پاسخ‌های استرسی و خونی پس از بیهوشی به چه فیل ماهیان جوان (Huso huso L.)

نوگه‌داری شده در تراکم‌های کم و زیاد در شرایط زمستانه

بهرام فلاحتکار*، سیده کهنسال، رامین محمدعلی ها* falahatkar@guilan.ac.ir

گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه سرا، گیلان

تاریخ دریافت: اسفند ۱۳۱۴، تاریخ پذیرش: اسفند ۱۳۱۴

چکیده

این مطالعه مربوط به بررسی اثر استرس‌های مزمن (تراکم) و حاد (دستکاری) موجود در محيط‌های پروپاشی بر شاخص‌های استرس و خونی فیل ماهی (Huso huso) در شرایط زمستانی (دبی زیر ۱۰ درجه سانتی‌گراد) است. بر اساس نتایج انجام‌شده، فیل ماهی با میانگین (± خطای استاندارد) وزن ۴/۵ ± ۳/۳ گرم در دو تراکم کم (۱) و زیاد (۸ هر کیلوگرم در ۳ تکرار به مدت یک هفته نگه‌داری شدند. سپس ماهیان تحت شرایط استرس حاد قرار گرفتند. گونه‌ای که سریاً از آپ خارج شده و به مدت ۲ دقیقه در مخزن آب (۵/۰ که حاوی ۴۰۰ میلی‌گرم در لیتر بود) گیری شدند. قبل از استرس (زمان صفر)، ۱، ۲، ۳، ۴ و ۵۲ ساعت پس از استرس از ماهیان خون گرفتند و شاخص‌های استرس (کورتیزول، گلکوز و لاکتات) و خونی (هپاتوکریت، هموگلوبین، تعادل مخلوطی، MCH، MCV، MCHC، تعادل گلبول سفید، لطفوین، لیپید، انتروکیناز، و انتروپولیت) سنجش شدند. نتایج نشان داد که پس از یک هفته نگه‌داری ماهیان در تراکم‌های کم و زیاد اختلاف در پارامترهای اندازه‌گیری شده مشاهده نشد. نتایج بررسی میزان پارامترهای استرسی یک ساعت پس از استرس حاد و پیش‌بینی وضعیت عملکردی را با زمان صفر (قبل از استرس) نشان داد (۰/۰۱). همچنین در میزان لاکتات استرس حاد و بهبود اختلاف معنی‌داری را بیان می‌کرد. نتایج گیرنده شده در ساعت ۳ پس از استرس حاد و بهبود اختلاف معنی‌داری بین دو تیمار کم تراکم و پر‌تراکم مشاهده شد (۰/۰۳). خود نشان داد (۰/۰۰۱). تعادل مخلوطی در ساعت ۵ پس از استرس حاد و بهبود اختلاف معنی‌داری بین دو تیمار کم تراکم و پر‌تراکم مشاهده شد (۰/۰۱). نتایج حاصله نشان داد که شرایط افزایش معمولی ماهیان در شرایط استرس مزمن اعمال نخور و استرس حاد دارد. با این حال به نظر می‌رسد بهبود ضریب توانسته است اثرات منفی انکه تاکید ناشی از افزایش را حتی در شرایط دمای پایین کنترل نماید.

کلمات کلیدی: استرس، فیل ماهی، هورم، بیهوشی، دمای پایین

*نویسنده مسئول
فلاحتکار و همکاران
پاسخ‌های استرسی و خونی پس از به‌یویشی بچه فیل‌های جوان (Huso huso L.) نگهداری ضده در...

مقدمه
فیل‌های، بزرگ‌ترین ماهی زنده آب شیرین و ارزش‌مندترین نوع ماهی خوارای جهان محسوس می‌شود. جنس ماده این ماهی به‌طور معمول نزدیک تری در آب می‌کشند، اما اکثر آنان می‌پذیرند. بر یک ماهی ماده (Bond, 1996) برکه‌ها می‌شود که این ماهی از ماهیان سریع‌تر بوده و در سال‌های زمانی که برندها در رودخانه رشی بیش از 2 میلیون تخم باشد، فیل‌های از استرس عفونی و چربی دریافت نمی‌کنند. (al., 2005)

در حال حاضر برخی از کشورها، به‌ویژه پاکستان، از برخی بیماری‌های مزمن رپرتوری به دلیل نگهداری آن‌ها از استفاده در محیط‌های مسکن‌های متروک، انتخاب شده‌اند. (Falahatkar & Barton, 2007)

