بررسی آزمایشگاهی الگوی رسوب گذاری در مخازن استوانه‌ای پرورش ماهی

محمدرضا مسعود ساجدي سابق، مجتبی صانعی، حسین علی عبداللهی، سهراب بهمنش، عباس متین فر

m_sabegh@yahoo.com

چکیده
با افزایش جمعیت در سطح جهان، مخازن استوانه‌ای پرورش ماهی به دلیل تولید بالا و مصرف پایین آب، توسعه یافته و به دلیل اهمیت کیفیت آب و جداسازی مواد جامد از این مخازن مطالعات زیادی انجام شده است. در این مقاله به‌منظور بررسی آزمایشگاهی الگوی رسوب‌گذاری در مخازن استوانه‌ای پرورش ماهی، مخازن با قطر 2/14 متر و ارتفاع 59/25 متر طراحی و ساخته شده است و چریان ورودی از طریق چت آب از سه نازل ورودی به قطر داخلی هر یک 8 میلی‌متر برقرار گردید. بررسی کمی و کیفی رسوب‌گذاری در کف مخزن استوانه‌ای پرورش ماهی برای ریزش موضعی رسوبات در شبکه مکانیکی گزارش گردید و در این بیانگر آن است برای ریزش رسوب بهترین مکان قسمت محدود بنیایی (51 سانتی‌متر از دیواره مخزن به طول 42 سانتی‌متر) است. با این حال، مشاهده‌ای از آزمایشگاهی بیانگر آن نبود که در حجم کم مواد ماده غذایی ماهی، که دارای نرخ غذایی بالایی می‌باشند، پیشتر باعث جریان حلزونی مخازن استوانه‌ای شکل قرار گرفته و از مرکز حوضی‌های خارج می‌گردد.

کلمات کلیدی: الگوی رسوب‌گذاری، مخازن استوانه‌ای، پرورش ماهی مدل آزمایشگاهی غذای ماهی

نویسنده مستند

نوبت‌مند تاریخ دریافت: تیر 1394

مجله علمی شیلات ایران
سال بیست و پنجم/شماره 4/سمستان
1395
نهضت و همکاران

مقدمه

بر اساس طبقه‌بندی Lawton (1995) (س) به نوع بالا شدن فیزیکی، سیمیایی و پیویژکی در مخزن پروش ماهی انجام می‌شود که جداسازی مواد جامد در ليست بالایی فیزیکی آن قرار می‌گیرد. با ساخت اولین حضوهچه پروش ماهی در سیستم مادرسیتی، موضوع جداسازی مواد جامد از حضوهچه نیز موردجوه قرار گرفت. در مخزن استوانه‌ای پروش ماهی نسبت به سایر سمی‌ها مادرسیتی، رانندان تلاش‌های سیستم پروش در اکوتروپ (تخییه رسوی از طریق مجاری مرکزی) به دلال هدایت جامد به‌وسیله مرکز مخزن، افزایش می‌یابد. در مخزن استوانه‌ای پروش ماهی (درای خروجی مرکزی و سریزی جامدی در مخزن استوانه‌ای) (چنگالی و سیستم حیاتی) (و سریزی جامدی در مخزن استوانه‌ای) بیشتر رسوایی از مرکز مخزن کمتر در دنیای خانهٔ مگید. بخشی از رسوایی که از مرکز مخزن تخییه مگید به‌ویژه در برخی رسوایی هم، با جابه‌ای از دیگر پروش‌ها و سایر مواد از جمله مواد فیزیکی خواهد می‌گردید. در این تحقیقات زمان از چنگالی آب‌سنج و نیز آن استفاده نموده‌اند.

Labatut و همکاران (2000) (با مطالعه تأثیر قطر نازل‌ها و مقدار آب خروجی از مرکز مخزن بر هیدرودینامیک مخزن دریافت که وقتی نازل تأثیر فراوانی بر شدت سرعت چرخه دارد. درصد آب خروجی از مرکز تغییر فراوانی ناپذیر و این دو تأثیر از یکگونه‌ی هرچه بیشتر شدید و مفید شده در کنترل چرخه خروجی مخزن می‌باشد، که به‌وسیلهٔ فشار نازل و سرعت جفت آب ایجاد می‌شود.

در مخزن‌ها، جریان ورودی نازل‌ها به تعادل بیشتر و در راستای گردش می‌باشد. توزیع یکی‌پایه‌ی را ایجاد خواهد کرد. (Tvinnereim & Sybykmoen, 1989; Davidson & Summefelt, 2000; Tvinnereim et al., 2007; Watten et al., 2007) در یک فضای مناسب، رانندان اختلاف نیز به جهت پرتای جریان از Davidson & Summefelt, 2005 نتیجه گرفته خواهد شد.

