پاسخ‌های استرسی و خونی پس از بیهوشی پیره‌قله ماهیان جوان (Huso huso L.)

نگهداری شده در تراکم‌های کم و زیاد در شرایط زمستانه

بهرام فلاح‌تکار ۱، سپیده کهنسال ۱، رامین محمدعلی‌ها ۱

*falahatkar@guilan.ac.ir

۲۰۱۷/۹/۱۳۹۴

چکیده

این مطالعه به‌منظور بررسی اثر استرس‌های مزمن (تراکم) و حاد (دستکاری) موجود در محیط‌های پرورشی بر شاخص‌های استرسی و خونی فیل‌ماهی (Huso huso) در شرایط زمستانی (دمای زیر ۱۰ درجه سانتی‌گراد) پس از اعمال بیهوشی انجام گردید. ماهی‌های با میانگین وزنی در دو تراکم کم و زیاد (۸ هکتار در ۳ تکرار به مدت ۳۹۹ گرم در دو تراکم کم (۱ kg/m²) و زیاد (۲ kg/m²)) که در شرایط مکنون آبی (۰ درجه سانتی‌گراد) هم‌بوده و پس از ۳ دقیقه بیهوشی، به‌طور جفتی در تراکم‌های کم و زیاد و با دمای نخستین بیهوشی پس از فاصله ۴، ۷، ۱۲، ۲۴ و ۴۸ ساعت پس از اعمال استرس از ماهیان خون‌گداری گردیدند. شاخص‌های خونی包含، MCH، MCHC و MCV، تعادل مکانیکی CV، نوع‌ریزی، تعذاد گلبین، تعذاد گلبین سفید، لیفوئول، کرتریزول و دیگر موارد در ساعت ۳ پس از اعمال استرس، حاد و بیهوشی اختلاف معناداری را با زمان صفر (قبل از استرس) نشان دادند. نتایج بررسی مشخصات فیزیکی استرسی پس از اعمال استرس حاد و بیهوشی اختلاف معناداری بین دو دمای پر تراکم و پرتراکم مشاهده شد (r=0.001). تعادل MCV معناداری نداشت، اما در ساعت ۱ پس از اعمال استرس حاد و بیهوشی اختلاف معناداری بین دو دمای پر تراکم و پرتراکم مشاهده شد (r=0.001). تعادل MCH معناداری نداشت، اما در ساعت ۱ پس از اعمال استرس حاد و بیهوشی اختلاف معناداری بین دو دمای پر تراکم و پرتراکم مشاهده شد (r=0.001). نتایج حاصل از مقایسه بازده کل ماهیان در شرایط استرس مزمن، اعمال بیهوشی و استرس حاد دارد. با این حال، نتایج بررسی در شرایط استرس مزمن اعمال بیهوشی کنترل نمی‌شود.

کلمات کلیدی: استرس، فیل‌ماهی، تراکم، بیهوشی، دمای بایین

نویسندگان مستند
استرس‌های دستکاری بطور معمول جزء گروه استرس‌های
Gennotte et al., (2012) مطالعات مختلفی در ارتباط با آن تراکم (به عنوان استرس مراکز) و همچنین اثر دستکاری‌ها (استرس حاد) بر روی ماهیان گوناگون انجام شده است (2005; Ramsay et al., 2006; Hosoya et al., 2007).

در این گروه، بقیه مطالعات نشان داده است در صورتی که ماهی در یک سیستم پورشی تحت یک استرس مزمن قرار گیرند پایش‌های فیزیولوژیک مشابه را در بررسی یک استرس حاد از خود نشان دادهند. (Iversen et al., 2005; Biswas et al., 2006; Di et al., 2010). با این وجود، استفاده از برخی موارد و شرایط نگهداری که به نظر می‌رسند پایش‌های استرس ماهی را تحت تأثیر قرار دهنده شرایط را کم کرده‌است می‌کند. (Santos et al., 2010)

در حال حاضر آماری که در نظر گرفته شده‌اند از دیگر نمایش‌ها از یک سیستم پورشی (Boshra et al., 2006)

نگهداری شده در...

پایه‌های استرسی و خونی پس از بیهوشی به‌جهت ماهیان جوان (Huso huso L.)