پروس‌های مه‌الکش در بیومیکسی‌های تولید و محیط‌های مسکن‌های جوان، که در استرس عفونی و عوامل درون‌ماهی با شدت و سرعت بزرگ‌تری از سایر تولیدی‌ها پیدا می‌کند. (et al., 2003)

در این پژوهش، استفاده از برخی موارد و شرایط نگهداری که به نظر مسئولیت روش‌های استرس‌های عفونی با قرار دادن عفونت به‌دست آمده است که در شرایط بیشتری به‌وجود آمده است. (Iversen et al., 2005)

تشکیل‌های خونی از آن‌ها به‌عنوان یک مورد از برخی موارد از استرس‌های بی‌طیفی می‌باشد. (al., 2008)

در هر یک از سنگین‌ترین روش‌های استرسی و خونی در شرایط مساوی، بی‌اساس و خودکافی است. (Fevolden et al., 2002)

در این پژوهش می‌تواند نتیجه‌گیری‌های مربوط به استرس عفونی و عوامل درون‌ماهی با شدت برخی از موارد از استرس‌های عفونی در محیط‌های مسکن‌های متروک و بی‌اساس باشد. (Mccartty et al., 1996)

آخرین مطالعات در محیط‌های مسکن‌های متروک در رابطه استرسی، تحلیل‌بندی Saroglia et al., 2012) استرس‌های بدنی معمولاً توجه به وسایل مکرر (Cordeiro et al., 2012)

اعمال استرس‌ها بر شکل بدنی استرس‌ها، بدن‌ها و سایر در دو مدل. (Segner et al., 2012)

با توجه به شرایط مساوی، استرس‌های بدنی شناخته شده است و (Trenzado et al., 2006; Barton et al., 1998)

اطلاعات

استرس‌های بدنی به‌طور معمول جزء استرس‌های Gennotte et al., 2012) است. فیل‌های، بزرگ‌ترین ماهی زنده آب شیرین و ارزش‌مندترین نوع ماهی خوارای جهان محسوس می‌شود. جنس ماده این ماهی به‌طور معمول نزدیک تری در آب می‌کشند، اما اکثر آنان می‌پذیرند. بر یک ماهی ماده (Bond, 1996) برکه‌ها می‌شود که این ماهی از ماهیان سریع‌تر بوده و در سال‌های زمانی که برندها در رودخانه رشی بیش از 2 میلیون تخم باشد، فیل‌های از استرس عفونی و چربی دریافت نمی‌کنند. (al., 2005)

در حال حاضر برخی از کشورها، به‌ویژه پاکستان، از برخی بیماری‌های مزمن رپرتوری به دلیل نگهداری آن‌ها از استفاده در محیط‌های مسکن‌های متروک، انتخاب شده‌اند. (Falahatkar & Barton, 2007)

پروس‌های مه‌الکش در بیومیکسی‌های تولید و محیط‌های مسکن‌های جوان، که در استرس عفونی و عوامل درون‌ماهی با شدت و سرعت بزرگ‌تری از سایر تولیدی‌ها پیدا می‌کند. (et al., 2003)

در این پژوهش، استفاده از برخی موارد و شرایط نگهداری که به نظر مسئولیت روش‌های استرس‌های عفونی با قرار دادن عفونت به‌دست آمده است که در شرایط بیشتری به‌وجود آمده است. (Iversen et al., 2005)

تشکیل‌های خونی از آن‌ها به‌عنوان یک مورد از برخی موارد از استرس‌های عفونی در محیط‌های مسکن‌های متروک و بی‌اساس باشد. (Mccartty et al., 1996)

آخرین مطالعات در محیط‌های مسکن‌های متروک در رابطه استرسی، تحلیل‌بندی Saroglia et al., 2012) استرس‌های بدنی معمولاً توجه به وسایل مکرر (Cordeiro et al., 2012)

اعمال استرس‌ها بر شکل بدنی استرس‌ها، بدن‌ها و سایر در دو مدل. (Segner et al., 2012)

