تبعین میزان غلظت فلزات سنگین نیکل و کادمیوم در باندهای عضله و کبد ماهی
سنگسر معمولی (Pomadasys kaakan) در بند بوشهر

رضا عبیدی ۱، عبدالرحیم پذیرا ۲، فرشاد قبیری ۱، سعید مغدانی ۱

* Rasagh.Obeidi@gmail.com

۱- باشگاه پژوهشگران جوان و نخبگان، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران
۲- گروه منابع طبیعی - تکنیک و پرورش آبزیان، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران

تاریخ دریافت: مهر ۱۳۹۵

چکیده

این تحقیق با هدف تبیین میزان غلظت فلزات سنگین نیکل و کادمیوم در باندهای عضله و کبد ماهی سنگسر معمولی (Pomadasys kaakan) در بند بوشهر در سال ۱۳۹۴ انجام پذیرفته است. تعداد ۳۰ قطعه ماهی سنگسر معمولی به صورت کامل تصادفی از بند بوشهر توسط قیامنی‌های بومی منطقه کشیده گردیده است. بعد از زیست‌سنجی، باندهای عضله و کبد نمونه‌ها جداسازی و هضم شده و با استفاده از تست مانفیک (MOOPAM) شیمیایی نمونه‌ها به روش VARIAN (AA 100) میزان غلظت فلز نیکل و کادمیوم در باندهای عضله و کبد نمونه‌ها انجام شد. در ادامه، به این بافت اساس میانگین غلظت نیکل در باندهای عضله و کبد ماهی سنگسر معمولی به ترتیب ۲۸۷/۱۴±۲۱/۴ و ۲۸۱/۸±۲۳/۰ میلی گرم در کیلو گرم وزن خشک محاسبه شد. اختلاف معنی‌داری را نشان نداد (p<0/05). در نتیجه این مطالعه نشان داد که غلظت فلزات سنگین نیکل و کادمیوم در بافت عضله و کبد ماهی سنگسر معمولی به ترتیب ۲۱۳/۱±۲۲/۳ و ۲۱۸/۱±۱۸/۲/۰ میلی گرم در کیلو گرم وزن خشک محاسبه شد و اختلاف معنی‌داری را نشان نداد (p<0/05). نتایج این مطالعه نشان داد که غلظت فلزات سنگین نیکل و کادمیوم در بافت خوراکی (مشربه) ماهی سنگسر معمولی در منطقه مرز مطالعه پایینتر از حد مجاز استانداردهای سازمان بهداشت جهانی (WHO)، سازمان جهانی غذا و کشاورزی (FAO)، مرکز می‌بهداشت و پژوهش اسرائیل (NHMRC)، وزارت کشاورزی، شیلات و غذای انگلستان (UK(MAFF)) و سازمان غذا و دارو آمریکا (FDA) بود. لذا استفاده از این گونه برای مصارف انسانی مشکلی را از دیدگاه سلامت و بهداشت عمومی ایجاد نخواهد کرد.

کلمات کلیدی: نیکل، کادمیوم، عضله، کبد

نویسنده مسئول

55
مواد و روش‌ها
این تحقیق در صیدگاه بندر بوشهر (مختصات جغرافیایی ٢٤°٣١' ٥، ٧°٣٠' ٥، طول شرقی) که هم‌مرجعی به سید آبی‌رآبی از این قسمت می‌باشد، انجام گرفت (شکل ١).

شکل ١: منطقه مورد مطالعه

Figure 1: Location of the sampling areas.

