درجه‌بندي کيفيت فيله ماهي کيور معمولي (Cyprinus carpio) براساس اندازه ماهي با استفاده از معادلات رياضي مهدي ذوالفقاري; بهار شهبانور; علی شباني و رسول قرباني

زولفهاری.مزم@gmail.com

دانشگاه شیلات و محيط‌زیست دانشگاه علوم کشاورزی و منابع طبیعی گیلان، صندوق پستی: 49138-10762 تاریخ دریافت: آبان 1388 تاریخ پذیرش: اسفند 1388

چکیده
درجه‌بندي کيفيت و تعيين ارزش تغذيه‌اي ماهي از مباحث و نيازهاي امروز صنعت فرآوري آبزیان مياشيه. اين تحقیق به منظور راه‌حل‌ريوی جدید، کاربردي و کم‌هزينه برای درجه‌بندي کيفيت فيله ماهي کيور معمولي بروشتي (Cyprinus carpio) براساس اندازه ماهي و با استفاده از معادلات رياضي انجام پذيرفت. درين منظور 62 عدد ماهي کيور بروشتي تهيه و پس از فيله كردن، محصول رطوبت، چربی، پروتين، انرژي و خاکستر فيله آنها اندازه‌گيري شده و روابط بين اجزاء تركيب تقريبي فيله و طول کلي ماهي مورد بررسی قرار گرفت. نتایج بدست آمده نشان داد كه بين لگاریتم ميزان رطوبت فيله و لگاریتم طول کلي ماهي رابطه خطي معکوس وجود دارد (P < 0.05). اين رابطه همچنين نشان داد كه بين لگاریتم محصول چربی، پروتين و انرژي فيله با لگاریتم طول کلي ماهي و رابطه خطي مستقيم وجود دارد (P < 0.05). بررسی رابطه بين لگاریتم محصول خاکستر و پروتين فيله با طول کلي ماهي نشان داد که رابطه معناداري بین آنها وجود ندارد (P > 0.05). با توجه به اثبات وجود رابطه بين اجزاء تركيب تقريبي فيله و طول کلي ماهي کيور بروشتي دستي‌بندی اين ماهي براساس طول با استفاده از دستگاه و درجه‌بندي ميزان رطوبت، چربی، پروتين و انرژي با استفاده از معادلات بدست آمده در اين تحقیق، جهت تعیین نوع فرآورده و مشخصات تركيب تقريبي این ماهي قابل انجام مي‌باشد.

لغات کليدي: انرژي، پروتين، رابطه رگرسيون، کيور معمولي

*ناويسندگان مسئول
مقدمه
ماهی‌کور از مهم‌ترین ماهی‌های پرورشی در استان سیستان و بلوچستان است که از آن Weatherly & Gill, 1987
جنسیت‌آمیزی و بررسی‌های Sharer, 1994
پرورشی بکرها و انسدادی Ali et al., 2004
با تعدادی از متخصصان ماهی‌پروری Salam, et al., 2001
می‌باشد. ماهی‌پروری در آستانه جهت درجه‌بندی آن به منظور مورد تکثیر Yannes & Yennes, 2004
مناسب‌تر جهت فراوری همیشه دارد (Almandos, 2003)
علاوه بر تحقیق دیگر ماهی‌پروری و بررسی‌های مرحله‌بار Yannes & Yennes, 2004
BRADY, 2006
درجه‌بندی کیفیت ماهی کیور معمولی براساس ادغام ماهی بر استفاده از...
محاسبه میزان انرژی فیله به روش Schulze و همکاران (2005) انجام یافته. در این است که کاهش طبقه بازیگری و بررسی بهینه سازی این کاهش از عوامل کاهش میزان انرژی می‌تواند به‌ویژه در بیشتر از ۵۰۰ گرم با هم مقایسه شدند.

نرم‌افزار Excel و نرم‌افزار SPSS برای روند ساده‌تر از استفاده از آزمون آماری تخصیصی ANOVA و برای مقایسه جفت میانگین‌ها از آزمون LSD استفاده شد.

نتایج

نتایج بیشترین و کمترین میزان بذلده فیله رطوبتی، خاکستر و انرژی فیله ماهی کبوتر در جدول ۱ نشان داده شده است.