با توجه به شرایط مساوی، استرس‌های بدنی شناخته شده است و (Trenzado et al., 2006; Barton et al., 1998)
امروز و روشن‌ها
ماهی و شریعت پرورش
تعداد ۱۷۱ عدد چه فیلماهی جوان با وزن متوسط (M) = ۴/۱ ± ۰/۱۴ (میانگین ± SE) و طول کل = ۳/۹۹ ± ۰/۴۹ کیلومتری که حاصل تکثیر مولدها و حیوانات در گزارش با تکثیر و پرورش فیلماهی خاوباری شده مرکزی گرگان بودند، پس از انتقال به یک مزرعه تکثیر و پرورش، فیلماهی خاوباری شده دکتر بهشت سدگر (استان گیلان) در استخبارات خانی ۲ هکتاری از بخش قرار گرفته و سپس به مرکز تکثیر و بارسازی ذخیره فیلماهی در مرکز تحقیقات محیط زیست، می‌تواند در حضور چهارشنبه بین‌المللی با حجم آبیاری (۳۰/۸) متر مکعب و در نقطه بهداشت در دوره آزمایش میانگین اکسیژن بهداشت در حیاتهای زنده در حضور چهارمایه میانگین حداکثر آب (۱۸/۲ ± ۰/۸۵) در طول دوره روشن‌خور و بصورت ۱۰ ساعت روشن‌خور و ۱۴ ساعت تاریکی بود. میزان جریان ورودی به حرارت برون به سمت میانگین آب در طول دوره آزمایش اجرا گردید. برای این آزمایش از طرح کن‌متر تصادفی استفاده گردید. برای این جوان به میانگین حداکثر ردود در نتایج کم ماهی (۲/۷ ماهی) در تندیس حوضه‌ای (۴/۱ kg/m²) و توان بالا (۱/۰ ماهی) در ارتفاع هواپیمایی (۰/۸ kg/m²) در روز تکثیر نگهداری شدند (Rafatnezhad et al., 2008; Falahatkar et al., 2009).

دیای پایین، این مطالعه به هدف بررسی اثر تکثیر قللماهی‌ها در تراکم‌های مختلف و میزان استرس حاد، دستکاری و پاسخ‌های فیزیولوژیک و هم‌هتاولوژیک صورت پذیرفت.

مانند گیری و آنالیز نمونه‌ها
به‌منظور سنجش پارامترهای خونی در هر مرحله زمینی، ۲ درصد ماهی در ساعت هر شفاف قابل‌سنجش (bilirubin) برای میزان ۰/۰۲ و ۰/۵ درصد ماهی از هر حوضه کم تراکم (از بزرگتر) به‌منظور تعیین تیم‌ها استفاده شد. ماهیان خونگیری‌شده به مخازن دیگری برای ایجاد استرس به سایر ماهی انتقال می‌شدند. از یک فقره خون، برای تهیه گشت‌های خونی با به‌منظور تعیین درصد افراد دیگر کن‌متر تخصصی طراحی شد. به‌منظور تعیین مقدار متوسط جرمی (MCV) و مقدار متوسط هم‌گلوپین (MCH) کن‌متر به‌منظور تعیین بار از مولکول‌های سنجش فیلمنه‌ها استفاده شد. مساحت ذِئب، فیزیولوژیک و فیزیولوژیک سرم‌های به‌منظور تبادل بار از مولکول‌های سنجش فیلمنه‌ها استفاده شد. مساحت ذِئب به‌منظور تعیین بار از مولکول‌های سنجش فیلمنه‌ها استفاده شد.

در مجموع ۶ ماهه به باین آزمایش در نظر گرفته شد. غذا‌هایی در این ماهه در مرحله از بین‌المللی (شعر) ها (۱۶/۲۴ و ۲/۶ ماه) در به روش می‌باشد تا یا به تجارت می‌گذرد (۵/۱۲ میلی‌متر قطع، درون‌های پلاستیک) در طول دوره آزمایش اجرا گردید. برای این آزمایش از طرح کن‌متر تصادفی استفاده گردید. برای این جوان به میانگین حداکثر ردود در نتایج کم ماهی (۲/۷ ماهی) در تندیس حوضه‌ای (۴/۱ kg/m²) و توان بالا (۱/۰ ماهی) در ارتفاع هواپیمایی (۰/۸ kg/m²) در روز تکثیر نگهداری شدند (Rafatnezhad et al., 2008; Falahatkar et al., 2009).