در مجموع ٢٠ فقطه ماهی سگن تصادفی در سال ١٣٩٤ از صیدگاه بندر بوشهر به صورت تصادفی توزیع و تراز به وسیله صیادان بومی منطقه صید گردیده، سپس ماهی‌ها را داخل گیسه پلاستیکی قرار داده و کمپندی

همکاران (٢٠١٣) و Alkan و همکاران (٢٠١٥) اشاره کردند. بنابراین پژوهش‌های که در زمینه اندودگی قلات سنگی در اکوسیستم‌های آبی انجام می‌شود از دیدگاه سلامت انسان و بهداشت عمومی سبب مهم هستند. از طرفی در این پژوهش‌ها حفظ حالت توانایی اکوسیستم‌های آبی به عنوان هدف ثانویه مطرح است. بنابراین این تحقیق با هدف تعیین میزان غلظت قلات سنگی نیکل و کادمیومدر بایستیع عضله و کبد ماهی سنگری معمولی در بندر بوشهر و مقایسه آن با استانداردهای جهانی صورت گرفت.

مراجع

میزان فلزات سنگین نیکل و کادمیوم در باند کبد بیشتر از فاصل عضله است. روند تغییرات کلی میزان فلزات این‌ها-گیپری شده در جدول 2 آورده شده است.

جدول 1: نتایج ویژه‌سنجی ماهی سنگک‌عمولی در بندر بوشهر (N=20)

<table>
<thead>
<tr>
<th>طول کل (cm)</th>
<th>وزن کل (g)</th>
<th>رنگ</th>
<th>پوشا (عدد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>845</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>722</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1075</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>38/5</td>
<td>921</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>813</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1114</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>973</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>32/35</td>
<td>516</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>32/11</td>
<td>42</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>366</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>656</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>33/35</td>
<td>516</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>337</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>433</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>442</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>443</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>33/35</td>
<td>337</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>392</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1043</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

(0.5< p≤0.05) در نمونه‌های مورد بررسی استفاده گردید.

نتایج

در این تحقیق بافت عضله و کبد ۲۰ قطعه ماهی سنگک عمولی با میانگین وزنی ۶.۲۳ گرم و میانگین طولی ۲/۴۴ سانتی‌متر جهت تعیین میزان غلت فلزات سنگین نیکل و کادمیوم و رنده نمونه‌برداری قرار گرفتند. طول و وزن نمونه‌ها به تکیک و صورت میانگین در جداول ۱ و ۲ و اینکه در بافت کبد نیز به ترتیب ۲/۳۴ و ۴/۲۲ میلی‌گرم در کیلوگرم وزن خشک و در بافت کبد نیز به ترتیب ۳/۴۴ و ۲/۳۴ میلی‌گرم در کیلوگرم وزن خشک می‌باشد. بر اساس نتایج آماری به دست میانگین و انحراف از میانگین با فصله اطعامیان در سطح ۹۵ درصد برای فلز نیکل در بافت عضله میلی‌گرم در کیلوگرم وزن خشک و در کیلوگرم وزن خشک انداره‌گیری کردیم. بر اساس آزمون T-test نتایج آماری به دست میانگین و انحراف از میانگین با فصله اطعامیان در سطح ۹۵ درصد برای فلز کادمیوم در بافت عضله میلی‌گرم در کیلوگرم وزن خشک و در بافت کبد نیز به مقدار ۲/۵۱±۰/۱۱۷ میلی‌گرم در کیلوگرم وزن خشک معیار T-test انجام پذیرفته بین میزان فلز کادمیوم در بافت عضله و کبد ماهی سنگک عمولی در بندروش‌های مختلف ویژه‌سنجی ماهی سنگک‌عمولی در نمونه‌برداری وجود داشت. (0.5< p≤0.05) در نمونه‌برداری T-test

جدول 2: نتایج ویژه‌سنجی ماهی سنگک‌عمولی در بندروش پهلو (N=20)

| انحراف | میانگین | میانگین | حداکثر | خلاف | حالة | سنگک‌عمولی (SD)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن کل (گرم)</td>
<td>62/07</td>
<td>367</td>
<td>418/6</td>
<td>6/28</td>
<td>34/2</td>
<td>28/66</td>
</tr>
<tr>
<td>طول کل (سانتی‌متر)</td>
<td>1114</td>
<td>35</td>
<td>42/3</td>
<td>28/6</td>
<td>42/0</td>
<td>1043</td>
</tr>
</tbody>
</table>

