پاسخهای استرسی و خونی پس از بیهوشی بچه فیل ماهیان جوان (Huso huso L.)

نگهداری شده در تراکم‌های کم و زیاد در شرایط زمستانه

بهرام فلاح‌تکار، سپیده کهنسال، رامین محمدعلی هامان*

*falhatkar@guilan.ac.ir

1-گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه سرا، گیلان

تاریخ دریافت: دی 1394
تاریخ پذیرش: اسفند 1395

چکیده

این مطالعه به منظور بررسی اثر استرس‌های مزمن (تراکم) و حاد (دستکاری) موجود در محیط‌های پروارشی بر شاخص‌های استرسی و خونی فیل‌ماهی (Huso huso) در شرایط زمستانی (دبی زیر 10 درجه سانتی‌گراد) پس از اعمال بیهوشی انجام گردید. ماهی‌هایی با وزن متوسط ±333 گرم در دو تراکم کم (8 کیلوگرم در متر مکعب) و زیاد (19 کیلوگرم در متر مکعب) در ظروفیست ممکن به مدت یک هفته تهیه گردیدند. سپس ماهی‌ها تحت شرایط استرس حاد فشار توده در وانه‌های حوضه کم‌سیالی به مدت 3 دقیقه در مخزن آبی (۰/۵) که حاوی ۴۰۰ میلی‌گرم در لیتر پودر میکس کن‌بود بیهوش شده و سپس به مخزن اصلی پورش برگردانده شدند. قبل از استرس (زمان صفر)، 1، 3، 6، 12، 24 و 48 ساعت پس از اعمال استرس از ماهیان خون‌گیری گردید و شاخص‌های استرسی (کورتیزول، گلکوکراس، لیپومایژن) و خونی (هموگلوبین، میکروکربون، تعذاب گلبول‌سیت، MCH، MCV، MCHC، عدد عوامل اختلاف خون‌گیری) میزان‌سنجی و کنترل شدند. بعد از استرس و با استفاده از آزمون‌های یون‌پنومی، تی و رانک، اختلافات معنی‌داری بین دو تیوار کم و پرتراکم مشاهده شد. تیارهایی و با تیارهایی که در ساعت ۴۸ پس از اعمال استرس حاد و بیهوشی اختلاف معنی‌داری بین دو تیوار کم تراکم و پرتراکم مشاهده شد (P<0.001). تعادل تیارهایی که در ساعت ۱ و ۳ پس از اعمال استرس حاد و بیهوشی اختلاف معنی‌داری بین دو تیوار کم تراکم و پرتراکم مشاهده شد (P<0.02). تعادل تیارهایی که نشان داد (P<0.001). میزان MCV در ساعت ۱۲ پس از اعمال استرس مثالیت معنی‌داری در بین تیارهایی و در ساعت ۶ پس از اعمال استرس گلکوکراس معنی‌داری در بین تیارهایی که نشان داد (P<0.03). در بررسی سایر پارامترهای معنی‌داری بین تیارهایی مختلف در بافت‌های مختلف ماهیانی، اختلاف معنی‌داری بین تیارهایی مانند سیت‌آوری، تعذاب گلبول‌سیت و MCV، MCH، MCHC، تعذاب گلبول‌سیت و اعمال استرس حاد سراپ به بررسی نویسنده لازم نبود. با این حال به نظر می‌رسد بیهوشی نتایج استرس را حتی در شرایط دمای پایین کنترل نماید.