سال بیست و ششم شماره ۱
پاسخ‌های استرسی و خونی پس از بیهوشی به فیل ماهیان جوان (Huso huso L.) نگهداری ضده در... تیبض وٓ تطاوٓ ٚ پطتطاوٓ
ؾغح وٛضتیعَٚ 3 ؾبػت پؽ اظ اؾتطؼ وبٞف ٚ
تمطیجبً ثٝ حبِت اِٚیٝ ذٛز ثبظٌكت (قىُ 1 اِف).

(Rehulka, 2000)

هموگلوپین‌بین روش سیان میت هموگلوپین و کی تجاری اندازه‌گیری شد. مقدار جذب نور و Sigma-Aldrich غلفت هموگلوپین با طول موج 450 nm در دستگاه اسپکتروفтомتر (Technicon, USA) ثبت و محاسبه شد.

(Drabkin, 1945)

تعداد گلیول‌های سفید و قرمز با استفاده از لام نتوئر بعد از رقیق‌سازی خون مفعول شده و محلول رنگ (رقم 150 برای گلیول‌های سفید و رقم 10 برای گلیول‌های قرمز) باروس (Barros et al., 2002) شمارش شد.

برای شمارش افتراقی گلیول‌های سفید، ابتدا گسترش خونی تهیه گردید. پس از خشک شدن لامه، از منتاول خالص انداره‌گیری کورتئوز پلاسم اوراوش امینی آزمایش (Enzyme-Linked Immunosorbent Assay) انجام شد. مقدار گلکز موجود در پلاسم پس از آماده‌سازی نمونه توسط Sigma Aldrich، St.) hexokinase روش آزمایی گلکز (Bayunova et al., Louis, USA) انداره‌گیری شد. (2002) انداره‌گیری آزاد با استفاده از روش سنجی شرح داده شده توسط Barton و همکاران (2005) انجام شد.

تجزیه و تحلیل آماری

(Barry et al., 1993) مقدار لام میت گلیول‌های سفید و قرمز میزان ترکیب را در این روش اندازه‌گیری کرده و برای پاسخ‌های استرسی و خونی پس از بیهوشی به فیل ماهیان جوان، کیت 3-way Levene آزمون مقایسه گروه‌ها از طریق ANOVA روش بیضف‌پذیری سپس مقایسه میانگین‌ها در یک معادل سنجی تی‌ب‌پ و سعی می‌کند تغییرات و سعیکی از طریق مفاهیم یک سیستم با تی‌ب‌پ و سعیکی همچنین برای مقایسه میانگین‌ها در دو تی‌ب‌پ کمک و زیدار در یک سعی با هر سه تست مشخص و 1 فرمی‌تست استفاده شده. کلیه عملیات

نکته‌های کلیدی...
شکل 1: تغییرات کورتیزول (الف)، گلکوز (ب) و لاکتات (ج) در فیل ماهیان نگهداری شده در تراکم بالا (8 کیلوگرام/متر مربع) و پایین (1 کیلوگرام/متر مربع) در ساعت 0 و پس از بیهوشی و در شرایط استرس. علائم a، b و c بین ا Đứcیات معنی‌داری و بین میانگین‌های یک تراکم در طول آزمایش است. (105 پ). اعداد (p) با هم واریانس مشترک در هر تراکم فاقد اختلاف معنی‌دار هستند (p>0.05). داده‌ها به صورت میانگین ± خطای استاندارد ارائه شده‌اند. (n=6 برای تراکم بالا و n=3 برای تراکم پایین).

Figure 1: Changes of plasma cortisol (A), glucose (B) and lactate (C) levels in juvenile beluga sturgeon *Huso huso* held under high (9 kg/m2) or low (1 kg/m2) densities before and after stress in winter condition. Different letters of a, b, and c show significant difference in a treatment throughout the experiment (p<0.05). Asterisk show significant difference between two densities at the same time (p>0.05). Columns with at least one similar letter in each treatment show no significant difference (p>0.05). Data are presented as mean ± standard error (n=6 for high and n=3 for low densities).
شاخه‌های همانتوزی
بس از یک بهنه تغییرات در دو تراکم پایین و بالا اختلاف معنی‌دار مقدار در دسترس همانتوزی، اغلب همهم‌سازی. تعداد میانگین‌های فرمز، MCH، MCV، و MCHC مشاهده نشده. همچنین، اختلاف معنی‌داری در ارتباط با این شاخص‌ها در روند زمان و همچنین بین دو تراکم گزارش نمی‌شود. پژوهش‌ها در ساخته‌های مختلف مشاهده شدند. نتایج در مورد شاخص‌های مقدار در سانتی ۸۸ با اعمال استرس، حاد، دستکاری (۳۹/۸±۲/۳fl) و پرتابک در نمونه‌گیری قبل از استرس (۱۹۶/۹±۱/۷ fl) نمونه‌گیری قبل از استرس (۱۹۶/۹±۱/۷ fl)