جدول ۱: معادله میزان اجزای ترکیبی قربانی، انرژی و باذله فیله ماهی کبوتر پورشی

<table>
<thead>
<tr>
<th>کمترین میزان (درصد)</th>
<th>بیشترین میزان (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>رطوبت فیله</td>
<td>(درصد)</td>
</tr>
<tr>
<td>۷۶/۸۴</td>
<td>۷۷/۰۳</td>
</tr>
<tr>
<td>جریب فیله</td>
<td>(درصد)</td>
</tr>
<tr>
<td>۱۰۵/۰۷</td>
<td>۱۰۵/۰۷</td>
</tr>
<tr>
<td>پرته‌نیم فیله</td>
<td>(درصد)</td>
</tr>
<tr>
<td>۱۴/۲۴</td>
<td>۱۴/۲۴</td>
</tr>
<tr>
<td>خاکستر فیله</td>
<td>(درصد)</td>
</tr>
<tr>
<td>۷۶/۷۲</td>
<td>۷۶/۷۲</td>
</tr>
<tr>
<td>انرژی فیله (کیلوولت در ۱۰۰ گرم)</td>
<td>(درصد)</td>
</tr>
<tr>
<td>۳۷/۰۵</td>
<td>۳۷/۰۵</td>
</tr>
<tr>
<td>باذله فیله (درصد)</td>
<td></td>
</tr>
<tr>
<td>۴۱/۵۰</td>
<td>۴۱/۵۰</td>
</tr>
<tr>
<td>طول کار ماهی (سانتی‌متر)</td>
<td></td>
</tr>
<tr>
<td>۲۹</td>
<td>۲۹</td>
</tr>
</tbody>
</table>
ناتیج ترکیب تقیی فیله انژی و میزان بغازده فیله در
سکرگاهان ماهی کپر پروپورشی در جدول 2 نشان داده شده است. طبق این نتایج میزان پروپورشی، خاکستر و بغازده الفیله
سکرگاهان C و B با یکدیگر نتایج مناسبی داشته است. اما میزان رطوبت فیله ماهی گروه C بطور معمولی کمتر از
C گروه A کمتر از C گروه B کمتر از C گروه A چهارم به هم میشاند. پس (P<0.05).

نتایج بررسی روابط موجود بین طول کل ماهی و میزان
رطوبت الفیله در نمونه 1 نشان داده شده است. طبق این نتایج
بین میزان‌های ترکیب طول کل ماهی و میزان رطوبت الفیله
خطه معکوس پراز مرست. این نتایج به اثبات که افزایش طول کل
ماهی میزان رطوبت الفیله به صورت خطی کاهش می‌یابد. آماره
پیروزی نشان می‌دهد این رابطه کاملاً معنی‌دار می‌باشد.

با توجه به نتایج حاصل از بررسی رابطه طول کل ماهی و میزان
چربی فیله ان مشخص گردید بین این دو متغیر رابطه
گروهیی خطی مثبت معنی‌دار پرازمرد، بنحو (P<0.01).

جدول 2: مقایسه ترکیب تقیی و میزان انژی و بغازده الفیله ماهی کپر پروپورشی در گروه‌های وزن مختلف (میکرگرام/لتر اسکاتلند)

<table>
<thead>
<tr>
<th>P</th>
<th>بیشتر از 1000 گرم (طول بالاتر از 45 سانتی‌متر)</th>
<th>1000-1500 گرم (طول 45-50 سانتی‌متر)</th>
<th>1500-2000 گرم (طول بالاتر از 50 سانتی‌متر)</th>
<th>2000 گرم (طول بالاتر از 55 سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان R</td>
<td>بیشتر از 1000 گرم (طول بالاتر از 45 سانتی‌متر)</td>
<td>میزان 1000 گرم (طول 45-50 سانتی‌متر)</td>
<td>میزان 1500 گرم (طول بالاتر از 50 سانتی‌متر)</td>
<td>میزان 2000 گرم (طول بالاتر از 55 سانتی‌متر)</td>
</tr>
<tr>
<td>0.050</td>
<td>4/2/10/0.1/2</td>
<td>8/4/10/0.1/2</td>
<td>1/1/0/0/1/1</td>
<td>0/0/0/0/0/0</td>
</tr>
<tr>
<td>0.045</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/0/0</td>
</tr>
<tr>
<td>0.040</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/0/0</td>
</tr>
<tr>
<td>0.035</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/0/0</td>
</tr>
<tr>
<td>0.030</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/1/0</td>
<td>0/0/0/0/0/0</td>
</tr>
</tbody>
</table>