یافته انجام بر می‌آید این است که

58
بحث

توسعه صنایع و مناطق کشاورزی افزایش بروزه جمعیت، استفاده از سموم دفع آفات و کودها موجب شده تا آلودگی‌های نفتی، فاضلاب‌های صنعتی و شهری و نیز پساب‌های کشاورزی در ایالات سگنی وارد اکوسیستم‌های آبی شود (عکس‌سازی و همکاران، 1389). فلزات سگنی پس از ورود به اکوسیستم‌های آبی در بدن آبیان تجمع می‌یابند و در چرخ‌های زیستی به طبیعی گذاری بالتر و در نهایت انسان منتقل می‌شوند. از نظری که بخشی از مهم‌ترین راههای در معرض قرار گرفتن انسان با فلزات سگنی درافت این عناصر از طریق متاب‌سنجی می‌باشد. لذا ارزیابی و کنترل میزان آلودگی اقلام مختلف غذا و شناسایی منابع اینه، تعیین یا حذف آن تأثیر

شکل 2 مقایسه میزان فلز نیکل در بافت عضله و کبد ماهی سنتگرس معمولی در بندر بوشهر

Figure 2: Comparison of Ni in muscle and liver tissues of Pomadasys kaakan in Bushehr seaport.

شکل 3 مقایسه میزان فلز کادمیوم در بافت عضله و کبد ماهی سنتگرس معمولی در بندر بوشهر

Figure 3: Comparison of Cd in muscle and liver tissues of Pomadasys kaakan in Bushehr seaport.

قابل ملاحظه‌ای بر سلامت و طول عمر انسان خواهد داشت (جلالی جعفری و آزادی‌مقدمی، 1386). در مطالعه حاضر بافت کبد (ب فعالیت متابولیک بالا) و بافت عضله (با فعالیت متابولیک پایین) به عنوان اندام هدف انتخاب شدند.

در این تحقیق بین میزان کادمیوم در عضله و کبد ماهی سنتگرس معمولی با یکدیگر اختلاف معنی‌داری وجود داشت (0.05 < p). اما بین میزان نیکل در عضله و کبد ماهی سنتگرس معمولی با یکدیگر اختلاف معنی‌داری وجود نبود (0.05 > p). همچنین نتایج نشان داد که میزان غلظت نیکل و کادمیوم در بافت کبد بیشتر از بافت عضله بود. به طور کلی ابیشک، کلیه و
کارون پرداخته. نتایج نشان داد که میانگین میزان فلز کادمیوم و نیکل در بافت عضله به ترتیب 0/186 میلی گرم در کیلوگرم وزن خشک و در بافت کبد به ترتیب 0/941 و 0/314 میلی گرم در کیلوگرم وزن خشک بود. برین میزان تجمع نیکل و کادمیوم در بافت عضله و کبد اختلاف معنی‌داری وجود داشت (0/05 < p < 0/01) و میزان همکاران (1390لا (ب) در مطالعه‌ای به بررسی تجمع فلزات سنگین کادمیوم و نیکل در بافت عضله و کبد ماهی در ایبیاسی ایستان هرمزگان (نادیری و کرجرانی) برداخت. نتایج نشان داد که میانگین میزان فلز کادمیوم و نیکل در بافت عضله به ترتیب 0/217 و 0/473 میکروگرم در گرم وزن خشک و در بافت کبد به ترتیب 0/096 و 0/207 میکروگرم در گرم وزن خشک بود. برین میزان تجمع نیکل و کادمیوم در بافت عضله و کبد اختلاف معنی‌داری وجود داشت (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد بیان‌یاب (0/05 < p < 0/01) و میزان کادمیوم و نیکل در بافت عضله و کبد ماهی قیاد (0/05 < p < 0/01) و میزان کادمیوم و نیکل در باIFT
مجله علمی شیلات ایران
سال بیست و ششم/شمرده ۱

