اثر محرومیت غذايی و غذاده‌بی مجدد بر هورمون‌های تیروئیدی و عملکرد رشد در (Oncorhynchus mykiss) ماهی قزل‌آلا‌ی رنگین کمان

روش‌های حیاتی: ۱) مهرداد فرمنکی(۱); ۲) مهرداد فرمنکی(۱); ۳) فاطمه رضایی(۱)

علی صدوق قریشی(۲) و محمد رضا کریمی(۳)

r_rahimi6083@yahoo.com

1 و ۵ - دانشکده علوم دریایی دانشگاه دیوان‌نوری و علوم دریایی چابهار
2 و ۳ - دانشکده منابع طبیعی دانشگاه تهران، کرخ صندوق پستی: ۴۱۱۱۱
4 - پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، اهواز، تهران
6 - دانشگاه منابع طبیعی، دانشگاه صنعتی اصفهان، صندوق پستی:۸۱۸۶-۸۳۲۱۱

تاريخ دریافت: دی ۱۳۸۸

چکیده

در این تحقیق اثر چهار رژیم غذایی بر غذاده‌بی مجدد هورمون‌های تیروئیدی (T3 و T4) عملکرد رشد و کارآیی تبدیل غذايی در قابل ۴ تیمار در زمینه تام سال ۱۳۸۵ مورد بررسی قرار گرفت. در این تحقیق از نمونه‌های ماهی قزل‌آلا‌ی رنگین کمان در هرم واحده پروپورشی با میانگین وزنی ۲۵±۰۴ و ۱۴۸±۲۴ میلی‌گرم استفاده گردید. تیمار A: شاهد، با غذاهی مکملی پذیرش نکرد. تیمار B: هفت هفته غذاده‌بی مجدد، تیمار C: هفت هفته غذاده‌بی بی‌ماد، تیمار D: هفت هفته غذاده‌بی مجدد، غذاده‌بی در حد سه‌روی و دو بار در روز صحبت پذیرفت. شاخص‌های مختلف از جمله هورمون‌های تیروئیدی (T3 و T4) ضریب رشد و وزه، ضریب تبدیل غذایی و درصد مصرف غذا در وزنه اندام‌گیری تهیه شدند. نمونه‌برداری خون جهت اندازه‌گیری هورمون‌های تیروئیدی در انتهای آزمایش و انتهای گروه غذاده‌بی و هر ۱۲ روز یکبار انجام شد. در بررسی ضریب رشد و وزه پیشین میزان مطلق به تیمارها C و B بود که این دو تیمار با سایر تیمارها روز یکبار انجام شد. در بررسی ضریب رشد و وزه پیشین میزان مطلق به تیمارها C و B بود که این دو تیمار با سایر تیمارها روز یکبار اندازه‌گیری و در مقایسه با تیمارهای گروه C و B نیز به نتایج خاصی بهبود یافت. از این نتایج به تیمارهای سیر افزایشی داشت. همچنین هورمون‌های T3 و T4 پلاسمای در انتهای دوران گروه‌بندی کمتر از گروه شاهد بود (P<0.01). اما در دوران غذاده‌بی مجدد کلی تغییرات در تیمارها سیر افزایشی داشت. همچنین هورمون‌های T3 و T4 بیشتر در انتهای دوران گروه‌بندی کمتر از گروه شاهد بود (P<0.01).
مقدمه