- حروف غیرمربوط به یک رابطه دارای اختلاف معنی‌دار می‌باشد (P<0.05)
نمودار ۱: رابطه طول کل ماهی و میزان رطوبت فیله در ماهی کبور پورتشی

\[y = -2.620 + 0.683x \]

\[R^2 = 0.644 \]

\[p < 0.1 \]

نمودار ۲: رابطه طول کل ماهی و میزان چریین فیله در ماهی کبور پورتشی

\[y = 0.015x + 0.767 \]

\[R^2 = 0.678 \]

\[p > 0.05 \]

نمودار ۳: رابطه طول کل ماهی و میزان پروتئین فیله در ماهی کبور پورتشی
نمودار ۴: رابطه طول کل ماهی و میزان انرژی فیله در ماهی کبوتری پروشی

نمودار ۵: رابطه طول کل ماهی و میزان خاکستر فیله در ماهی کبوتری پروشی

جدول ۳: رابطه بین تركیب نسبی انرژی و بازدهی فیله با وزن کل ماهی در وزن نر در ماهی کبوتری پروشی

<table>
<thead>
<tr>
<th>لگاریتم وزن کل ماهی (گرم)</th>
<th>اجزاء معادله</th>
<th>پارامترهای فیله</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t²</td>
<td>b</td>
</tr>
<tr>
<td>هنر</td>
<td>0.128</td>
<td>0.20</td>
</tr>
<tr>
<td>**</td>
<td>0.017</td>
<td>-0.04</td>
</tr>
<tr>
<td>NS</td>
<td>0.012</td>
<td>0.21</td>
</tr>
<tr>
<td>NS</td>
<td>0.014</td>
<td>0.22</td>
</tr>
<tr>
<td>**</td>
<td>0.163</td>
<td>0.02</td>
</tr>
<tr>
<td>NS</td>
<td>0.035</td>
<td>0.20</td>
</tr>
</tbody>
</table>
جدول 4: رابطه بین ترکیب تقیبی، انرژی و بازدهٔ فیله با طول کل در وزن خشک در ماهی کیور پرورشی

<table>
<thead>
<tr>
<th>اجزاء معادله</th>
<th>سطح معنی‌دار r²</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارامترهای فیله</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان ماهی خشک (درصد)</td>
<td>0/473</td>
<td>0/53</td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان چربی (درصد)</td>
<td>-2/07</td>
<td>0/568</td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان پروتئین (درصد)</td>
<td>-2/14</td>
<td>0/26</td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان خاکستر (درصد)</td>
<td>0/24</td>
<td>0/108</td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان انرژی (کیلوژول در 100 گرم)</td>
<td>0/34</td>
<td>0/262</td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان بازده فیله (درصد)</td>
<td>-2/39</td>
<td>0/487</td>
<td></td>
</tr>
</tbody>
</table>

عدد نتایج: 6. شیب خط رگرسیون: a. ضریب همبستگی رگرسیون NS

احتمال معنی‌داری در سطح 0/01

با بررسی روابط بین لگاریتم وزن کل ماهی و لگاریتم میزان بازدهی فیله، میزان ماهی خشک فیله، چربی و پروتئین در وزن خشک ماهی رابطهٔ رگرسیونی خطي وجود دارد. (P<0/05) این نتایج همجنسی نشان داد که از بین کل ماهی با میزان خاکستر و انرژی در وزن خشک فیله رابطه معنی‌داری وجود ندارد. این نتایج در جدول 8 نشان داده شده است.

در نتایج حاضر، روابط مستقل بوده و سنتی معنی‌دار بوده است.