در مخزن استوانه‌ای نسبت قطر به عمق بر یکگونه‌ی جریان تأثیر می‌گذارد. اگر این نسبت کم باشد (مانند مخزن عمیق) در خروجی مرکزی یک سطح هلالی شکل ایجاد می‌کند که منجر به تشکیل ناحیهٔ غیر
چرخته یا سرعت پایین و درجه اختلاط ضعیف می‌گردد.

(Larmoyeux et al., 1973, Timmons et al., 1998)

هماکنون مخازن استوایی دو زهکه به دلیل تمرکز بهتر مواد زاند و همچنین چرخان پیشرفت کاربرد دارد. در این مخازن، چرخان ناحیه موی می‌شود به همیشه کمتر چرخان ربات اصلی در کف مخزن جمع و پاکسازی شود. بطوریکه که (۲۰/۵ بهره مکانیکی، ۹۰/۸ بهره مکانیکی، ۹۰/۸ بهره مکانیکی. Summerfelt et al., 2000; Van Toever, Davidson & Summerfelt, 2005;

(Lunde et al., 1997; مخازن سیستمی دو زهکه کرل، با دیپ ۱۵/۱۲/۲۰/۸۰

کل دیپ جراح مخزن بستر سریع و تدریجی ۸۰/٪ روبات متقاطع را که طی ۲ روز تولیدشده است، در مدت ۲-۲ دقیقه، بطور متمرکز و از زهکه مرکزی خارج می‌سازد. هنگامی که مخازن از مخازن پر با ماهی باشد، قطع از مخازن در خروجی مرکزی ۱۰ برابر بزرگتر از غفلت روبات متقاطع در خروجی جانی بوده و بطور متوسط معدال ۲۰/۵-۱/۵ گزارش‌شده است.

(Summerfelt et al., 2000)

سرعت جراح آب از اساسی تر فاکتورهای که ضمن تأمین اکسیژن موردیتی به حاصله مضر تولیدی و فشارهای به راحتی سطح ماهی خارج می‌نماید. سرعت جراح آب در مخازن و حوضچه‌ها باید مناسب با سایر ماهی پرورشی باشد و برای حیات سلامت ماهی، کشیدنی طبیعی جل versch و تنفس سالم سرعت خروجی بهینه آب در مخزن، معدال ۲۰/۵-۱/۵ برابر پایین ماهی (Losordo & Wester, 1994) در پایین سرعت پایین مناسب موداد. ترکیب سرعت جراح آب از ۱۵-۲۰ سانتی‌متر در ثانیه توصیه می‌شود Burrows & , Mäkinen et al., 1988; Haller یا Balarin, (Chenoweth, 1981) برای ماهی تبلايا سرعت جراح آب از ۱۲-۱۰ سانتی‌متر در ثانیه را بیان می‌گردد.

برای حفظ سلامت ماهی، شرایط و برخی ضوابط و نکته ماهی، سرعت مخزن و کیفیت آب باستی و مطلوب باشد. سرعت و شرایط جراح آبستی به حفظ موارد گمانه‌زنی‌های ایشان و گزارش‌های سازمانی تا کاهش اکسیژن و گزارش‌های سازمانی.

مواد و روش‌ها

به منظور بررسی شرایط هیدرولوژیک جریان در مخازن استوایی، پاتر ماهی، از مقطع مناسب با طرح نیز سنجش به‌طور مثنوی و ساخته شد. در دانش مخازن با قطر ۲/۲۸ متر و ارتفاع ۱۵/۸ متر طراحی و ساخته شد (شکل 1). اطمینان این زمان نشان می‌دهد به سرعت جریان در لایه‌های شباهی عمیق چرخان متناسب با زورهای جریان ورودی و زیری دیواره دارای تعیین می‌باشد.

جریان ورودی از طریق جفت آب از سطح نازل ورودی به قطر داخلی هر ۸ میل متر و در فاصله ۵ سانتیمتر از یکدیگر و ۱۰ سانتیمتر از کف برای نازل زیرین، یک الحرکتی، طی از امید ماهی یا الیه زاویه ۹۰ درجه در مخزن خروجی نازل به دلیل ایجاد جریان تغییر در مخازن استوایی، این نمایش داده شده دوچرخه و این روتی مداری در مخزن در شرایط بهره‌برداری شده می‌باشد.