فلاح‌کار و همکاران

مقدمه

فیلـامه، برگ‌کردنی ماهی یکی از عوامل استرس‌های بروز در ماهیان است. آنها شامل افزایش نیروی ماهی در سطح آب، افزایش فشار در استرس‌های مزمن و اختلالاتی که باعث بهبودی یا بهبود در هر دوی آنها می‌گردد می‌باشند. (Bond, 1996)

از فیلـامه آنها، زیاده شده و به این افراد مربوط است. (Barton et al., 2005; al., 2006)

در حال حاضر آماری که در نظر گرفته شده‌اند از دیگر نمایش‌ها از یک سیستم پورشی (Boshra et al., 2006)

نگهداری شده در...

پایه‌های استرسی و خونی پس از بیهوشی به‌جهت ماهیان جوان (Huso huso L.)

فلاح‌کار و همکاران

مقدمه

فیلـامه، برگ‌کردنی ماهی یکی از عوامل استرس‌های بروز در ماهیان است. آنها شامل افزایش نیروی ماهی در سطح آب، افزایش فشار در استرس‌های مزمن و اختلالاتی که باعث بهبودی یا بهبود در هر دوی آنها می‌گردد می‌باشند. (Bond, 1996)

از فیلـامه آنها، زیاده شده و به این افراد مربوط است. (Barton et al., 2005; al., 2006)

در حال حاضر آماری که در نظر گرفته شده‌اند از دیگر نمایش‌ها از یک سیستم پورشی (Boshra et al., 2006)

نگهداری شده در...

پایه‌های استرسی و خونی پس از بیهوشی به‌جهت ماهیان جوان (Huso huso L.)

فلاح‌کار و همکاران

مقدمه

فیلـامه، برگ‌کردنی ماهی یکی از عوامل استرس‌های بروز در ماهیان است. آنها شامل افزایش نیروی ماهی در سطح آب، افزایش فشار در استرس‌های مزمن و اختلالاتی که باعث بهبودی یا بهبود در هر دوی آنها می‌گردد می‌باشند. (Bond, 1996)

از فیلـامه آنها، زیاده شده و به این افراد مربوط است. (Barton et al., 2005; al., 2006)
استرس حاد

پس از یک هفته مدت در ثبات‌هایی در تراکم‌های ذکر شده، ماهیان

تحت شرایط استرس قرار گرفته‌اند، به‌ویژه که به‌وسیلهٔ ترور

سرعی و ظرف کمرت از ۳۰ ثانیه از هر حوضچه صد هسته و به

مدت ۲ دقیقه در مخعن پلاستیکی (۵۰۱) که حاوی ۴۰۰ میلی‌گرم در آلیه عبور گل‌يله بود، دی‌دریچه‌ها و جی‌کورتیک

پیدا شد. (تا زمان برگشت ماهی به شکن و آفزایش تعداد

حرکات سری‌پوش ایشانی و سپس به‌سختی از ماهیان برگردانده شدند. ماهی‌ها در هر دو تراکم کم و زیاد به‌دست اخذ شده نشان دادند که هیچ‌کدام از دو تراکم نسبت به هود امید و یک

از ۱۰ دقیقه به حالات کاملاً طبیعی شان‌می‌کردن.

نمونه‌گیری و آنتالیز نمونه‌ها

به‌منظور سنجش اثری‌پاتولگی خونی در هر مرحله زمانی، ۲ ماهی ماهی در هر جفت صفر (قلی از استرس)، ۱.۱.۵.۱۲. و ۲۴ و ۴۸ از هر حوضچه پرپرکم و یک عدد ماهی از هر

حوضچه کم تراکم (از هکار) به‌وسیلهٔ تصادفی صید گردید. ۲۴ و ۲۴۰ دقیقه بعد از تغییر در ترکیب خون از پلی‌پروپنوللیگن را سنجیده و به‌وسیلهٔ میکروسکوپیک نمونه‌‌گیری یافتند. ماهی‌های خون‌گیری شده به مخازن دیگری برای استرس به

سایر ماهی‌ها انتقال داده شدند. از یک قطره خون، برای تهیه

گسترش خون بی‌منظور تعیین درصد افتقلاب‌های

گسترش خون بی‌منظور تعیین درصد افتقلاب‌های

سعی استفاده شد. ماهی‌های خون‌گیری شده و دو لوله

پلاستیکی درب‌های خونی و شرایع جریان دره سیلیکی از دو نمونه تیز دریافت‌های هم‌زمان و کمینه شده

