. In this paper to study on settling pattern of solid particles on a bed of aquaculture cylindrical tanks, a tank in diameter of 2.14 m and height of 0.59 m and inlet flow using three nozzles in 8 mm diameter has implemented. Quality and quantity studies of settling patterns of solid particles in six injection location (by changing the injection location of radial alignment for three options and on the pyramid of tank for others) show that injection location by the middle location of radial length and of third station (there are 6 stations on the pyramid of the tank and each station has located at 60 degrees from the last station) created more uniform sedimentation on the bed. Also, laboratory observations show that the low density materials such as fish feed, which has a high rate of immersion are more disposed to exit due to spiral flow of cylindrical tanks.

Keywords: Settling pattern, cylindrical tanks, Recirculating aquaculture systems, Laboratory model, Fish feed

*Corresponding author