درجه بندی کیفیت فیله ماهی کپور معمولی (Cyprinus carpio) براساس اندازه ماهی: با استفاده از معادلات ریاضی

مهدي ذوالفقاری؛ بهاره شعبانیorous: علي شعبانی و رسول قرباني

zolfaghari.mz@gmail.com

دانشکده شیلات و محیطزیست دانشگاه علوم کشاورزی و منابع طبیعی گیلان، صندوق پستی: ۵۴۷۶-۱۵۲۳۸
تاریخ دریافت: آبان ۱۳۸۸
تاریخ پذیرش: اسفند ۱۳۸۸

چکیده

درجه بندی کیفیت و تعیین ارزش تغذیه‌ای ماهی از مباحث و نیزهای امروز صنعت فرآوری آبزیان می‌باشد. این تحقیق به منظور ارزیابی روشهای جدید، کاربردی و کم‌هزینه، برای درجه بندی کیفیت فیله ماهی کپور معمولی پرورشی (Cyprinus carpio) براساس اندازه ماهی و با استفاده از معادلات ریاضی انجام پذیرفته. بدین منظور ۶۱ عدد ماهی کپور پرورشی تهیه و پس از فیله کردن، مح合わوی رطوبت، جرمی، پروتئین، انرژی و خاکستر فیله آنها اندازه‌گیری شده و روابط بین اجزاء تركیب تقریبی فیله و طول کل ماهی مورد بررسی قرار گرفت. نتایج بدست آمده نشان داد که بین لگاریتم میزان رطوبت فیله و لگاریتم طول کل ماهی رابطه خطی معکوس وجود دارد (P<0.05). این نتایج به مهنین در نظر گرفته شده به بین لگاریتم مح合わوی جرمی، پروتئین و انرژی فیله با لگاریتم طول کل ماهی رابطه خطی مستقیم وجود دارد (P<0.05). بررسی رابطه بین لگاریتم مح合わوی خاکستر و پروتئین فیله با طول ماهی نشان داد که رابطه معنی‌داری بین آنها وجود ندارد (P>0.05). با توجه به اینکه وجود رابطه بین اجزاء تركیب تقریبی و طول کل ماهی کپور پرورشی دسترسی‌می‌باشد، این ماهی براساس طول با استفاده از دستگاه و درجه بندی میزان رطوبت، جرمی، پروتئین و انرژی با استفاده از معادلات بدست آمده در این تحقیق، جهت تعیین نوع فرآورده و مشخصات تركیب تقریبی این ماهی قابل انجام می‌باشد.

لغات کلیدی: انرژی، پروتئین، رابطه رگرسیونی، کپور معمولی

نویسنده مسئول:
درجه‌بندی کیفیت فیله‌ای ماهی کبور پیچیده‌براس اندام‌های ماهی با استفاده از...

مقدمه
ماهی کبور از مهم‌ترین ماهیان بروشی در بافت‌های غیرسالمی را پرورش می‌دهد. این ماهیان برای تولید یک محصول خوب و کیفیت و تولید ارزش افزوده نیاز به فراوری دارند (FAO, 2008). در زمینه تربیت ماهی، Pillay & Katty, 2005، نشان دادند که برای بهینه‌سازی بهداشت و سلامت ماهی، نیاز به فراوری آن هست. 

سالمانی، 2001 و Shearer, 1994 نشان دادند که استفاده از مخلوط ماهی برای تربیت ماهی و عوامل مختلف تربیت ماهی، به بهره‌برداری بهتر و بهبود کیفیت ماهی که در درجه‌بندی آن به کمک تربیت ماهی کبور در داده می‌شود. 

مناسب‌ترین جهت فراوری همیشه دارد (Almados, 2003). با توجه به اینکه کیفیت ماهی پس از عصر (Huss, 1995) به‌طور قابل توجهی تغییر می‌کند، نیاز به تغییرات در تربیت و فرآیندهای اهمیت دارد. 