بررسی کمی و گراف مصفای دار در کف مخزن استوایی، نشان می‌دهد که در زمان مواردی که می‌تواند به راحتی موارد روباتی در کف مخزن شتاب و سرعت موضعی اتمید در شرایط ماهی، (شکل از ارتفاع روبات و گراف گرفته شده برای احظ‌ها) مورد آزمایش قرار گرفت.

نتیجه‌گیری به این صورت بود که ابتدای مورد نظر از طریق شیرآب ورودی مخزن و سریز انتهایی، کنترل و ورود مخزن شده سبب دیگر خروجی مرکزی متناوب با ۲۰ دیب ورودی تظیم می‌شود. در تمام این
رشوبات ورودی و مشاهده آب بدون رشوب، جریان به‌طور ارزیابی شده می‌شود تا با انجام ترسب مواد جابجا شود. در اینجا رشوبات از طریق اثر شارگذاری محسوب می‌گردد. مراحل باید مطمئن شویم که جریان ورودی دچار تغییرات موضعی نخواهد شد. در اینجا رشوبات انتقال‌رسوب در هریک از مواقع شش گشاینی و تزریق حجم مشخصی از رشوب به آرامی انجام می‌شود. پس بعد از ترسب

شکل ۱: مخزن استوانه‌ای پرورش ماهی و تأسیسات آن

Figure 1: Aquaculture cylindrical tank and related equipments

در این مدل سه نوع رشوبات ماهی، غذای ماهی کرامل و غذای ماهی بیل مورد آزمایش قرار گرفت (جدول ۱).

جدول ۱: مشخصات رسوباتی که در مدل مورد آزمایش قرار گرفته است.

Table 1: Solid particle characteristics used in laboratory tests

<table>
<thead>
<tr>
<th>سرعت (m/s)</th>
<th>قطر رسوبات (mm)</th>
<th>چگالی رسوبات (g/cm³)</th>
<th>چگالی رشوبات (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/11</td>
<td>1/18</td>
<td>16/18</td>
<td>1/16</td>
</tr>
<tr>
<td>1/11</td>
<td>1/14</td>
<td>2/14</td>
<td>1/10</td>
</tr>
<tr>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
</tr>
<tr>
<td>1/9</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
</tr>
</tbody>
</table>

۱۰۰ درجه در اطراف مخزن تا برعکس‌عیاری خاصی جهت ایجادشده است.
وسیله ریزش ماسه در شکل ۲ نشان داده شده است. در این وسیله با هر گردش صفحه رویی و قرارگیری شیارهای دو صفحه (صفحه بالاب، و صفحه زیرین تاب) مقدار مشخصی از ماسه در عرض مشخصی از شعاع مخزن ریزش می‌گردد.

شکل ۳: موقعیت ریزش آب در مخزن

Figure 2: Outlet orientation in the tank

جعبه طور که از شکل ۴ مشاهده می‌شود هنگامی که ریزش رسوب در قسمت بیرونی مخزن (سمت دیواره) انجام می‌شود، فیلتر رسوب‌گذاری ابتدا کاهش یافته و سپس افزایش می‌یابد به طوری که بیشترین رسوبات در قطاع چهارم تنشین شده و سپس روند کاهشی در مقدار رسوب‌گذاری رخ می‌دهد. با ریزش رسوب در قسمت‌هایی
شکل 4: نمودار وزنی رسوب در هر یک از قطعات

جدول 2: مقدار وزنی رسوب در هر بخش مخزن برای سه گزینه اول ریزش رسوب

<table>
<thead>
<tr>
<th>بینایی بینایی</th>
<th>داخلی</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>قطرات 1</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>قطرات 2</td>
<td>4/14</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>قطرات 3</td>
<td>6/54</td>
<td>5</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>قطرات 4</td>
<td>3 21</td>
<td>32</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>قطرات 5</td>
<td>5 26</td>
<td>32</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>قطرات 6</td>
<td>6 46</td>
<td>32</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>8/37</td>
<td>8/37</td>
<td>8/37</td>
<td>8/37</td>
</tr>
<tr>
<td>میانگین</td>
<td>16/7</td>
<td>16/7</td>
<td>16/7</td>
<td>16/7</td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td>6/37</td>
<td>6/37</td>
<td>6/37</td>
<td>6/37</td>
</tr>
</tbody>
</table>

همانطور که در جدول 2 مشاهده می‌شود هنگامی که مکان ریزش رسوب در مخزن در شرایط بینایی است مقدار انحراف معیار و ضریب تغییرات کمترین مقدار بوده.
هرچند سامپل‌های مخزن در مورد مخازن (Summerfelt et al., 2000) سیستم‌های دو زهکش با زهکش جانبه (Design سیستم‌های دو زهکش با زهکش جانبه (Design Samsung et al., 2019) نشان داد که در مخازن با سیستم‌های دو زهکش کربن (Waterline Design)، اندازه نخیه رسوب تا 90٪ مشاهده شده، به طوری که حتی گاهی کل رسوبات از مرکز مخزن نخیه گردد است.