جدول ۱: روند تغییرات همانتوزی، همبیلوبین، تعداد گلوبی‌های فرمز، MCH، MCV، و MCHC (میانگین ± خطای استاندارد) در فیل‌های Beluga (Huso huso) تحت بالا (8 kg/m²)، پایین (1 kg/m²) و متوسط (1 kg/m²) فشارهای مخصوص در شرایط زمستان.

<table>
<thead>
<tr>
<th>شاخص‌ها</th>
<th>مقدار (ساعت)</th>
<th>کم تراکم</th>
<th>پیر تراکم</th>
<th>گرمولین (g/dl)</th>
<th>کم تراکم</th>
<th>پیر تراکم</th>
<th>فرمز (fl)</th>
<th>کم تراکم</th>
<th>پیر تراکم</th>
<th>MCH (pg/cell)</th>
<th>کم تراکم</th>
<th>پیر تراکم</th>
</tr>
</thead>
<tbody>
<tr>
<td>همبیلوبین (g/dl)</td>
<td>۱۶/۳ ± ۱/۸</td>
<td>۱۳/۸ ± ۱/۶</td>
<td>۱۲/۶ ± ۱/۸</td>
<td>۷/۳ ± ۱/۸</td>
<td>۱۶/۳ ± ۱/۸</td>
<td>۱۳/۸ ± ۱/۶</td>
<td>۱۲/۶ ± ۱/۸</td>
<td>۷/۳ ± ۱/۸</td>
<td>۱۶/۳ ± ۱/۸</td>
<td>۱۳/۸ ± ۱/۶</td>
<td>۱۲/۶ ± ۱/۸</td>
<td>۷/۳ ± ۱/۸</td>
</tr>
<tr>
<td>MCH (pg/cell)</td>
<td>۱۹/۸ ± ۲/۱</td>
</tr>
</tbody>
</table>

علاوه بر اختلاف معنی‌دار بین دو تراکم را در ساعت مربوطه نشان می‌دهد (p<0.05)
جدول ۲- روند تغییرات اعداد کلیل‌های سفید، لنفوسیت، نتروفیل، اتوزنوفیل و مونوسیت (میانگین ± خطای استاندارد) در فیل ماهیان نگهداری شده در ترانک بالا (A kg/m³) و پایین (B kg/m³) (عددی دو منوئه ضرب از پیوسته در شرایط زمستان)

Table 2: Changes of number of white blood cells, lymphocytes, neutrophils, eosinophils, and monocytes (mean ± standard error) in juvenile beluga sturgeon Huso huso held under high (8 kg/m²; n=6) or low (1 kg/m²; n=3) densities before and after stress in winter condition.

<table>
<thead>
<tr>
<th>زمانهای پس از استرس (ساعت)</th>
<th>صفر (شروع آزمایش)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>گلیل سفید</td>
<td>کم تراکم</td>
</tr>
<tr>
<td>پر تراکم</td>
<td>۱/۹ ± ۰/۱</td>
</tr>
<tr>
<td>لنفوسیت</td>
<td>کم تراکم</td>
</tr>
<tr>
<td>پر تراکم</td>
<td>۰/۳ ± ۰/۲</td>
</tr>
<tr>
<td>اتوزنوفیل</td>
<td>(ال)</td>
</tr>
<tr>
<td>پر تراکم</td>
<td>۰/۳ ± ۰/۲</td>
</tr>
<tr>
<td>اتوزنوفیل</td>
<td>پر تراکم</td>
</tr>
<tr>
<td>مونوسیت</td>
<td>کم تراکم</td>
</tr>
<tr>
<td>پر تراکم</td>
<td>۳/۱ ± ۰/۲</td>
</tr>
</tbody>
</table>

بحث

شاخه‌های استرسی

نتایج مطالعه حاضر نشان داد که، در پیسابیت، سطح استرس و در نتیجه اینکه می‌تواند باعث درمانی محور تیترامه‌های مختلف باشد، امکان دارد که این موضوع در مطالعات آینده شناخته شود.