شیب خط رگرسیون Y بعنوان فاکتور وابستهٔ (با توجه به تابع (A) می‌باشد. X نمود و Y به صورت لگاریتم در پایه 10 در معادلات بدون آمده، محاسبه می‌گردد. جهت نبندی این عدد به مقدار اصلی (B) ضریب همبستگی رگرسیون و

\[Y = bx + a \]

رابطه 1

\[b = 1.8 \]

رابطه 2

جدول 5: رابطهٔ بین ترکیب تقیبی، انرژی و بازدهی فیله با وزن کل در وزن خشک در ماهی کیور پروورشی

<table>
<thead>
<tr>
<th>اجزاء معادله</th>
<th>سطح معنی‌دار r²</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارامترهای فیله</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان ماهی خشک (درصد)</td>
<td>0/789</td>
<td>0/74</td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان چربی (درصد)</td>
<td>0/254</td>
<td>0/259</td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان پروتئین (درصد)</td>
<td>0/147</td>
<td>0/147</td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان خاکستر (درصد)</td>
<td>0/017</td>
<td>0/017</td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان انرژی (کیلوژول در 100 گرم)</td>
<td>0/058</td>
<td>0/058</td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان بازده فیله (درصد)</td>
<td>0/132</td>
<td>0/132</td>
<td></td>
</tr>
</tbody>
</table>

عدد نتایج: 6. شیب خط رگرسیون: a. ضریب همبستگی رگرسیون NS

احتمال معنی‌داری در سطح 0/01

در بیش از اندازه ماهی‌های انرژی‌دار بزرگ‌ترین سه شیمیایی آنها محققان ارائه گرفته‌اند. از آن‌ها مطرح کرده‌اند که یک افرادی آنها می‌توانند مرطوبیت، خاکستری و ارزو ماهی‌های انرژی‌دار را رطوبتی که آگهی به‌کار می‌برند. ولی در بخش‌های دیگر عناصر که از افرادی ماهی‌های انرژی‌دار بدن نمی‌باشند، در بخش‌های تکثیری می‌توانند برای ماهی‌های این بررسی و رزمایی قرار گرفتند (Ali et al., 2004; Ali et al., 2005). در نهایت ماهی‌های انرژی‌دار بدن از آزمایش در جستجوی نوعی شیمیایی مورد بررسی داشته می‌باشند.

در صورتی که از نوعی کرایه‌دار، دارای برداشت و تحقیقات در بخش‌های مربوط به فیله ماهی‌های کور مکمل آنها محققان، مطرح کرده‌اند که یک افرادی که از این انرژی‌دار بدن می‌باشند، در بخش‌های تکثیری می‌توانند برای ماهی‌های این بررسی و رزمایی قرار گرفتند (Ali et al., 2004; Ali et al., 2005). در نهایت ماهی‌های انرژی‌دار بدن از آزمایش در جستجوی نوعی شیمیایی مورد بررسی داشته می‌باشند.
تجربیات انجام شده خاکستر کل از انجام مورد سنجش قرار گرفته است. در حالتی افزایش خاکستر کل از انجام ماهی بیشتر (Shearer, 1994) تحت تأثیر فیزیکی کلیه ماهی می‌باشد.

شاید سبب نبودن دلایل استیت تایی تغییر ماهی به اثر بوده باشد. با توجه به اینکه ماهی فرشته گردیده که بیشتر از این ماهی و انجام افزایش ترکیب ترکیبی و داخل خاک آمیخته و جزئی از این ماهی در داخل خاک نیز رویایی و گروهی وجود دارد. که می‌توان از این طریق جهت تعیین میزان این اکثریت ماهی که در رودخانه ماهی تغییر که تنظیم می‌تواند رطوبت آت مقدار ناشی باشد مشخص می‌گردد. فاقد مانند فرآوردها و انجام مقاومت به عنوان یک اثر فاقد برای ماهی فرشته و منابع ماهی تنظیم می‌شود (Venugopal, 2006). بنابراین اگر ماهی به این نتایج یافته مشخص گردید که به افزایش اندام ماهی میزان رطوبت ماهی که از این ماهی انجام می‌پذیرد، پس از تنظیم کردن میزان رطوبت فاقد ماهی فرشته با دسته‌ای از جمله خاکستر ماهی فرشته که می‌توان از ترکیب درونی فرشته (مانند گونه‌های سالمات) به ان افزود. به ویژه علاوه بر افزایش میزان مجموعه فاصله می‌گردد. به همین اکثریت فرآوردها در محل ساختگی بهبود دردهای ماهی می‌باشد. نکته مهم در