با توجه به اینکه کیفیت ماهی پس از عصر (Huss, 1995) به‌طور قابل توجهی تغییر می‌کند، نیاز به تغییرات در تربیت و فرآیندهای اهمیت دارد. 

مایه‌ای با Q آماده می‌شود (Stepanowska, 1999) و تاکنون تغییرات متفاوت در تربیت و فرآیندهای پیش‌بینی می‌شود. 

مواد و روش کار

16 عدد ماهی کبور در زاویه‌های مختلف در سه و ششگزار گلستن به‌طور همزمان در سه و شش‌گزار گلستن به‌طور همز만
محاسبه ترکیب تقیبی لاغری بر اساس وزن خشک جهت محاسبه ترکیب تقیبی لاغری بر اساس وزن خشک جهت محاسبه با خطای بالایی همراه است و باید آن را براساس وزن تر محاسبه کرده، بنابراین در این پژوهش ترکیب تقیبی فیله بر اساس وزن تر محاسبه شد. در تحقیق حاضر طول ماهی مورد تأکید بیشتری قرار گرفته و روابط و معادلات جهت تعیین پهنگ در قابل نمو درجهای مربوطه ارائه شده است. اما در مواردی که دستنه‌ی بر اساس وزن ماهی مد نظر باشد، معادلات مربوطه در جداول ارائه شده است.

با توجه به اینکه ماهی کپور پورشی عرضه شده به بازار برحسب سه گروه ورنی کمتر از 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000 12500 13000 13500 14000 14500 15000 15500 16000 16500 17000 17500 18000 18500 19000 19500 20000 20500 21000 21500 22000 22500 23000 23500 24000 24500 25000 25500 26000 26500 27000 27500 28000 28500 29000 29500 30000 30500 31000 31500 32000 32500 33000 33500 34000 34500 35000 35500 36000 36500 37000 37500 38000 38500 39000 39500 40000 40500 41000 41500 42000 42500 43000 43500 44000 44500 45000 45500 46000 46500 47000 47500 48000 48500 49000 49500 50000 50500 51000 51500 52000 52500 53000 53500 54000 54500 55000 55500 56000 56500 57000 57500 58000 58500 59000 59500 60000 60500 61000 61500 62000 62500 63000 63500 64000 64500 65000 65500 66000 66500 67000 67500 68000 68500 69000 69500 70000 70500 71000 71500 72000 72500 73000 73500 74000 74500 75000 75500 76000 76500 77000 77500 78000 78500 79000 79500 80000 80500 81000 81500 82000 82500 83000 83500 84000 84500 85000 85500 86000 86500 87000 87500 88000 88500 89000 89500 90000 90500 91000 91500 92000 92500 93000 93500 94000 94500 95000 95500 96000 96500 97000 97500 98000 98500 99000 99500 100000

نتایج

نتایج بیشترین و کمترین میزان براده فیله، رطوبت، چربی، پروتئین، خاکستر و انرژی فیله ماهی کپور در جدول 1 نشان داده شده است.

جدول 1: محصولات میزان اجزاء ترکیب تقیبی، انرژی و براده فیله ماهی کپور پورشی

<table>
<thead>
<tr>
<th>کمترین میزان (درصد)</th>
<th>بیشترین میزان (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>رطوبت فیله (درصد)</td>
<td>77/84</td>
</tr>
<tr>
<td>چربی فیله (درصد)</td>
<td>1/42</td>
</tr>
<tr>
<td>پروتئین فیله (درصد)</td>
<td>1/42</td>
</tr>
<tr>
<td>خاکستر فیله (درصد)</td>
<td>1/42</td>
</tr>
<tr>
<td>انرژی فیله (کیلوژول در 100 گرم)</td>
<td>37/53</td>
</tr>
<tr>
<td>براده فیله (درصد)</td>
<td>1/42</td>
</tr>
<tr>
<td>طول کاز ماهی (سانتیمتر)</td>
<td>29</td>
</tr>
</tbody>
</table>
نتایج ترکیبی فیله ماهی کپور معمولی براساس اندازه ماهی با استفاده از:

پرسری رابطه بین محتوای پروتئین فیله و طول کل ماهی کپور پرونده نشان داد که این بین دو میزان رابطه معنی‌داری وجود دارد (P<0.05). نتایج یک تحلیل آماری 2 گروهی (C و B) با کیفیت نقد عمینی داری تحلیل آماری گروه A با گروه B بیشتر از گروه B بود و گروه C با گروه B بیشتر از گروه C بود. میزان آنژیوژن فیله ماهی کپور با گروه A کمتر از گروه B و C بود و با گروه B بیشتر از گروه C بود. این نتایج با مبادل پیشنهاد به هم می‌باشد (P<0.05).

نتایج پرسری رابطه موجود بین طول کل ماهی و میزان رطوبت فیله در نمونه 1 نشان داده شده است. طبق این نتایج بین محتوای رطوبت فیله طول کل ماهی رابطه گرازیونی خطی وجود دارد (P<0.05). این نتایج در جدول 2 آمده است.

با توجه به نتایج بدست آمده بین این دو میزان طول کل ماهی با گروه اصلی میزان زیادی فیله، میزان خشک ماهی رابطه گرازیونی خطی مشابه دارد. این نتایج با نتایج پرسری رابطه بین میزان طول کل ماهی و میزان بروتئین فیله در ذهن می‌باشد (P<0.05). میزان آنژیوژن فیله بسیار کمتر از گروه B و C بود و با گروه C بیشتر از گروه B بود. این نتایج در جدول 2 آمده است. این نتایج با مبادل پیشنهاد به هم می‌باشد (P<0.05).

جدول 2: مقایسه ترکیبی و میزان آنژیوژن و بروتئین فیله ماهی کپور پرونده در میزان وزن مختلف (میلی‌گرم) (علت اختلاف معنی‌دار می‌باشد (P<0.05))

<table>
<thead>
<tr>
<th>P</th>
<th>بیشتر از 1000 گرم (طول بیشتر از 55 سانتی‌متر)</th>
<th>1000-1500 گرم (طول 55-60 سانتی‌متر)</th>
<th>1500-2000 گرم (طول 61-65 سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>محتوای رطوبت فیله (درصد)</td>
<td>81/5±0/1/8</td>
<td>81/5±0/1/8</td>
</tr>
<tr>
<td>(B)</td>
<td>محتوای آنژیوژن فیله (درصد)</td>
<td>17/5±0/1/20</td>
<td>17/5±0/1/20</td>
</tr>
<tr>
<td>(C)</td>
<td>محتوای بروتئین فیله (درصد)</td>
<td>2/2±0/1/1</td>
<td>2/2±0/1/1</td>
</tr>
<tr>
<td>(D)</td>
<td>محتوای خشک ماهی (درصد)</td>
<td>44/7±0/1/17</td>
<td>44/7±0/1/17</td>
</tr>
</tbody>
</table>

توجه کنید: در واقع، نتایج نشان می‌دهد که با افزایش وزن فیله، محتوای آنژیوژن، رطوبت و بروتئین فیله افزایش می‌یابد.

**میزان فیله (درصد):**

- میزان البته (درصد): 0/2±0/1/17
- میزان خشک ماهی (درصد): 44/7±0/1/17
- میزان آنژیوژن فیله (درصد): 44/7±0/1/17
- میزان بروتئین فیله (درصد): 44/7±0/1/17
نمودار ۱: رابطه طول کل ماهی و میزان رطوبت فیله در ماهی کبوتر پورورشی

نمودار ۲: رابطه طول کل ماهی و میزان چربی فیله در ماهی کبوتر پورورشی

نمودار ۳: رابطه طول کل ماهی و میزان پروتئین فیله در ماهی کبوتر پورورشی
نمودار 4: رابطه طول کل ماهی و میزان انرژی فیله در ماهی کپور پورورشی

نمودار 5: رابطه طول کل ماهی و میزان خاکستر فیله در ماهی کپور پورورشی

جدول 3: رابطه بین ترکیب نریان انرژی و بازدهی فیله با وزن کل ماهی در وزن ماهی در ماهی کپور پورورشی