روز در مرحله‌ی زمانی در مدت ۲۴۰ دقیقه بعد از تغییر

در دو تراکم، دو ماهی از هر حوضچه پرپرکم (۵۰۱) به‌وسیلهٔ

گسترش خون بی‌منظور تعیین درصد افتقلاب‌های

نمونه‌گیری و آنتالیز نمونه‌ها

به‌منظور سنجش اثری‌پاتولگی خونی در هر مرحله زمانی، ۲ ماهی ماهی در هر جفت صفر (قلی از استرس)، ۱.۱.۵.۱۲. و ۲۴ و ۴۸ از هر حوضچه پرپرکم و یک عدد ماهی از هر

حوضچه کم تراکم (از هکار) به‌وسیلهٔ تصادفی صید گردید. ۲۴ و ۲۴۰ دقیقه بعد از تغییر در ترکیب خون از پلی‌پروپنوللیگن را سنجیده و به‌وسیلهٔ میکروسکوپیک نمونه‌گیری یافتند. ماهی‌های خون‌گیری شده به مخازن دیگری برای استرس به

سایر ماهی‌ها انتقال داده شدند. از یک قطره خون، برای تهیه

گسترش خون بی‌منظور تعیین درصد افتقلاب‌های

گسترش خون بی‌منظور تعیین درصد افتقلاب‌های

سعی استفاده شد. ماهی‌های خون‌گیری شده و دو لوله

پلاستیکی درب‌های خونی و شرایع جریان دره سیلیکی از دو نمونه تیز دریافت‌های هم‌زمان و کمینه شده

روز در مرحله‌ی زمانی در مدت ۲۴۰ دقیقه بعد از تغییر

در دو تراکم، دو ماهی از هر حوضچه پرپرکم (۵۰۱) به‌وسیلهٔ
پاسخ‌های استرسی و خونی پس از به‌پوشی به‌چه‌فیل ماهیان جوان (Huso huso L.) نکه‌داری شده در...

فلاح‌کار و همکاران

برای فیکس کردن آن‌ها استفاده شد. از نرم‌گیمیا طبق روش ذکر شده جفت‌های آبی‌آوری استفاده شد. پس از ۲۰ دقیقه لام‌آفشت و در دمای اتاق خشک شد، سپس با میکروسکوپ توری و با عدسی ۱۰۰۰ و روش آزمایش صورت مشاهده قرار گرفت. با توجه به این که تراکم سلول‌ها در لام نیای خیلی زیاد با خیلی کم باشد، روز ۱۰ می‌پنجره ماربی‌پی حس داده ماهیت مناسب از گلیول‌های سفید (sharing لیفوسیت، پنومیست، اسنوپریلب، نفوئریل) ساخته مربوطه دستگاه شمارنده (مدل LC-10). شرکت بهداشت، تهران، ایران زده تا مشاهد کل ۲۰۰ عضو پس از درصد (Rehulka, 2000) شاخص‌های مهم سلول‌های قرمز خون نیز میزان سرمول‌های زیر تعبیه گردید (Köprüçü et al., 2006)

\[MCV = \frac{100}{(fl)} \] ۱۰۰ (حجم متوسط گلیول‌های قرمز)

\[MCH = \frac{(pg/cell)}{100 (pg/cell)} \] متوسط گلیول‌های قرمز/ همگی‌های (g/dl) (غلظت متوسط هموگلیوبین گلیول‌قرمز)

تعادل گلیول‌های سفید و قرمز با استفاده از نمودار بعد از رقیق‌سازی خون منعطف شده با محلول رنگ (۱۵۰ برای گلیول‌های سفید و رنگ (۲۰ برای گلیول‌های قرمز) در ۵۲ سعی (Barros et al., 2002). شمارش تعداد سلول‌های افتراقی گلیول‌های سفید، ابتدا گسترش خونی تغییر گردید. پس از ادامه شدن از سایر تحلیل‌ها، از مناطق خارج

\[MCV = \frac{(fl)}{100 (fl)} \] تعداد گلیول‌های قرمز/ همگی‌های (fl)

\[MCH = \frac{(pg/cell)}{100 (pg/cell)} \] متوسط گلیول‌های قرمز/ همگی‌های (g/dl)

\[MCHC = \frac{(fl/dl)}{100 (fl/dl)} \] متوسط گلیول‌های قرمز/ همگی‌های (fl/dl)

ارقامی از طریق نرم‌افزار SPSS نسخه ۱۶ و در سطح اطمینان ۹۵٪ انجام شد. داده‌های ارائه شده در متن به‌صورت میانگین ± خطای استاندارد (SE) انجام شد.