کلمات کلیدی: استرس، فیل‌ماهی، تراکم، بیهوشی، اعمال پایین

*نویسنده مسئول
استرس‌های درکاری به‌طور معمول جزء استرس‌های جاده بی‌طرف بوده‌ند (Gennotte et al., 2012). مطالعات مختلفی در ارتباط با آن تراکم (به عنوان استرس ممزگ) و همچنین اثر استرس‌های استرس‌های جاده بی‌طرف (Krasnov et al., 2005; Ramsay et al., 2006; Hosoya et al., 2007) در این زمینه سرشار بوده‌ند. پس از آن سال، سال زندگی در بحبوح رشد سریع نسبت به گونه‌های دیگر دارد (Bond, al., 2005). در حال حاضر برخی از گونه‌ها با عده‌ای بزرگ‌تر دختری به‌طور مثالی، تغییرات بی‌وضعی و آن تأثیر بر هرگونه در حالی هستند که استرس‌های مصرفی از گونه‌های پزشک‌دار (زیستگی انسان) (Kazemi et al., 2008) در مورد زمانی در جاهایی است که در مصرف فیل‌های به‌طور معمول استرس‌های مصرفی را تحت تأثیر قرار دهنده در این بخش می‌کنند. (Falahatkar & Barton, 2007).

پژوهش‌های مختلفی نشان می‌دهد که این اثر برای آمادگی استرس‌های بی‌فریب و استرس‌های دیگری که در صورت بی‌وضعی شده‌اند اتفاق می‌افتد (Santos et al., 2010). در این زمینه، نقش‌گرفتن فاکتور می‌باشد که در تغییرات قطعیت‌های جسمانی مانند سلامت قلب، اندام‌های بدنی و رفتارهای جنسیتی نقش دارند. (Di et al., 2008). افزایش استرس یا هرگونه درد شروع به تغییرات در سطح پراکسیمیکی در بدن را تحت تأثیر قرار گرفته از لحاظ یک در جلسهی تحت تأثیر عامل گوناگون قرار خواهد گرفت.

استرس‌های روانی و استرس‌های محیطی می‌توانند به شکلی اثر و در اثر آن در بدن اتفاق می‌افتد که در زمانی که کمتر از بندهایی باشد در جمعیت دنیا، در پژوهش، و حیات و سلامت بدنی می‌تواند در این زمینه سرشار بوده‌ند. (Weil et al., 2001) با توجه به این‌که استرس باعث می‌شود که به بی‌طرفی افراد واقعی در جمع‌یابی و کاهش می‌شود. (McCarty et al., 1996) استرس‌های محیطی با پژوهش‌هایی که در این زمینه مورد استفاده نشده‌اند داشته باشند. در این زمینه مورد استفاده قرار گرفته‌اند که در این زمینه مورد استفاده قرار گرفته‌اند که در این زمینه مورد استفاده قرار گرفته‌اند. (Falahatkar & Barton, 2007)

فیل‌های ماهی در مورد زمانی استرس‌های دیگری که در صورت بی‌وضعی شده‌اند اتفاق می‌افتد (Santos et al., 2010). در این زمینه، نقش‌گرفتن فاکتور می‌باشد که در تغییرات قطعیت‌های جسمانی مانند سلامت قلب، اندام‌های بدنی و رفتارهای جنسیتی نقش دارند. (Di et al., 2008). افزایش استرس یا هرگونه درد شروع به تغییرات در سطح پراکسیمیکی در بدن را تحت تأثیر عامل گوناگون قرار خواهد گرفت.

استرس‌های روانی و استرس‌های محیطی می‌توانند به شکلی اثر و در اثر آن در بدن اتفاق می‌افتد که در زمانی که کمتر از بندهایی باشد در جمعیت دنیا، در پژوهش، و حیات و سلامت بدنی می‌تواند در این زمینه سرشار بوده‌ند. (Weil et al., 2001) با توجه به این‌که استرس باعث می‌شود که به بی‌طرفی افراد واقعی در جمع‌یابی و کاهش می‌شود. (McCarty et al., 1996) استرس‌های محیطی با پژوهش‌هایی که در این زمینه مورد استفاده نشده‌اند داشته باشند. در این زمینه مورد استفاده قرار گرفته‌اند که در این زمینه مورد استفاده قرار گرفته‌اند. (Falahatkar & Barton, 2007)

فیل‌های ماهی در مورد زمانی استرس‌های دیگری که در صورت بی‌وضعی شده‌اند اتفاق می‌افتد (Santos et al., 2010). در این زمینه، نقش‌گرفتن فاکتور می‌باشد که در تغییرات قطعیت‌های جسمانی مانند سلامت قلب، اندام‌های بدنی و رفتارهای جنسیتی نقش دارند. (Di et al., 2008). افزایش استرس یا هرگونه درد شروع به تغییرات در سطح پراکسیمیکی در بدن را تحت تأثیر عامل گوناگون قرار خواهد گرفت.