نتایج نشان داد که میانگین فلاتر کادومیوم و نیکل در بافت عضله به ترتیب Nd (کمتر از حد نسبی) 118 و ۲/۳ در بافت کبد به ترتیب ۲/۳ و ۲/۳ میکروگرم در گرم وزن خشک بود. در این مطالعه غلظت فلاتر کادومیوم و نیکل در بافت عضله احتمالاً در بافت عضله احتمالاً نسبی فلاتر نیکل و کادومیوم در بافت عضله و کبد ماهی طلال در این حوزه (Euryglossa orientalis) (بندر لنج، هنگام، کلاهی، پرماشلک) نتایج نشان داد که از لحاظ عنصر کادومیوم در عضله و کبد ماهی طلال در بین مناطق مختلف معناداری وجود داشت (p<0.05) و میزان کادومیوم در بافت بالاتر از عضله. غلظت احتمالاً تجربی در فلاتر سسکین در تحقیقات مختلف با توجه به شرایط اکولوژیک، فیزیکی و فعالیت‌های متابولیکی متفاوت است و به محل زندگی، رفتار نزدیک‌یابی سطح غذا و اندازه، زمان اندکار، فلاتر سسکین و فعالیت‌های تنظیم همیشه به داخل ماهی استگا در حین مهیج سیر همیشه سرسال سسکین و دستگاه‌های جذب اینه مختلف نیز در نتایج گزارش گردیده می‌باشد که از همکار اصلی (عسگری، سری و ولازیزاده، ۱۳۹۲) در ارتباط با بازیبودن ویژگی فلاتر بیشتر در سبک‌های و استخوانها Al-Weher, 2008). همچنین در تجربیهای دیگر تابید شده است که کادومیوم و نیکل در انتقالی مختلف ذخیره می‌شوند. یکی از اصلی‌ترین اموری که در موجودات بی‌زیعه بر کبد و کلیه بیشتر پوست، Van Aardt & Endmann, 2004)، که می‌تواند اثرات می‌پذیرد می‌باشد (Endmann, 2004) این فلاتر در این مطالعه باشد. همچنین قابل ذکر است که کادومیوم و نیکل از جمله عناصری است که ماهیان

جدول ۲: مقایسه غلظت فلاتر سسکین نیکل و کادومیوم در بافت عضله ماهی سکس معمولی با استانداردها (میلی‌گرم در کیلوگرم وزن خشک)

<table>
<thead>
<tr>
<th>استانداردها</th>
<th>جدول سانس</th>
<th>نیکل</th>
<th>کادومیوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>سازمان پیش‌بینی‌کننده پیش‌بینی‌کننده (WHO)</td>
<td>۰/۳</td>
<td>۰/۴</td>
<td></td>
</tr>
<tr>
<td>سازمان پیش‌بینی‌کننده پیش‌بینی‌کننده (FAO)</td>
<td>٠/۵</td>
<td>٠/۵</td>
<td></td>
</tr>
<tr>
<td>سازمان پیش‌بینی‌کننده پیش‌بینی‌کننده (NHMRC)</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td></td>
</tr>
<tr>
<td>سازمان پیش‌بینی‌کننده پیش‌بینی‌کننده (MAFF)</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td></td>
</tr>
<tr>
<td>سازمان پیش‌بینی‌کننده پیش‌بینی‌کننده (FDA)</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Comparison of the concentration of Ni and Cd in muscle tissue of Pomadasys kaakan with standards (mg/kg dry weight)