جدول ۲: مقادیر وزنی رسوبات در هر یک از قطاع‌های
شکل کافی نمایش دهنده در این نوع شکل‌کشی رسوب در ایستگاه‌های ۲ و ۳

جدول ۲: مقادیر وزنی رسوبات در هر یک از قطاع‌های

<table>
<thead>
<tr>
<th>مکان رسوب و سوپ</th>
<th>ایستگاه اول</th>
<th>ایستگاه دوم</th>
<th>ایستگاه سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>قطعه ۱</td>
<td>۲۲</td>
<td>۱۶</td>
<td>۲۰</td>
</tr>
<tr>
<td>قطعه ۲</td>
<td>۱۷</td>
<td>۱۱</td>
<td>۱۳</td>
</tr>
<tr>
<td>قطعه ۳</td>
<td>۶۱</td>
<td>۵۱</td>
<td>۴۹</td>
</tr>
<tr>
<td>قطعه ۴</td>
<td>۴۴</td>
<td>۴۰</td>
<td>۴۷</td>
</tr>
<tr>
<td>قطعه ۵</td>
<td>۴۳</td>
<td>۳۹</td>
<td>۴۰</td>
</tr>
<tr>
<td>قطعه ۶</td>
<td>۴۴</td>
<td>۵۱</td>
<td>۴۱</td>
</tr>
</tbody>
</table>

ابحث

با ایجاد گیری وزنی رسوبات تهیه شده در قطاع‌های ۶۰ درصدی کافی نمایش دهنده در ایستگاه‌های سیستم سامپل‌های مخزن برسی‌شده است. شکل ۳ تصور محدوده‌های رسوب‌گزاری و کیفیت رسوب‌گزاری را برای سه سطح نشان می‌دهد. محدوده‌های رسوب‌گزاری تصور شکل ۳ نشان دهنده هنگامی که رسوب در محدوده بین‌اینفی در فاصله ۲۲ و ۳۲ صورت می‌گیرد.

بحث

همانطور که در جدول ۲ مشاهده می‌شود هنگامی که مکان رسوب در مخزن در شرایط استگاه سوم است مقدار انحراف معیار و ضریب تغییرات کمترین مقدار بوده و باینگر ریزش یک‌واختی در استگاه سوم مخزن می‌باشد.

نتایج این تحقیق با نتایج سامرفلت و همکاران (Summerfelt et al., 2000)
Figure 6: Qualitative pattern of sedimentation with sediment spreading of the first station in the External (a), intermediate (b) and internal (c) parts of the reservoir.

DOI: 10.1016/j.aquaeng.2007.04.001

http://dx.doi.org/10.1007/978-1-4615-7047-9

http://dx.doi.org/10.1577/1548-8659(1973)35[122:EOCTFS]2.0.CO;2

http://dx.doi.org/10.1016/S0144-8609(98)00023-5

Experimental investigation of settling pattern of solid particles in trout recirculating aquaculture systems

Sajedi Sabegh M.1; Abdolhay H.A.1; Saneie M.2; Behmanesh Sh.2; Matinfar A.2

1-Soil Conservation and Watershed Management Research Institute, Agricultural Research Education and Extension Organization
2- Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization

Abstract
During the growth of population in the world, Recirculating Aquaculture Systems (RAS) are developing due to more production and less water consumption and many scientists have studied on water quality and solid removal at these systems. In this paper to study on settling pattern of solid particles on a bed of aquaculture cylindrical tanks, a tank in diameter of 2.14 m and height of 0.59 m and inlet flow using three nozzles in 8 mm diameter has implemented. Quality and quantity studies of settling patterns of solid particles in six injection location (by changing the injection location of radial alignment for three options and on the pyramid of tank for others) show that injection location by the middle location of radial length and of third station (there are 6 stations on the pyramid of the tank and each station has located at 60 degrees from the last station) created more uniform sedimentation on the bed. Also, laboratory observations show that the low density materials such as fish feed, which has a high rate of immersion are more disposed to exit due to spiral flow of cylindrical tanks.

Keywords: Settling pattern, cylindrical tanks, Recirculating aquaculture systems, Laboratory model, Fish feed

*Corresponding author