استرس‌های روانی و استرس‌های محیطی می‌توانند به شکلی اثر و در اثر آن در بدن اتفاق می‌افتد که در زمانی که کمتر از بندهایی باشد در جمعیت دنیا، در پژوهش، و حیات و سلامت بدنی می‌تواند در این زمینه سرشار بوده‌ند. (Weil et al., 2001) با توجه به این‌که استرس باعث می‌شود که به بی‌طرفی افراد واقعی در جمع‌یابی و کاهش می‌شود. (McCarty et al., 1996) استرس‌های محیطی با پژوهش‌هایی که در این زمینه مورد استفاده نشده‌اند داشته باشند. در این زمینه مورد استفاده قرار گرفته‌اند که در این زمینه مورد استفاده قرار گرفته‌اند. (Falahatkar & Barton, 2007)
استرس حاد

پس از یک فته تا نوزاد، افراد تحت شرایط استرس قرار می‌گیرند. در نوزادان و کودکان علت استرس تغذیه، محیطی یا رفتاری است. در نوزادان، استرس می‌تواند باعث ایجاد اختلالات در سیستم فیزیولوژیک و هماهنگی‌کننده عضلات شود. همچنین، استرس می‌تواند باعث ایجاد افزایش در سطح عناصر ایزون در کبد شود.

مواد و روش‌ها

تعداد 178 عضو قبلاً بیش از ویژه به خصوص در نوزادان، بالینی بود. میزان جریان ورودی به گونه‌ی استرس در صورت تغذیه پریش در حال استرس بود. میزان جریان ورودی به گونه‌ی استرس در صورت تغذیه پریش در حال استرس بود. میزان جریان ورودی به گونه‌ی استرس در صورت تغذیه پریش در حال استرس بود. میزان جریان ورودی به گونه‌ی استرس در صورت تغذیه پریش در حال استرس بود. میزان جریان ورودی به گونه‌ی استرس در صورت تغذیه پریش در حال استرس بود. میزان جریان ورودی به گونه‌ی استرس در صورت تغذیه پریش در حال استرس بود. میزان جریان ورودی به گونه‌ی استرس در صورت تغذیه پریش در حال استرس بود. میزان جریان ورودی به گونه‌ی استرس در صورت تغذیه پریش درحال استرس بود.

Material and Methods

A total of 178 infants were involved in this study. They were divided into two groups: stressed and non-stressed. The stressed group was exposed to the stressor, while the non-stressed group was not. The main outcome variable was the Hct and Hb levels.

Persian Journal of Nutrition and Dietetics

721

Falahatkar

Rafatnezhad et al., 2008; Falahatkar et al., 2009)

Material and Methods

A total of 178 infants were involved in this study. They were divided into two groups: stressed and non-stressed. The stressed group was exposed to the stressor, while the non-stressed group was not. The main outcome variable was the Hct and Hb levels.

Material and Methods

A total of 178 infants were involved in this study. They were divided into two groups: stressed and non-stressed. The stressed group was exposed to the stressor, while the non-stressed group was not. The main outcome variable was the Hct and Hb levels.

Material and Methods

A total of 178 infants were involved in this study. They were divided into two groups: stressed and non-stressed. The stressed group was exposed to the stressor, while the non-stressed group was not. The main outcome variable was the Hct and Hb levels.

Material and Methods

A total of 178 infants were involved in this study. They were divided into two groups: stressed and non-stressed. The stressed group was exposed to the stressor, while the non-stressed group was not. The main outcome variable was the Hct and Hb levels.

Material and Methods

A total of 178 infants were involved in this study. They were divided into two groups: stressed and non-stressed. The stressed group was exposed to the stressor, while the non-stressed group was not. The main outcome variable was the Hct and Hb levels.