به‌طور کلی مهارت بهبود و افزایش امور انسانی و از آن‌ها خارج

روش‌های دست‌بندی ماهی می‌باشد. که می‌تواند به روش دستی

یا با استفاده از دستگاه‌های پردازش. ماهی فرشته موجود برای

روش‌های دست‌بندی و ماهی دست‌بندی و کارایی ترکیب قابل

توجه نشان داده شده. در ماهی فرشته، نکته مهم در

تشکر و قدردانی

از کلیه اساتید و همکارانی که در گروه شیلات شرکت کرده‌اند، سپاسگزاری می‌نماییم.

منابع

انتشارات شرکت‌های تکنولوژی کیور و پروپرس ماهی‌های گرمایی

www.armabi.com

Sarvestan, 1386 خرداد 1386. Tکنولوژی فرشته‌های دیتابیس، دانشگاه تکنولوژی کیور و پروپرس.

تکنولوژی کیور و پروپرس.

روش‌های دست‌بندی و انجام افزایش، می‌توان از این طریق

میزان این اکثریت ماهی که در رودخانه ماهی تغییر که تنظیم می‌تواند رطوبت آت مقدار ناشی باشد مشخص می‌گردد. فاقد مانند فرآوردها و انجام مقاومت به عنوان یک اثر فاقد برای ماهی فرشته و منابع ماهی تنظیم می‌شود (Venugopal, 2006). بنابراین اگر ماهی به این نتایج یافته مشخص گردید که به افزایش اندام ماهی میزان رطوبت ماهی که از این ماهی انجام می‌پذیرد، پس از تنظیم کردن میزان رطوبت فاقد ماهی فرشته با دسته‌ای از جمله خاکستر ماهی فرشته که می‌توان از ترکیب درونی فرشته (مانند گونه‌های سالمات) به ان افزود. به ویژه علاوه بر افزایش میزان مجموعه فاصله می‌گردد. به همین اکثریت فرآوردها در محل ساختگی بهبود دردهای ماهی می‌باشد. نکте...

Bykowski P. and Dutkiewicz D., 2008. Freshwater fish processing equipment in small plants. FAO, Italy. 59P.

Kandemir S. and Polat N., 2007. Seasonal variation of total lipid total fatty acid in muscle liver of rainbow trout (Oncorhynchus mykiss) reared in Derbent dam lake. Turkish Journal of Fisheries Aquatic Sciences, 7:27-31.

Kheriji S., Cafsi M.E., Masmoudi W., Castell J.D. and Romdhane M.S., 2003. Salinity temperature effects on the lipid composition of mullet sea fry

Venugopal V., 2006. Sea food processing, adding value through quick freezing, retortable packaging cook-chilling. Taylor Francis Group Press. 485P.
Fillet quality grading of common carp (*Cyprinus carpio*)

by fish size using mathematical equations

Zolfaghari M.*; Shabanpour B.; Shabani A. and Ghorbani R.

zolfaghari.mz@gmail.com

Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, P.O.Box: 49138-15739 Gorgan, Iran

Received: November 2009 *Accepted: March 2010*

Keywords: Energy, Protein, Regression relationship, Common carp, *Cyprinus carpio*

Abstract

Quality grading and nutrition value determination of fish are nowadays necessary for aquatic processing. The present study was conducted to investigate a new, applied and cheap method of fillet quality grading for common carp (*Cyprinus carpio*) using fish size, based on mathematical equations. For this reason, 61 specimens of cultured market size carp were used and after filleting, their moisture, lipid, protein, energy and ash content were measured. Then, the relationships between proximate composition components of fillet and fillet length were studied. Results showed that there is an inverse linear regression relationship between logarithm of moisture content and logarithm of fish length (P<0.05). The results also showed that there is a positive linear regression relationship between logarithm of lipid and energy content and logarithm of fish length (P<0.05). No significant relationship was found between logarithm of fillet protein and ash content and logarithm of fish length (P>0.05). Regarding the relationship between proximate composition of cultured carp fillets and fillet length machine fish sorting based on fish length and grading of moisture, lipid and energy content is feasible. We also found it feasible to determine type of processing and proximate composition of the prepared common carp.

* Corresponding author