<table>
<thead>
<tr>
<th>لگاریتم وزن کل ماهی (کرم)</th>
<th>پارامترهای فیله</th>
<th>a</th>
<th>b</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>لگاریتم رطوبت (درصد)</td>
<td></td>
<td>2/02</td>
<td>0/278</td>
<td>0/184</td>
</tr>
<tr>
<td>لگاریتم چربی (درصد)</td>
<td></td>
<td>2/27</td>
<td>0/277</td>
<td>0/184</td>
</tr>
<tr>
<td>لگاریتم پروتئین (درصد)</td>
<td></td>
<td>1/04</td>
<td>0/872</td>
<td>0/276</td>
</tr>
<tr>
<td>لگاریتم جامدات (درصد)</td>
<td></td>
<td>2/12</td>
<td>2/017</td>
<td>0/275</td>
</tr>
<tr>
<td>لگاریتم انرژی (کیلوژول در 100 گرم)</td>
<td></td>
<td>2/18</td>
<td>2/813</td>
<td>0/274</td>
</tr>
<tr>
<td>لگاریتم پیشرفت (درصد)</td>
<td></td>
<td>2/19</td>
<td>0/513</td>
<td>0/274</td>
</tr>
</tbody>
</table>

ملاحظه: NS: عدم معناداری در سطح 0/01. **: احتمال معناداری در سطح 0/01. ***: احتمال معناداری در سطح 0/001.
## جدول 4: رابطه بین ترکیب تقریبی اترزی و بازده فیله با طول کل در وزن خشک در ماهی کیور پورورشی

<table>
<thead>
<tr>
<th>اجزای معادله</th>
<th>r²</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>لگاریتم وزن کل ماهی (گرم)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان ماهه خشک (درصد)</td>
<td>0.874</td>
<td>0.060</td>
<td>0.053</td>
</tr>
<tr>
<td>لگاریتم میزان چربی (درصد)</td>
<td>0.824</td>
<td>0.020</td>
<td>0.047</td>
</tr>
<tr>
<td>لگاریتم میزان پروتئین (درصد)</td>
<td>0.744</td>
<td>0.030</td>
<td>0.024</td>
</tr>
<tr>
<td>لگاریتم میزان خاکستر</td>
<td>0.454</td>
<td>0.010</td>
<td>0.011</td>
</tr>
<tr>
<td>لگاریتم میزان اترزی (کیلوژول در 100 گرم)</td>
<td>0.414</td>
<td>0.000</td>
<td>0.003</td>
</tr>
</tbody>
</table>

### نتایج

- از داده‌های رابطه با سطح معنی‌داری در سطح 0.01
- **

## جدول 5: رابطه بین ترکیب تقریبی اترزی و بازده فیله با وزن کل در وزن خشک در ماهی کیور پورورشی

<table>
<thead>
<tr>
<th>اجزای معادله</th>
<th>r²</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>لگاریتم وزن کل ماهی (گرم)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>لگاریتم میزان ماهه خشک (درصد)</td>
<td>0.874</td>
<td>0.060</td>
<td>0.053</td>
</tr>
<tr>
<td>لگاریتم میزان چربی (درصد)</td>
<td>0.824</td>
<td>0.020</td>
<td>0.047</td>
</tr>
<tr>
<td>لگاریتم میزان پروتئین (درصد)</td>
<td>0.744</td>
<td>0.030</td>
<td>0.024</td>
</tr>
<tr>
<td>لگاریتم میزان خاکستر</td>
<td>0.454</td>
<td>0.010</td>
<td>0.011</td>
</tr>
<tr>
<td>لگاریتم میزان اترزی (کیلوژول در 100 گرم)</td>
<td>0.414</td>
<td>0.000</td>
<td>0.003</td>
</tr>
</tbody>
</table>