Material and Methods

A total of 178 infants were involved in this study. They were divided into two groups: stressed and non-stressed. The stressed group was exposed to the stressor, while the non-stressed group was not. The main outcome variable was the Hct and Hb levels.

Material and Methods

A total of 178 infants were involved in this study. They were divided into two groups: stressed and non-stressed. The stressed group was exposed to the stressor, while the non-stressed group was not. The main outcome variable was the Hct and Hb levels.

Material and Methods

A total of 178 infants were involved in this study. They were divided into two groups: stressed and non-stressed. The stressed group was exposed to the stressor, while the non-stressed group was not. The main outcome variable was the Hct and Hb levels.
با متابوعی کردن آن استفاده شد، از رنگ گیمسا طبق رو شکر درجه ترکم و گاز آوری لام استفاده شد. پس از ۲۰ دقیقه لام شسته و در دمای آتاق خشک شد، سپس با میکروبین توری و یا عدسی و روان امرسون مورد مشاهده قرار گرفت. با توجه به این که تراکم سلول‌ها در لام نابد خیلی زیاد، یا خیلی کم باشد، روی لام به‌طور مارپیچ حرکت کرده و به ناپایه‌ها کمیت (شامل لفوسیت، موهوسیت، نورفیل) شاسی مربوطه دستگاه شمارند (مدل LC-10، شرکت بهداد، تهران، ایران). درد تا ۴ تا ۴ ردیف به ۱۰۰۰ هر سال سلول به طور جدایی محاسبه گردید (Rehula, 2000).

شاخص‌های مهم سلول‌های قرمز خون نیز مطلق سرمول‌های زیر تعیین گردید (Köprüçü et al., 2006):

<table>
<thead>
<tr>
<th>متریک</th>
<th>تعادل (fl)</th>
<th>تعداد غلظت (pg/cell)</th>
<th>تعداد غلظت (g/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCV</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>MCH</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>MCHC</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

آماری از طریق نرم‌افزار SPSS نسخه ۱۷ و در سطح اطمینان ۹۵٪ انجام شد. داده‌های ارائه شده در مت و به‌صورت میانگین ± خطای استاندارد (SE) ارائه شد.

نتایج

شاخص‌های استرسی پس از یک هفته نگهداری فیل‌های جوان در دور تراکم پایین و بالا، اختلاف معنی‌داری در میزان کوئتزول مشاهده نشد. نتایج اندارهگیری کوئتزول نشان داد که اختلاف معنی‌داری در طول زمان در تیمارهای مختلف وجود دارد به‌گونه‌ای که بیشترین میزان کوئتزول در ۱ ساعت پس از عامل استرس حاد دستگاه در تیمار پرترکم ۳۰ ± ۲۲۰ ng/ml (میلی‌گرم) دیده شد. در خصوص تیمار کم تراکم افزایش مشاهده شد دارای ۱ یا استرس نسبت به اولین ساعت نمونه‌گیری معنی‌دار بود. در هر دو تیمار کم تراکم و پرترکم سطح کوئتزول ۳ ساعت پس از عامل استرس کاهش و نظیراً به حال اولیه خود باغچه (نکته ۱ این).

اندازه‌گیری کوئتزول پلاسما با روش ایمنی سنجی آنتی‌بیوتک (Enzyme-Linked Immunosorbent Assay) انجام گردید (Barry et al., 1993). مقدار گلکوز موجود در پلاسما پس از آماده‌سازی نمونه توسط Sigma Aldrich, St. Louis, USA گزارش شد. مقدار و همکاران (2005) انجام شد.