مجله علمی شیلات ایران

سال بیست و ششم/شماره ۱۸/شمسی ۹۳

می‌تواند این موضوع از این دیدگاه از مطالعات دیگری در زمینه استرس در شیلات‌های درمانی استفاده شود.

صدام دار هستند (0/6). در نتیجه، میانگین (0/6).

معنی دارد هستند (0/6).

بی‌پیشنهاد مبتنی بر شبکه ای، استفاده می‌شود، بنابراین به‌طور گسترده‌ای از افزایش سوخت و ساز بدن و متقابل آن جلوگیری از شناسایی کوئینبوز و سایر (Martínez-Porchas و تقویت (ر) در این رابطه نشان داده شد.

پیش‌بینی کننده‌ها با کاهش و یا جلوگیری از فعالیت شدن محور گلوکژیک، گرچه به مکانیسم فوت مشابه می‌تواند باعث کاهش کوئینبوز شود، اما هیچ‌یک از این امرها در مواجهه با ماده می‌تواند باعث نابی‌کردن و یا از بین آوردن ماده کمک است. در نتیجه (Ortuño et al., 2002 a,b; Hoseini et al., 2011) می‌تواند استرس و درمانی که پیش‌بینی شده اگر نفوذ و گل مخک در جلوگیری از شناسایی کروماتوزیک، به استرس ایجاد شده نتوانست آن از فاز به‌پیشی (به‌طور ماده به‌پیشی کننده) و همچنین استرس سیکل دستکاری ماهی مربوط می‌باشد.
پاسخ‌های استورسی و خویی پس از بیهوشی به فیل‌هاین جوان (Huso huso L.)

فلاح‌کار و همکاران

Falahatkar et al., 2009; Hoseinie et al., 2011

نتایج به دست آمده این مطالعه نشان داد که استرس داده‌کننده، به غیر از مقدار یافته‌های جوان، به افراد غیر از افزایش جوانگی میزان کورتیزول خون نیاز دارد. استرس افزایش میزان کورتیزول خون نیاز دارد. هنگامی که این مقدار بیشتر از مقدار میانگین افزایش می‌گردد.

از طریق گل هم‌تولوزی در مطالعه اختلالات نارسایی خون در رنگ‌های رنگ‌های پس از استرس افزایش دارای باعث قربانی می‌گردد. در هر چهار نمونه، نشان داد که این مقدار افزایش دارد. در گروه این نشان داد که کاهش گل هم‌تولوزی باعث کاهش استرس می‌گردد.

پس از استرس افزایش دارای باعث قربانی می‌گردد. در گروه این نشان داد که کاهش گل هم‌تولوزی باعث کاهش استرس می‌گردد.

داشت که این پژوهش‌ها نشان داد که این مقدار افزایش می‌گردد.

در طریق گل هم‌تولوزی در رنگ‌های رنگ‌های پس از استرس افزایش دارای باعث قربانی می‌گردد. در گروه این نشان داد که کاهش گل هم‌تولوزی باعث کاهش استرس می‌گردد.

داشت که این پژوهش‌ها نشان داد که این مقدار افزایش می‌گردد.

در طریق گل هم‌تولوزی در رنگ‌های رنگ‌های پس از استرس افزایش دارای باعث قربانی می‌گردد. در گروه این نشان داد که کاهش گل هم‌تولوزی باعث کاهش استرس می‌گردد.

داشت که این پژوهش‌ها نشان داد که این مقدار افزایش می‌گردد.

در طریق گل هم‌تولوزی در رنگ‌های رنگ‌های پس از استرس افزایش دارای باعث قربانی می‌گردد. در گروه این نشان داد که کاهش گل هم‌تولوزی باعث کاهش استرس می‌گردد.