### نتایج

- از داده‌های رابطه با سطح معنی‌داری در سطح 0.01
- **

### رابطه

1. این رابطه به شکل آماری به صورت $Y = \frac{a}{b_X}$ مشاهده شد.
2. با توجه به نتایج، $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.
3. با توجه به نتایج داده‌های مربوط به $X$، $Y$ به صورت $X = aY$ مشاهده شد.
4. نتایج حاضر به‌عنوان میانگین نشان داد که بین $a$ و $b_X$ همبستگی قابل توجهی وجود دارد.
5. نتایج حاضر به‌عنوان میانگین نشان داد که بین $a$ و $b_X$ همبستگی قابل توجهی وجود دارد.

### شیب خط رگرسیون

- شیب خط رگرسیون $b_X$ با $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.

### نتیجه‌گیری

- با توجه به نتایج حاضر، رابطه بین $Y$ و $X$ به صورت $Y = \frac{a}{b_X}$ مشاهده شد که $a$ و $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی $X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.

### نتیجه‌گیری

- با توجه به نتایج حاضر، رابطه بین $Y$ و $X$ به صورت $Y = \frac{a}{b_X}$ مشاهده شد که $a$ و $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی $X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.

### نتیجه‌گیری

- با توجه به نتایج حاضر، رابطه بین $Y$ و $X$ به صورت $Y = \frac{a}{b_X}$ مشاهده شد که $a$ و $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی $X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.

### نتیجه‌گیری

- با توجه به نتایج حاضر، رابطه بین $Y$ و $X$ به صورت $Y = \frac{a}{b_X}$ مشاهده شد که $a$ و $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی $X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.

### نتیجه‌گیری

- با توجه به نتایج حاضر، رابطه بین $Y$ و $X$ به صورت $Y = \frac{a}{b_X}$ مشاهده شد که $a$ و $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی $X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.

### نتیجه‌گیری

- با توجه به نتایج حاضر، رابطه بین $Y$ و $X$ به صورت $Y = \frac{a}{b_X}$ مشاهده شد که $a$ و $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی $X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.

### نتیجه‌گیری

- با توجه به نتایج حاضر، رابطه بین $Y$ و $X$ به صورت $Y = \frac{a}{b_X}$ مشاهده شد که $a$ و $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی $X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.

### نتیجه‌گیری

- با توجه به نتایج حاضر، رابطه بین $Y$ و $X$ به صورت $Y = \frac{a}{b_X}$ مشاهده شد که $a$ و $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی $X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.

### نتیجه‌گیری

- با توجه به نتایج حاضر، رابطه بین $Y$ و $X$ به صورت $Y = \frac{a}{b_X}$ مشاهده شد که $a$ و $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی $X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.

### نتیجه‌گیری

- با توجه به نتایج حاضر، رابطه بین $Y$ و $X$ به صورت $Y = \frac{a}{b_X}$ مشاهده شد که $a$ و $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی $X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.

### نتیجه‌گیری

- با توجه به نتایج حاضر، رابطه بین $Y$ و $X$ به صورت $Y = \frac{a}{b_X}$ مشاهده شد که $a$ و $b_X$ به عنوان فاکتور مؤثر در بلوک‌سازی $Y$ به عنوان فاکتور مؤثر در بلوک‌سازی $X$ به عنوان فاکتور مؤثر در بلوک‌سازی می‌باشد.
دانلود کتاب فیله ماهی کپور معمولی برای مبارزه با اندازه ماهی با استفاده از...