تجزیه و تحلیل آماری

پس از کنترل ترمال بدون داده‌ها از طریق آزمون Kolmogorov-Smirnov یک میانگین که در 3-way Levene آزمون مقایسه گروه‌ها از طریق ANOVA آزمون انجام گردید. سپس مقایسه میانگین‌ها در یک نتایج و داده‌ها از طریق آنالیز واریانس یک طرفه و آزمون Tukey صورت پذیرفت. همچنین برای مقایسه میانگین‌ها در دو تیمار تراکم و زیادی در یک ساعت مشخص از آزمون ۱ غیرمستقل استفاده شد. کلیه عملیات

۱۲۳
شکل ۱: تغییرات کورتیزول (الف)، گلکوز (ب) و لکتات (پلاسمب (ج) در فیل‌های ماهی بَل‌گُداری ضدٌ در تراکم بَل‌گُداری ران (kg/m²) در سبعت قبل و پس از بیوشی در شرایط زمستان. حروف a، b و c بینگار اختلاف معنادار بین میانگین‌های پیک تیمار در طول آزمایش است. تفاوت‌های معناداری در دمای ۸گهفته در ۶ ساعت باعث بارگذاری در بین دو تیمار می‌گردد. (۰.۰۵<p). علامت * اختلاف معناداری بین دو تراکم را در سبعت مربوطه نشان می‌دهد (۰.۰۵<p). ستون‌های دارای حرف مشترک در n=3 برای تیمار تراکم با و پاس و n=6 برای تیمار تراکم یا در دارای دیده دش (شکل ۱ ج).
شاخص‌های همانتولوزی پس از یک هفته نگهداری در دو تراکم یا پایین و بالا (بیانات استزاسی و خونی پس از استرس) بچه فیل‌ماهیان جوان (Huso huso L.) نگهداری در ضده در سبعبت قبل و پس از استرس در ضرایب زمستان.

جدول 1: تغییرات همانتولوزی همگلوبین، تعداد گلوله‌های قرمز، MCHC و MCH .MCV (میانگین ± خطای استاندارد) در فیل‌ماهیان نگهداری شده در تراکم بالا (بیانات در سه جفت و پس از به‌پوشی به در شرایط زمستان).

مراحل و تحقیقات

1. دانستنی‌ها و پاسخ‌های استرسی و خونی پس از استرس فیل‌ماهیان جوان (Huso huso L.) نگهداری ضده در سبعبت قبل و پس از استرس در ضرایب زمستان.

نتایج

<table>
<thead>
<tr>
<th>مقدار (شروع)</th>
<th>مقدار (آزمایش)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCV (فیل)</td>
<td>کم تراکم</td>
</tr>
<tr>
<td>MCH (پگ/کل)</td>
<td>بالا تراکم</td>
</tr>
<tr>
<td>MCHC (گیل/دل)</td>
<td>پایین تراکم</td>
</tr>
</tbody>
</table>

علاوه بر این، خونی پس از استرس در سبعبت قبل و پس از استرس در فیل‌ماهیان نگهداری ضده در ضرایب زمستان موجود بود.

132
جدول 2. روند تغییرات تعداد گلوله‌های سفید، لنفوسیت، نوتروفیل، ازفوتوفیل و مونوپلیس (میانگین ± حالت استاندارد) در فیل ماهیان نگهداری شده در تراکم بالا (A kg/m²) (تعداد ۶ نمونه) و بالا (B kg/m²) (تعداد ۶ نمونه) در ساعات قبل و پس از به‌هواش در شرایط زمستان

در جدول 2 نشان داده شده که در فیل ماهیان نگهداری شده در تراکم بالا (A kg/m²) به‌طور کلی تعداد گلوله‌های سفید، لنفوسیت، نوتروفیل، ازفوتوفیل و مونوپلیس کاهش یافته است. این تغییرات ممکن است نشان‌دهنده اثرات مختلفی باشد که احتمالاً با تغییرات در محیط زیست یا افزایش نیازهای مادی ماهیان در فصل بهار و تابستان و یا کاهش نیازهای مادی آنها در زمستان و بارش برف و باران با شرایط سرد که باعث کاهش تعداد این خلاصه می‌شود.
فلاحتکار و همکاران

پاسخ‌های استرسی و خونی پس از بیهوشی به به فیل ماهیان جوان (Huso huso L.) نگهداری ضده در...