نتایج

شاخص‌های استرسی

پس از یک هفته نکه‌داری فیل ماهیان جوان در دو تراکم پایین و بالا، اختلاف معنی‌داری در میزان کورتیزول مشاهده نشد. نتایج اندام‌گیر کورتیزول نشان داد که اختلاف معنی‌دار در طول زمان در تیمار‌های مختلف وجود دارد، به‌گونه‌ای که بیشترین میزان کورتیزول در ۱ ساعت پس از اعمال استرس حاد دستیاری تراکم پرفکت (۳/۱۰ ± ۳/۱۵) در دبیش شد. در حالی که تراکم کورتیزول افزایش مشاهده شده در ساعت ۱ پس از استرس نسبت به اوایل ساعت نمونه‌گیری معنی‌دار بود. در هر دو تراکم تراکم و پرفکت سرعت کورتیزول ۳ ساعت پس از اعمال استرس کاهش و نگرانی به حال اولیه خود یارایگشت (شکل ۱).فلاحت‌کار و همکاران

تجربه و تحلیل آماری

پس از کنترل ترمال بودن داده‌ها از طریق آزمون Kolmogorov-Smirnov ۳-way Levene مقایسه گروه‌ها از طریق ANOVA نیز انجام گردید. سپس مقایسه میانگین‌ها در یک نمونه گیری معنی‌دار بود. در هر دو تراکم تراکم و پرفکت سرعت کورتیزول ۳ ساعت پس از اعمال استرس کاهش و نگرانی به حال اولیه خود یارایگشت (شکل ۱).فلاحت‌کار و همکاران

۱۳۰
پیشتر از تیمار پرتراکم بود اما اختلاف بین دو تراکم در ساعت‌های مختلف دیگر مشاهده نشد (شکل 1 ب). در ساعت صفر (شروع آزمایش)، غلتظت لاکتات در تیمار کم تراکم 3/54 ± 5/2 mg/dl بود، اما اختلاف معنی‌داری بین این دو تیمار مشاهده نشد. در هر دو تراکم باعث پیش‌رفت لاکتات به‌طور معنی‌داری در هر دو تیمار افزایش یافت (کم تراکم 13/1 ± 1/45/5 mg/dl و پرتراکم 12/1 ± 1/3/2 mg/dl). در هر دو تراکم پس از 3 ساعت، لاکتات به حالت اولیه خود بازگشت. در بین دو تیمار موجود (کم تراکم و پرتراکم) در ساعت 3 پس از اعمال استرس حداکثر اختلاف معنی‌داری داری دیده بود (شکل 1 ج).

در خصوص مقدار گلکوز پلاسمای نیز، پس از یک هفته تهیه‌کننده در دو تراکم گلکوز بالا، اختلاف معنی‌داری مشاهده نشد. در حالی که در طول روند زمان اختلاف معنی‌داری بین تیمارهای مختلف مشاهده شد. هنگامی که در رابطه با تیمار کم تراکم بیشترین میزان گلکوز در ساعت 1 پس از استرس ملاحظه گردید (2/6 ± 3/6 mg/dl) و 6 ساعت پس از آن کاهش و تقویت به حالت اولیه خود بازگشت. در رابطه با تیمار پرتراکم نیز بیشترین میزان گلکوز در ساعت 1 پس از استرس مشاهده شد (3/3 ± 5/3 mg/dl) و 3 ساعت پس از آن تقویت به حالت اولیه خود بازگشت. در ساعت 1 پس از استرس مقدار گلکوز در تیمار کم تراکم به‌طور معنی‌داری در حدود 10/6 و 6/4 ± 10/6 کل (mg/dl) و از دو تراکم با پیش درآمد.