<table>
<thead>
<tr>
<th>استانداردها</th>
<th>نیکل</th>
<th>کادومیوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>سازمان پیش‌بینی‌کننده پیش‌بینی‌کننده (WHO)</td>
<td>۰/۳</td>
<td>۰/۴</td>
</tr>
<tr>
<td>سازمان پیش‌بینی‌کننده پیش‌بینی‌کننده (FAO)</td>
<td>٠/۵</td>
<td>٠/۵</td>
</tr>
<tr>
<td>سازمان پیش‌بینی‌کننده پیش‌بینی‌کننده (NHMRC)</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>سازمان پیش‌بینی‌کننده پیش‌بینی‌کننده (MAFF)</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
<tr>
<td>سازمان پیش‌بینی‌کننده پیش‌بینی‌کننده (FDA)</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
</tbody>
</table>
منابع

بنانی، غ..، رستمی، ح..، یلیقی، س..، شکرگاهی، م..، و نظری، ح..، 1389، سلخ فلات سنگین سرب، کادیمیوم، کروم و روی در بایت کیف و عضله ماهی (Scomberomorus guttatus) کیور معمولی (Scomberomorus commerson) و قیاد (guttatus)

پژوهش. 19(1): 19-36

جلالی جعفری، ب..، و آقازاده مشگی، م..، 1386، مسومیت ماهیان در اثر فلات سنگین آب و همیت آن در بهداشت عمومی. انتشارات مان کتاب، چاب اول. تهران. 1342 صفحه.

چاکری، ر..، سجادی، مم..، کامردی، ا..، و آقازاده مشگی، م..، 1394، تعیین میزان غلظت فلات سنگین سرب و کادیمیوم در بایت کیف و عضله ماهی طلال (Rastrelliger kanagurta) فارس. مجله علمی شیلات ایران 1342(3): 19-26

خراسانی، ن..، حسینی، س..، پورافریان، ف..، حسینی، و.

و افکاری، ف..، 1394، اندازه‌گیری عضله سنگین بخش‌های فلات (Otolithes ruber) مطالعه موردی بندر ماهشهر نشره می‌باشد. نشریه محیط زیست طبیعی 1394(1): 191-206

صادقی، سم..، و پورافریان، ف..، 1380، ویژگی‌های زیستی و ریخت-شناسی ماهیان جنوب ایران (خال قارس و دریای عمان). انتشارات نقش مهر، چاب اول. تهران. 1342 صفحه.

صادقی، مم..، ابادی، س..، دقوچی، ب..، مورگی، ن..، و پورافریان، ف..، 1394، بررسی تجمیع برخی فلات سنگین (سرپ، کادیمیوم و نیکل) در بایت کیف و Parastromateus کیور ماهی حلواه سیب (Parastromateus) در آب‌های استان هرمزگان (بندرعباس) مجله زیست‌شناسی دریا 41(3): 32-48
عسکری ساری، ا.، خدادادی، م. و محمدی، م. 1389 سرب و جیوه در بافت‌های مختلف (عضله، کبد و (Barbus xanhopterus) آبش) ماهی کبذر رودخانه کارون. مجله علمی شیلات ایران، 106(97): 97-106.

عسکری ساری، ا.، خدادادی، م.، بیاتی، م. 1389 ولایت‌های خاک و میزان فرکانسی و توزیعی ماهی افتاده‌های ماهی کبذر (Liza abu) و (Saurida tumbil) در ناحیه لشکر کویر و خلیج فارس. مجله گردش‌های علمی، جهان حیات و طبیعت، 70-61 (7): 1-5.

بیری، ا. و جوادزاده، ن. 1393 میزان توزیع ماهی کبذر در خلیج فارس. مجله گردش‌های علمی، جهان حیات و طبیعت، 70-61 (7): 1-5.

دان، ح. و اسماعیلی، ع. 1386 بررسی توزیع فرکانسی ماهی شیرجه در ناحیه لشکر کویر و (Phalacrocorax carbo). مجله مهیاب شیلات، 16(2): 113-119.

مرتضی، م. و شریفیان، س. و افکاری، ن. 1392 پژوهش بررسی توزیع ماهی کبذر در ناحیه لشکر کویر و (Barbus grypus) و (Barbus xanhopterus) در ناحیه کویر و خلیج فارس. مجله مهیاب شیلات ایران، 106(97): 97-106.