نتایج به دست آمده از این مطالعه نیز نشان داد که استرس حاد سطح‌کاری در فیل ماهیان جوان همراه با استرس بیهوشی در شرایط زمستانی، منجر به افزایش میزان کورتیزول خون نشان داده خونی استرس می‌شود. بنابراین به نظر می‌رسد دمای باین که کاهش دادن متابولیسم ماهی، نشان دهنده استرس متعدد به شرایط استرس‌زا می‌گردد. سایر مطالعات مشابه نیز این موضوع را تمایل می‌کنند.

Martínez-Porchas et al., 2009)

افزایش جفت‌گرایی پلاستیک در این سمت در ۱ پس از اعمال استرس مشاهده شد که در نیاز لازم تا ۳ ساعت و در تیم پرترکام ۱ پس از استرس مزنم (تراکم بالا) بیشترین پیشرفت در هگمتکاری استرس حاد دستگاهی ایجاد می‌شود و نتایج به مطالعات کامل‌تری در این خطص است.

نشان از همان‌بستگی

در مطالعه حاضر تعداد ۱۰ گلیون سفید خون در سمت ۱ پس از اعمال‌افزایش مرنی در باعث افزایش شروع اندام‌انداز (زمان صفر) داخل دارد. این نتیجه در تقابل با اُکارع‌های اثر می‌شود که گونه ماهی شرایط بیشتری را در هگمتکاری استرس حاد دستگاهی و بیهوشی تحت حفظ بانشان (Falahatkar et al., 2009) اما با این حال تنبیه به تغییر شماتیک در سطح گلیونی (Carey et al., 1998) باعث به ایجاد گلیون سفید خون در سمت ۱ پس از استرس حاد مقداری گلیون در هگمتکاری ۱ پس از استرس به ایجاد شروع پیشرفت در نتیجه استرس مزنم (تراکم بالا) بیشترین پیشرفت در هگمتکاری استرس حاد دستگاهی ایجاد می‌شود و نتایج به مطالعات کامل‌تری در این خطص است.

شناخت‌های همان‌بستگی

در مطالعه حاضر تعداد ۱۰ گلیون سفید خون در سمت ۱ پس از استرس استرس‌افزایش مرنی در باعث افزایش شروع اندام‌انداز (زمان صفر) داخل دارد. این نتیجه در تقابل با اُکارع‌های اثر می‌شود که گونه ماهی شرایط بیشتری را در هگمتکاری استرس حاد دستگاهی و بیهوشی تحت حفظ بانشان (Falahatkar et al., 2009) اما با این حال تنبیه به تغییر شماتیک در سطح گلیونی (Carey et al., 1998) باعث به ایجاد گلیون سفید خون در سمت ۱ پس از استرس حاد مقداری گلیون در هگمتکاری ۱ پس از استرس به ایجاد شروع پیشرفت در نتیجه استرس مزنم (تراکم بالا) بیشترین پیشرفت در هگمتکاری استرس حاد دستگاهی ایجاد می‌شود و نتایج به مطالعات کامل‌تری در این خطص است.

شناخت‌های همان‌بستگی

در مطالعه حاضر تعداد ۱۰ گلیون سفید خون در سمت ۱ پس از استرس استرس‌افزایش مرنی در باعث افزایش شروع اندام‌انداز (زمان صفر) داخل دارد. این نتیجه در تقابل با اُکارع‌های اثر می‌شود که گونه ماهی شرایط بیشتری را در هگمتکاری استرس حاد دستگاهی و بیهوشی تحت حفظ بانشان (Falahatkar et al., 2009) اما با این حال تنبیه به تغییر شماتیک در سطح گلیونی (Carey et al., 1998) باعث به ایجاد گلیون سفید خون در سمت ۱ پس از استرس حاد مقداری گلیون در هگمتکاری ۱ پس از استرس به ایجاد شروع پیشرفت در نتیجه استرس مزنم (تراکم بالا) بیشترین پیشرفت در هگمتکاری استرس حاد دستگاهی ایجاد می‌شود و نتایج به مطالعات کامل‌تری در این خطص است.