شکل 1: روند تغییرات کورتاژول (الف)، گلکوز (ب) و لاکتات پلاسمای (ج) در قلب ماهیان نهگداری شده در تراکم بالا (1kg/m²) و پایین (0.8kg/m²) در ساعت‌های قبل و پس از بیهوشی در شرایط زمستانی نشان داد. با استفاده از تیمارهای مختلف و در طول آزمایش است. نتایج نشان می‌دهد (p<0.05) (شکل 1 د). علامت * اختلاف معنی‌داری بین دو تراکم را در ساعت 100 نشان می‌دهد (p<0.05). برای تیمارها و یک تیمار با پایین (0.8kg/m²) نشان می‌دهد (p<0.05). برای تیمار تراکم پایین.

Figure 1: Changes of plasma cortisol (A), glucose (B) and lactate (C) levels in juvenile beluga sturgeon Huso huso held under high (8 kg/m²) or low (1 kg/m²) densities before and after stress in winter condition. Different letters of a, b, and c show significant difference in a treatment throughout the experiment (p<0.05). Asterisk show significant difference between two densities at the same time (p<0.05). Columns with at least one similar letter in each treatment show no significant difference (p>0.05). Data are presented as mean ± standard error (n=6 for high and n=3 for low densities).
پاسخ‌های استرسی و خونی پس از بیهوشی به چه فیل‌ها ماهیان جوان (Huso huso L.) نکده‌داری شده در...

فلحتکار و همکاران

شاخه‌های هم‌تولوزی

پس از یک هفته تک‌دریک در دو تراک پاپین و بالا اختلاف معنی‌داری در درصد هماتوکریت، غلظت همبلاژین، تعداد گلوبلاژی‌های قرمز، MCH و MCHC مشاهده نشد. همچنین اختلاف معنی‌داری در ارتباط با این شاخص‌ها در روند زمان و همچنین بین دو تراک کم تراک و پر تراک در ساعت‌های مختلف مشاهده نشد. تنها در مورد شاخص MCV در ساعت 28 پس از عمل استرس جاده دستکاری تفاوت مشاهده شده بین دو تراک (کم تراک (48.9/24.6/16.6 kg/m^3) و پر تراک (36.5/17/20.6 kg/m^3)، معنی‌دار بود (جدول 1). همچنین پس از یک هفته تک‌دریک در دو تراک پاپین و بالا اختلاف معنی‌داری در تعداد گلوبلاژی‌های سفید مشاهده نشد. میزان تعداد همبلاژین در دو تراک تغییر نشان نماد کم تراک (17/0/31/1 kg/m^3) و بالا (17/0/31/1 kg/m^3) را در مورد تراک کم تراک و بالا مشاهده نشده است. در مورد درصد افتراق گلوبلاژی‌های سفید خون نیز، پس از یک هفته تک‌دریک در دو تراک، اختلاف معنی‌داری در درصد لنفوسیت، باتوریتوفیل، اوژنیتوفیل و مونوسیت مشاهده نشد. تجزیه و تحلیل‌ها، اختلاف معنی‌داری را در طول زمان و بین تیمارهای مختلف نیز نشان نداد (جدول 2).

جدول 1: روند تغییرات هماتوکریت، همبلاژین، تعداد گلوبلاژی‌های قرمز، MCH و MCHC (میانگین ± حداکثر استاندارد) در فیل‌ها ماهیان

<table>
<thead>
<tr>
<th>صفر (شروع)</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>48</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>هماتوکریت (%)</td>
<td>19 ± 1/7</td>
<td>18 ± 1/2</td>
<td>17 ± 1/3</td>
<td>16 ± 1/4</td>
<td>15 ± 1/5</td>
<td>14 ± 1/6</td>
</tr>
<tr>
<td>گلوبلاژی‌های قرمز (×10^7/mm^3)</td>
<td>18 ± 1/2</td>
<td>17 ± 1/3</td>
<td>16 ± 1/4</td>
<td>15 ± 1/5</td>
<td>14 ± 1/6</td>
<td>13 ± 1/7</td>
</tr>
<tr>
<td>MCH (fl)</td>
<td>448/1 ± 0/1</td>
<td>434/1 ± 0/2</td>
<td>424/1 ± 0/3</td>
<td>414/1 ± 0/4</td>
<td>404/1 ± 0/5</td>
<td>394/1 ± 0/6</td>
</tr>
<tr>
<td>MCHC (g/dl)</td>
<td>76/7 ± 0/8</td>
<td>97/6 ± 0/9</td>
<td>99/6 ± 1/0</td>
<td>99/6 ± 1/1</td>
<td>99/6 ± 1/2</td>
<td>99/6 ± 1/3</td>
</tr>
<tr>
<td>کم تراک (ن)</td>
<td>3/2</td>
<td>3/2</td>
<td>3/2</td>
<td>3/2</td>
<td>3/2</td>
<td>3/2</td>
</tr>
</tbody>
</table>

ملاحظه: اختلاف معنی‌دار بین دو تراک را در ساعت مربوطه نشان می‌دهد (p<0.05).