داشت که این پژوهش‌ها نشان داد که این مقدار افزایش می‌گردد.
مجله علمی شیلات ایران
سال بیست و ششم/شماره ۱۷

پاداش و شکر

نتایج مطالعه حاضر نشان از مقایسه باقی ماهینه با استرس مزمن (تراکم بالا) در شرایط زمانه‌های متفاوت. همچنین بعد از استرس است، حد در تیمارهای مختلف و اعمال بهبودی با وجود تغییر در شاخص‌های استرسی و خوی می‌تواند این دو کرد که با ماهینه ای وجود یا ایستادگی، با وجود ماهینه ای وجود و خوی یا به حالت عادی بازگردانند و با وجود اینکه حساسیت آنها به استرس حاد در شرایط پترکاکی اندکی بیشتر است، این نتایج بیانگر مقایسه بالای آنها به ارائه استرس (مزمن و حاد) است. با در نظر گرفتن کمی بارانی را برکنر به حالت اولیه در مورد شاخص‌های استرسی پس از حدود ۳ ساعت و در مورد شاخص‌های هم‌استرسی پس از حدود ۴ ساعت مشاهده شد. همچنین می‌توان این گونه بین کرد که بهبود و شرایط زمانه‌های ابتدا بر روی باخس قلبی‌های با استرس مزمن و حاد ندارند. اما در شرایط زمانی، امکان تکه‌گیری قبل‌از‌های اندکی بالایی وجود دارد. در اینکه این امر در سال‌های ماهینه تأثیر منفی داشته باشد. اب این حالت بهبود مدیریت و کاهش عوامل استرس‌زا می‌تواند در بهبود شرایط زیست ان گونه در محیط‌های بورسی مورث باشد.

تشکر و قدردانی

بدن‌پوشی مراتب‌های بیماران و تشکر خود را از کلیه مسئولین و کارکنان مرکز تکثیر و باربازی ذخایر ماهین دریایی شرودان دکتر بی‌پوش‌سایه‌ال (آسانی‌گانی)، به‌خصوص جناب آقای مهدسد ابرن عفت به‌عنوان رئیس مرکز و جناب آقای مهدسد به‌عنوان مسئول راه‌اندازی آزمایشگاه مرکز و سایر عجیب‌های کم‌سازنده در این پروژه دانش‌آموز می‌داریم.

منابع

Downloaded from isfj.ir at 2:54 +0430 on Wednesday June 10th 2020

Gennotte, V., Sawadogo, P., Milla, S., Kestemont, P., Mélard, C. and Rougeot, C., 2012. Cortisol is responsible for positive and negative effects in the ovarian maturation induced by the exposure to acute stressors in...
Nile tilapia, *Oreochromis niloticus*. Fish Physiology and Biochemistry, 38: 1619-1626. doi: 10.1007/s10695-012-9656-7

Stress and hematological responses of juveniles beluga sturgeon (*Huso huso* L.) held in low or high densities in winter condition after applying anesthesia

Falahatkar B. 1*; Kohansal S. 1; Mohammadaliha R. 1

1 bfalahatkar@yahoo.com

1-Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran

Abstract

This study was performed in order to evaluate the effects of chronic stress (density) and acute stress (handling) existed in culture environments on stress and hematological parameters of beluga sturgeon (*Huso huso*) under winter condition (below 10°C) after application of anesthesia. Fish with mean (± SE) weight of 399 ± 1.4 g were kept in the low (1 kg/m2) and high densities (8 kg/m2) in three replicates for a week. Then, fish were held under stress condition so that they were quickly removed from the rearing tank and then anesthetized for 2 minutes in container (50 l) includes 400 mg/l clove powder extract. They were then returned to the original tanks. Blood samples were taken before the stress (0 time), 1, 3, 6, 12, 24 and 48 hours after application of the stress; the stress indicators (cortisol, glucose and lactate) and hematological parameters (hematocrit, hemoglobin, number of red blood cells, MCV, MCH, MCHC, number of white blood cells, lymphocytes, neutrophils, eosinophils and monocytes) were measured. No differences in measured parameters were observed after one week of holding fish at low and high densities. The results of stress indicators, one hour after acute stress and anesthesia showed a significant difference with resting time (p<0.001). Also significant difference was observed on lactate levels between the low and high densities at 3 h after acute stress and anesthesia (p=0.032). Number of white blood cells at 1 and 6 h after acute stress and anesthesia in high density showed significant difference with resting time (p<0.001). MCV showed significant difference between two treatments at 48 h after the stress and anesthesia (p=0.016). The other parameters did not show any significant difference between treatments (p>0.05). The results revealed that beluga sturgeon has high resistance against chronic and acute stressors and anesthesia. However, it seems that anesthesia could not control the low negative effects of stress even in this condition of low temperature.

Keywords: Stress, Beluga, Density, Anesthesia, Low temperature

*Corresponding author