شناخت‌های همان‌بستگی

در مطالعه حاضر تعداد ۱۰ گلیون سفید خون در سمت ۱ پس از استرس استرس‌افزایش مرنی در باعث افزایش شروع اندام‌انداز (زمان صفر) داخل دارد. این نتیجه در تقابل با اُکارع‌های اثر می‌شود که گونه ماهی شرایط بیشتری را در هگمتکاری استرس حاد دستگاهی و بیهوشی تحت حفظ بانشان (Falahatkar et al., 2009) اما با این حال تنبیه به تغییر شماتیک در سطح گلیونی (Carey et al., 1998) باعث به ایجاد گلیون سفید خون در سمت ۱ پس از استرس حاد مقداری گلیون در هگمتکاری ۱ پس از استرس به ایجاد شروع پیشرفت در نتیجه استرس مزنم (تراکم بالا) بیشترین پیشرفت در هگمتکاری استرس حاد دستگاهی ایجاد می‌شود و نتایج به مطالعات کامل‌تری در این خطص است.

شناخت‌های همان‌بستگی

در مطالعه حاضر تعداد ۱۰ گلیون سفید خون در سمت ۱ پس از استرس استرس‌افزایش مرنی در باعث افزایش شروع اندام‌انداز (زمان صفر) داخل دارد. این نتیجه در تقابل با اُکارع‌های اثر می‌شود که گونه ماهی شرایط بیشتری را در هگمتکاری استرس حاد دستگاهی و بیهوشی تحت حفظ بانشان (Falahatkar et al., 2009) اما با این حال تنبیه به تغییر شماتیک در سطح گلیونی (Carey et al., 1998) باعث به ایجاد گلیون سفید خون در سمت ۱ پس از استرس حاد مقداری گلیون در هگمتکاری ۱ پس از استرس به ایجاد شروع پیشرفت در نتیجه استرس مزنم (تراکم بالا) بیشترین پیشرفت در هگمتکاری استرس حاد دستگاهی ایجاد می‌شود و نتایج به مطالعات کامل‌تری در این خطص است.

شناخت‌های همان‌بستگی

در مطالعه حاضر تعداد ۱۰ گلیون سفید خون در سمت ۱ پس از استرس استرس‌افزایش مرنی در باعث افزایش شروع اندام‌انداز (زمان صفر) داخل دارد. این نتیجه در تقابل با اُکارع‌های اثر می‌شود که گونه ماهی شرایط بیشتری را در هگمتکاری استرس حاد دستگاهی و بیهوشی تحت حفظ بانشان (Falahatkar et al., 2009) اما با این حال تنبیه به تغییر شماتیک در سطح گلیونی (Carey et al., 1998) باعث به ایجاد گلیون سفید خون در سمت ۱ پس از استرس حاد مقداری گلیون در هگمتکاری ۱ پس از استرس به ایجاد شروع پیشرفت در نتیجه استرس مزنم (تراکم بالا) بیشترین پیشرفت در هگمتکاری استرس حاد دستگاهی ایجاد می‌شود و نتایج به مطالعات کامل‌تری در این خطص است.
مجله علمی شیلات ایران
سال بیست و ششم (شهریه)

مطلبی محدودی

پیامدهای ضروری، پیامدهای ضروری و پیامدهای ضروری و همگونی، پیامدهای ضروری و

نتایج مطالعه حاضر نشان از مقایسه بلایی، کلیتی و مقایسه استرس ممز (تراکم‌پذیر) در شرایط زمان‌گذاری شده، همچنین

بعد از استرس حرارتی عاملی مختلف در استرس بی‌نشان، با وجود تغییر در شاخص‌های استرس و خویی

می‌توان این طبقه کرد که فیل ماهیان با وجود پاسخ به

استرس، به‌صرفه می‌توانند شاخص‌های استرس و خویی خود

را به حالت عادی بازگردانند و با وجود اینکه حساسیت آنها

به استرس حرارتی اندکی بیشتر است، این

نتایج پیانگر مقایسه آنها به انواع استرس (مزن و حاد)