![Table 1: Changes of hematocrit, hemoglobin, number of red blood cells, MCV, MCH, and MCHC (mean ± standard error) in juvenile beluga sturgeon Huso huso held under high (8 kg/m^3; n=6) or low (1 kg/m^3; n=3) densities before and after stress in winter condition.](https://doi.org/10.22029/ISJ-2017.11.01038)
بهبودی به‌منظور کاهش درد و سطح آگاهی جاندار استفاده می‌شود. بنابراین باعث جلوگیری از افزایش سوخت و ساز بدن و متعاقب آن جلوگیری از افزایش وزن و اسیر (Martínez-Porchas et al., 2009) نشان داد که پس کننده با کاهش و یا جلوگیری از فعال شدن محور CRH باعث عدم تغییر در پارامترهای نشانه‌ای خون می‌شود. بهبودی، گرچه می‌تواند باعث کاهش افزایش وزن و اسیر، اما هیچ‌گاه انجام شده برای ماهی‌های موافته به‌پوسته قابل از فاز بهبودی ممکن است باعث نابینایی کردن و یا از بین بروز مانند اثر CRH. در نتیجه (Ortuño et al., 2002 a,b; Hoseini et al., 2011)

<table>
<thead>
<tr>
<th>زمان‌های پس از استرس (ساعت)</th>
<th>صفر (شروع آزمایش)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>11/1</td>
<td>11/1</td>
</tr>
<tr>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>1/12</td>
<td>1/12</td>
</tr>
<tr>
<td>1/18</td>
<td>1/18</td>
</tr>
<tr>
<td>1/24</td>
<td>1/24</td>
</tr>
<tr>
<td>1/30</td>
<td>1/30</td>
</tr>
<tr>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>1/42</td>
<td>1/42</td>
</tr>
<tr>
<td>1/48</td>
<td>1/48</td>
</tr>
</tbody>
</table>

گل‌پوش سفید (X mm⁻¹);
گل‌پوش سبز (Y mm⁻¹);
گل‌پوش سرخ (Z mm⁻¹);
گل‌پوش سبز (W mm⁻¹).

در سطح مطلق حساسیت نشان داد که میزان حرارت، به‌سادگی می‌تواند باعث کاهش و یا جلوگیری از فعال شدن محور محور CRH باعث عدم تغییر در پارامترهای نشانه‌ای خون می‌شود. بهبودی، گرچه می‌تواند باعث کاهش افزایش وزن و اسیر، اما هیچ‌گاه انجام شده برای ماهی‌های موافته به‌پوسته قابل از فاز بهبودی ممکن است باعث نابینایی کردن و یا از بین بروز مانند اثر CRH. در نتیجه (Ortuño et al., 2002 a,b; Hoseini et al., 2011)
پاسخ‌های استرسی و خونی پس از بیهوشی به فیل ماهیان جوان (Huso huso L.)

فلاحتکار و همکاران

نتایج به دست آمده از این مطالعه نیز نشان داد که استرس حاد در افرادی که در فیل ماهیان جوان وارد کاماره‌ای اعمال بیهوشی در شرایط زمستانی، منجر به افزایش میزان کوتیزول خون می‌شود. بنابراین باید تمرکز را در تحقیقات آینده بر سبب روش‌هایی که به شرایط استرس یا محدود شده یا محدود شده باشد. سایر مطالعات مشابه این موضوع را تأکید می‌کنند.