آلان، ن. و آکتس، م. و گدیک، ک. 2012. مقایسه میزان اکسپرسیون (کیمیوکسر) در پس‌انداز، ماهی کبذر و (Barbus grypus) و (Barbus xanhopterus) در ناحیه کویر و خلیج فارس. مجله مهیاب شیلات ایران، 106(97): 97-106.

تیره، ا. و لهر، س.آ. 2008. سطح عارض‌های مایعی در سه گونه ماهی در ناحیه شمال غربی کشور و (Phalacrocorax carbo) و (Saurida tumbil) و (Liza abu). مجله مهیاب شیلات، 16(2): 113-119.

آلان، ن. و آکتس، م. و گدیک، ک. 2012. مقایسه میزان اکسپرسیون (کیمیوکسر) در پس‌انداز، ماهی کبذر و (Barbus grypus) و (Barbus xanhopterus) در ناحیه کویر و خلیج فارس. مجله مهیاب شیلات ایران، 106(97): 97-106.

http://doi.org/10.1016/j.foodchem.2006.03.001

http://doi.org/10.1016/j.foodchem.2005.05.041

https://doi.org/10.1191/0960327103ht323oa

http://dx.doi.org/10.12692/ijb/6.5.170-177

http://doi.org/10.1016/j.envpol.2006.09.013

https://doi.org/10.1016/S0025-326X(96)00171-3

https://doi.org/10.1007/BF00666260

http://doi.org/10.1016/j.foodchem.2006.03.001

http://doi.org/10.1016/j.foodchem.2005.05.041

http://dx.doi.org/10.12692/ijb/6.5.170-177

http://doi.org/10.1016/j.envpol.2006.09.013

https://doi.org/10.1016/S0025-326X(96)00171-3

https://doi.org/10.1007/BF00666260

Determination of heavy metal (Nickel and Cadmium) concentrations in muscle and liver tissues of \textit{(Pomadasys kaakan)} in Bushehr seaport

Obeidi R.,* Pazira A.R.; Ghanbari F.; Moghdani, S.

*Rasagh.Obeidi@gmail.com

1- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran
2- Department of Natural Resources- Reproduction and Culture of Aquatics, Bushehr Branch, Islamic Azad University, Bushehr, Iran

Abstract
The aim of this study was to determine the concentrations of heavy metals Nickel and Cadmium in muscle and liver tissues of \textit{Pomadasys kaakan} in Bushehr seaport during 2015. 20 samples of \textit{Pomadasys kaakan} were caught completely at random from Bushehr seaport by the area local fishermen should be omitted. After biometry of the samples, the muscle and liver tissues of the samples were separated and chemical digestion of the samples was done by MOOPAM, then Nickel and Cadmium accumulation levels in tissues were measured using Graphite furnace atomic absorption instrument (VARIAN AA 100). Based on the obtained results the mean concentrations of Nickel in muscle and liver tissues of \textit{Pomadasys kaakan} were calculated 0.284 ±0.074 and 0.344±0.081 mg/kg dry weight respectively and showed that there were no significant differences (p>0.05). Moreover, based on the obtained results the mean concentrations of Cadmium in muscle and liver tissues of \textit{Pomadasys kaakan} were calculated 0.118±0.011 and 0.132±0.021 mg/kg dry weight respectively and showed that there were significant differences (p<0.05). The results of this study revealed that the Nickel and Cadmium metals concentration in edible tissues (muscle) of \textit{Pomadasys kaakan} in study station are lower than the levels permitted within the standards of WHO, FAO, NHMRC, UK(MAFF) and FDA. So the use of these species for human consumption from the perspective of public health will not create a problem.

Keywords: Nickel, Cadmium, Muscle, Liver, \textit{Pomadasys kaakan}