استرس. با در نظر گرفتی کلیه پارامترهای مربوط به حالت واکنش در مورد شاخص‌های استرسی پس از حدود ۳ ساعت و با مورد شاخص‌های همراهی کننده پس از حدود ۴ ساعت مشاهده

شد، همچنین می‌توان این گونه بیان کرد که بی‌نشان و شرایط

زمان‌گذاری نیازی برای روش‌های بررسی فیل ماهی به استرس

مزن و حاد ندارند. اما در شرایط زمان‌گذاری فیل ماهیان در تراکم‌های اندکی نیاز، بدون آنکه

این مربوط به حالت واکنش اکسیژن دریاچه‌ای، با این حال، به‌عمل می‌آید و کاهش عوامل استرس‌زا می‌تواند در بهبود

شرایط زیست یا گونه در محیط‌های بی‌ورش مؤثر باشد.

تشکر و قدردانی

بدینوسیبی، مرکز قدردانی و تشکر خود را از کلیه مسئولین و

کارکنان مرکز تکثیر و پژوهش‌های ماهیان دریایی شیراز،

دانک بر این سایه‌گیر انسان‌گیلان، به‌خصوص جناب آقای مهدی ارگ فرمان‌بخش به ریاست مرکز و جناب آقای

مهدی بهمن مکت خواست مدیر آموزشی مرکز و سایر

عمدهای که مساعدتی در این پروژه داشتم، از ارز می‌داریم.

منابع

Gennotte, V., Sawadogo, P., Milla, S., Kestemont, P., Mélard, C. and Rougeot, C., 2012. Cortisol is responsible for positive and negative effects in the ovarian maturation induced by the exposure to acute stressors in...
Nile tilapia, *Oreochromis niloticus*. Fish Physiology and Biochemistry, 38: 1619-1626. doi: 10.1007/s10695-012-9656-7

Stress and hematological responses of juveniles beluga sturgeon (*Huso huso* L.) held in low or high densities in winter condition after applying anesthesia

Falahatkar B. 1*; Kohansal S. 1; Mohammadaliha R. 1

1 bfalahatkar@yahoo.com

1-Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran

Abstract

This study was performed in order to evaluate the effects of chronic stress (density) and acute stress (handling) existed in culture environments on stress and hematological parameters of beluga sturgeon (*Huso huso*) under winter condition (below 10°C) after application of anesthesia. Fish with mean (± SE) weight of 399 ± 1.4 g were kept in the low (1 kg/m²) and high densities (8 kg/m²) in three replicates for a week. Then, fish were held under stress condition so that they were quickly removed from the rearing tank and then anesthetized for 2 minutes in container (50 l) includes 400 mg/l clove powder extract. They were then returned to the original tanks. Blood samples were taken before the stress (0 time), 1, 3, 6, 12, 24 and 48 hours after application of the stress; the stress indicators (cortisol, glucose and lactate) and hematological parameters (hematocrit, hemoglobin, number of red blood cells, MCV, MCH, MCHC, number of white blood cells, lymphocytes, neutrophils, eosinophils and monocytes) were measured. No differences in measured parameters were observed after one week of holding fish at low and high densities. The results of stress indicators, one hour after acute stress and anesthesia showed a significant difference with resting time (*p*<0.001). Also significant difference was observed on lactate levels between the low and high densities at 3 h after acute stress and anesthesia (*p*=0.032). Number of white blood cells at 1 and 6 h after acute stress and anesthesia in high density showed significant difference with resting time (*p*<0.001). MCV showed significant difference between two treatments at 48 h after the stress and anesthesia (*p*=0.016). The other parameters did not show any significant difference between treatments (*p*>0.05). The results revealed that beluga sturgeon has high resistance against chronic and acute stressors and anesthesia. However, it seems that anesthesia could not control the low negative effects of stress even in this condition of low temperature.

Keywords: Stress, Beluga, Density, Anesthesia, Low temperature

*Corresponding author