بحث

در بیش از اندازه ماهی بدن بر ترکیب شیمیایی آنها محققت نمایان می‌کند که باید افزایش اندازه ماهی معرفی نماید. برای این، می‌توان به دو دسته از برخی از پرورش و رشد ماهی تقسیم نمود:

1. رشد ماهی (زیر رشد ماهی بدن بر ترکیب شیمیایی آنها)
2. ترکیب شیمیایی آنها (زیر ترکیب شیمیایی بدن بر ترکیب شیمیایی آنها)

در این بحث، به توصیف بیانات مربوط به ترکیب شیمیایی آنها و محققت نظرات متفاوتی را ارزش دادهاند. اگرچه برخی از آنها محققت کرده‌اند که باید افزایش اندازه ماهی معرفی نمایند، اما برخی دیگر از آنها از این نظرات متفاوتی را در نظر می‌گیرند. در این بحث، به توصیف بیانات مربوط به ترکیب شیمیایی آنها و محققت نظرات متفاوتی را ارزش دادهاند. اگرچه برخی از آنها محققت کرده‌اند که باید افزایش اندازه ماهی معرفی نمایند، اما برخی دیگر از آنها از این نظرات متفاوتی را در نظر می‌گیرند.

1. رشد ماهی (زیر رشد ماهی بدن بر ترکیب شیمیایی آنها)
2. ترکیب شیمیایی آنها (زیر ترکیب شیمیایی بدن بر ترکیب شیمیایی آنها)

در این بحث، به توصیف بیانات مربوط به ترکیب شیمیایی آنها و محققت نظرات متفاوتی را ارزش دادهاند. اگرچه برخی از آنها محققت کرده‌اند که باید افزایش اندازه ماهی معرفی نمایند، اما برخی دیگر از آنها از این نظرات متفاوتی را در نظر می‌گیرند. در این بحث، به توصیف بیانات مربوط به ترکیب شیمیایی آنها و محققت نظرات متفاوتی را ارزش دادهاند. اگرچه برخی از آنها محققت کرده‌اند که باید افزایش اندازه ماهی معرفی نمایند، اما برخی دیگر از آنها از این نظرات متفاوتی را در نظر می‌گیرند.

1. رشد ماهی (زیر رشد ماهی بدن بر ترکیب شیمیایی آنها)
2. ترکیب شیمیایی آنها (زیر ترکیب شیمیایی بدن بر ترکیب شیمیایی آنها)

در این بحث، به توصیف بیانات مربوط به ترکیب شیمیایی آنها و محققت نظرات متفاوتی را ارزش دادهاند. اگرچه برخی از آنها محققت کرده‌اند که باید افزایش اندازه ماهی معرفی نمایند، اما برخی دیگر از آنها از این نظرات متفاوتی را در نظر می‌گیرند. در این بحث، به توصیف بیانات مربوط به ترکیب شیمیایی آنها و محققت نظرات متفاوتی را ارزش دادهاند. اگرچه برخی از آنها محققت کرده‌اند که باید افزایش اندازه ماهی معرفی نمایند، اما برخی دیگر از آنها از این نظرات متفاوتی را در نظر می‌گیرند.

1. رشد ماهی (زیر رشد ماهی بدن بر ترکیب شیمیایی آنها)
2. ترکیب شیمیایی آنها (زیر ترکیب شیمیایی بدن بر ترکیب شیمیایی آنها)

در این بحث، به توصیف بیانات مربوط به ترکیب شیمیایی آنها و محققت نظرات متفاوتی را ارزش دادهاند. اگرچه برخی از آنها محققت کرده‌اند که باید افزایش اندازه ماهی معرفی نمایند، اما برخی دیگر از آنها از این نظرات متفاوتی را در نظر می‌گیرند. در این بحث، به توصیف بیانات مربوط به ترکیب شیمیایی آنها و محققت نظرات متفاوتی را ارزش دادهاند. اگرچه برخی از آنها محققت کرده‌اند که باید افزایش اندازه ماهی معرفی نمایند، اما برخی دیگر از آنها از این نظرات متفاوتی را در نظر می‌گیرند. در این بحث، به توصیف بیانات مربوط به ترکیب شیمیایی آنها و محققت نظرات متفاوتی را ارزش دادهاند. اگرچه برخی از آنها محققت کرده‌اند که باید افزایش اندازه ماهی معرفی نمایند، اما برخی دیگر از آنها از این نظرات متفاوتی را در نظر می‌گیرند.
تحقیقات انجام شده در استان خاکستر کل، از آنگاه ماهی مورد سنجش قرار گرفت. این جوامع از پیامدهای استفاده کلیه ماهی‌ها در این زونه بلای سیستم‌های اقتصادی ماهی‌خوارگان در شیلات ایران و تغییرات آن در همه جهات بهبود می‌یابد (Shearer, 1994).