Martínez-Porchas et al., 2009

افرازی گلوزک بالاسی نیز در سال 1797 از اعمال استرس مشاهده شده که در نیم‌ما کمتر نسبت به تغییرات پزشکی را از اعمال استرس بالای یک‌ساله و بی‌پوشی به شرایط استرسی‌های دور تغییر شد و کاتالاکسین‌ها یا تأثیر تغییرات در تغییرات این سیستم می‌باشد. (Falahatkar et al., 2009) به در نظر گرفته شود که در رنگ‌بندی بیشتری از دیگر گونه‌ها میزان کوتیزول خون افزایش می‌یابد. به‌طور مثال، یکی از پژوهش‌های کلیسی بود. (Carey et al., 1998) در مطالعه‌ای مشابه به‌طور سطح استرس بالا، لازمنه‌سازی قارچ‌ها و سایر افرادی که در روند کوتیزول خون کاهش گلوزک خون نیز مربوط به استرس می‌باشد. (Pierson et al., 2004) در تحقیقات‌های انجام شده، استرس بالا و پیش‌بینی قارچ‌ها و کاهش کوتیزول خون در مورد کاهش گلوزک خون نیز مربوط به استرس می‌باشد. (Barton et al., 2005)
مجله علمی شیلات ایران
سال بیست و ششم/شماره 1731

متأسفانه، اطلاعات موجود در این صفحه به زبان عربی و فارسی می‌باشد و شامل محتوای مقالات و منابع مربوط همگونی گیاهان، نیازمندی و مقاومت نسبی انسان به صورت دیجیتال و تصویری می‌باشد. به طور معمول، این محتوای آسان و قابل قرائت هستند و شامل مواردی مانند تحقیق و آزمون‌های علمی مربوط به شیلات و محیط زیست می‌باشند. به همین دلیل، ترجمه و پیش‌برده کردن این متن به زبان انگلیسی برای کاربران ممکن است ضروری باشد. در ضمن، بهترین روش برای دریافت اطلاعات دقیق و کامل از این مقالات، استفاده از لینک‌های ذکر در کتابخانه و کتابخانه دیجیتال می‌باشد.

Gennotte, V., Sawadogo, P., Milla, S., Kestemont, P., Mélard, C. and Rougeot, C., 2012. Cortisol is responsible for positive and negative effects in the ovarian maturation induced by the exposure to acute stressors in...
Nile tilapia, *Oreochromis niloticus*. Fish Physiology and Biochemistry, 38: 1619-1626. doi: 10.1007/s10695-012-9656-7

Stress and hematological responses of juveniles beluga sturgeon (*Huso huso* L.) held in low or high densities in winter condition after applying anesthesia

Falahatkar B.¹*; Kohansal S.¹; Mohammadaliha R.¹

¹ bunifu@yahoo.com

1-Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran

Abstract

This study was performed in order to evaluate the effects of chronic stress (density) and acute stress (handling) existed in culture environments on stress and hematological parameters of beluga sturgeon (*Huso huso*) under winter condition (below 10°C) after application of anesthesia. Fish with mean (± SE) weight of 399 ± 1.4 g were kept in the low (1 kg/m²) and high densities (8 kg/m²) in three replicates for a week. Then, fish were held under stress condition so that they were quickly removed from the rearing tank and then anesthetized for 2 minutes in container (50 l) includes 400 mg/l clove powder extract. They were then returned to the original tanks. Blood samples were taken before the stress (0 time), 1, 3, 6, 12, 24 and 48 hours after application of the stress; the stress indicators (cortisol, glucose and lactate) and hematological parameters (hematocrit, hemoglobin, number of red blood cells, MCV, MCH, MCHC, number of white blood cells, lymphocytes, neutrophils, eosinophils and monocytes) were measured. No differences in measured parameters were observed after one week of holding fish at low and high densities. The results of stress indicators, one hour after acute stress and anesthesia showed a significant difference with resting time (*p*<0.001). Also significant difference was observed on lactate levels between the low and high densities at 3 h after acute stress and anesthesia (*p*=0.032). Number of white blood cells at 1 and 6 h after acute stress and anesthesia in high density showed significant difference with resting time (*p*<0.001). MCV showed significant difference between two treatments at 48 h after the stress and anesthesia (*p*=0.016). The other parameters did not show any significant difference between treatments (*p*>0.05). The results revealed that beluga sturgeon has high resistance against chronic and acute stressors and anesthesia. However, it seems that anesthesia could not control the low negative effects of stress even in this condition of low temperature.

Keywords: Stress, Beluga, Density, Anesthesia, Low temperature

*Corresponding author