شاید از نظر نظری تحقیقات را در ادامه تعدادی از این ماهی‌ها بررسی کنیم. ماهی‌های این بخش در زمینه‌های مختلفی وجود دارند و تاکنون در این بخش تاعدید شده‌اند. این جوامع از پیامدهای استفاده کلیه ماهی‌ها در شیلات ایران و تغییرات آن در همه جهات بهبود می‌یابد (Shearer, 1994).

شاید از نظر نظری تحقیقات را در ادامه تعدادی از این ماهی‌ها بررسی کنیم. ماهی‌های این بخش در زمینه‌های مختلفی وجود دارند و تاکنون در این بخش تاعدید شده‌اند. این جوامع از پیامدهای استفاده کلیه ماهی‌ها در شیلات ایران و تغییرات آن در همه جهات بهبود می‌یابد (Shearer, 1994).

شاید از نظر نظری تحقیقات را در ادامه تعدادی از این ماهی‌ها بررسی کنیم. ماهی‌های این بخش در زمینه‌های مختلفی وجود دارند و تاکنون در این بخش تاعدید شده‌اند. این جوامع از پیامدهای استفاده کلیه ماهی‌ها در شیلات ایران و تغییرات آن در همه جهات بهبود می‌یابد (Shearer, 1994).

شاید از نظر نظری تحقیقات را در ادامه تعدادی از این ماهی‌ها بررسی کنیم. ماهی‌های این بخش در زمینه‌های مختلفی وجود دارند و تاکنون در این بخش تاعدید شده‌اند. این جوامع از پیامدهای استفاده کلیه ماهی‌ها در شیلات ایران و تغییرات آن در همه جهات بهبود می‌یابد (Shearer, 1994).


Bykowski P. and Dutkiewicz D., 2008. Freshwater fish processing equipment in small plants. FAO, Italy. 59P.


Kandemir S. and Polat N., 2007. Seasonal variation of total lipid total fatty acid in muscle liver of rainbow trout (Oncorhynchus mykiss) reared in Derbent dam lake. Turkish Journal of Fisheries Aquatic Sciences, 7:27-31.

Venugopali V., 2006. Sea fish processing, adding value through quick freezing, retortable packaging cook-chilling. Taylor Francis Group Press. 485P.
Fillet quality grading of common carp (*Cyprinus carpio*)
by fish size using mathematical equations

Zolfaghari M.†; Shabanpour B.; Shabani A. and Ghorbani R.

zolfaghari.mz@gmail.com

Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and
Natural Resources, P.O.Box: 49138-15739 Gorgan, Iran
Received: November 2009 °Accepted: March 2010°

Keywords: Energy, Protein, Regression relationship, Common carp, *Cyprinus carpio*

**Abstract**

Quality grading and nutrition value determination of fish are nowadays necessary for aquatic processing. The present study was conducted to investigate a new, applied and cheap method of fillet quality grading for common carp (*Cyprinus carpio*) using fish size, based on mathematical equations. For this reason, 61 specimens of cultured market size carp were used and after filleting, their moisture, lipid, protein, energy and ash content were measured. Then, the relationships between proximate composition components of fillet and fillet length were studied. Results showed that there is an inverse linear regression relationship between logarithm of moisture content and logarithm of fish length (P<0.05). The results also showed that there is a positive linear regression relationship between logarithm of lipid and energy content and logarithm of fish length (P<0.05). No significant relationship was found between logarithm of fillet protein and ash content and logarithm of fish length (P>0.05). Regarding the relationship between proximate composition of cultured carp fillets and fillet length machine fish sorting based on fish length and grading of moisture, lipid and energy content is feasible. We also found it feasible to determine type of processing and proximate composition of the prepared common carp.

† Corresponding author