یکی از شیوه‌های غذایی استفاده از رژیم‌های محرومیت غذایی و غذاهای مجدد است که می‌تواند منجر به ایجاد فرانکی‌بی به نام رشد جبرانی (Compensatory Growth. شد. رشد جبرانی نتیجه رشد سریع سیس از گروه‌نام دومهی از کاهش رشد است که نتیجه Ali et al., Dobson & Holmes, 1984 محروم‌گذاری غذایی است (Nikki et al., 2003). و وجود رشد جبرانی در دامنه وسیعی می‌تواند داشته باشد. بنابراین می‌توانست از پرورشگاه‌های خود MacKenzie et al., Yambayambaya et al., 1996 مطالعات بیشتری برای مطالعه رشد جبرانی یک چگونه باشد. رشد جبرانی نشان می‌دهد. همچنین کمپون‌های ارزیابی فراخوان رشد جبرانی را از عناصر فیتوپلیک از جمله و طول مسیر نگهداشته می‌باشد (Gaylord & Gatlin III, 2001, 2004). کاهش هزینه‌های جایی در صنعت آب‌پوری از طریق افزایش کارایی تغییری، افزایش ضریب رشد و پرورش‌جویی در میزان غله؛ Gaylord et al., 2001; Quinton & Blake, 1990). مطالعاتی رابطه با فراخوان رشد بر روی ماهی غذایی این ارزیابی تیمارهای مختلف محرومیت غذایی و رشد جبرانی با اندازه‌گیری محروم‌گذاری پرداخته شود.

مواد و روش کار

ماهیان قزل‌آلای رنگین یکی از کناره‌های قزل‌آلای است. در این مطالعه از مزرعه پرورشی معمول واقع در کرخ تهیه و به کار گرفته گروهی تهیه‌سازی واقع در اصفهان، محصول بندی طبیعی انتخاب شده که در ماهی‌زایی آب‌پوری ماهیان به شرایط جدید، 2 هفته می‌توانند، سپس مقیاس‌بندی طبق نرخ، نژادی 100:50 و 4/15:41/45. با حجم 60/23/42 گرم و تعداد 22 مدی بر هر نرخ آماده آب‌پوری از طریق دوره آزمایشات. 9 هفته به طول اتمامی بیش از انجام آزمایش و یک سیستم نظام داده بوده که شامل 12 تکه نازک معادل بوده و بر حسب 140 لنبر هوا می‌باشد. که شامل 12 تکه نازک معادل بوده، 40/1 لیتر هوا می‌باشد. که شامل 12 تکه نازک معادل بوده، 40/1 لیتر هوا می‌باشد. که شامل 12 تکه نازک معادل بوده، 40/1 لیتر هوا می‌باشد.

این آزمایش در قسیم یک طرح کاملاً تصادفی شامل 4 تجارب و 3 تکه انجام گرفته. تیمارهای آزمایش شامل 4 جدول پرداخته است که در شکل 1 و جدول 2 آتات شده است.

ارث محرومیت غذایی و غذاهای مجدد بر محروم‌گذاری تیمار و عملکرد رشد در... رحمي و همکاران

[DOI: 10.22092/ISFJ.2017.110282]
جدول 2: ریزه‌های غذایی بکار رفته در این مطالعه

<table>
<thead>
<tr>
<th>ریزه‌های غذایی</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>غذاهای در حد انتها (36 هفته)</td>
<td>A</td>
</tr>
<tr>
<td>4 هفته گردشگری 5 هفته غذاهای در حد انتها</td>
<td>B</td>
</tr>
<tr>
<td>3 هفته گردشگری 5 هفته غذاهای در حد انتها</td>
<td>C</td>
</tr>
<tr>
<td>2 هفته گردشگری 5 هفته غذاهای در حد انتها</td>
<td>D</td>
</tr>
</tbody>
</table>

شاخ‌های ضرب وراثه (FCR) (Strain of Farhangi & Carter, 2000),

\[
SGR = \left(\frac{\log W_2 - \log W_1}{t} \right) \times 100
\]

FCR = گذشتگی / گذشتگی سال / گذشتگی سال

\[
%FI = \frac{\text{گذشتگی}}{\text{گذشتگی}} \times 100
\]

که در آن W1 ون وزن اولیه، W2 وزن نهایی و T دو دوره زمانی می‌باشد.

نمونه‌برداری برای خون‌گیری در این‌راستای آزمایش، انرژی گردشگری و پس از آن 12 روز یکبار به‌صورت کامل‌النصابی
 Chilemi و همکاران

رایدو ایمنونویسی و کیته‌ای انداره‌گیری انسانی صورت گرفت (Vander Geyten et al., 1998) به منظور بررسی نرمال بودن داده‌ها از آزمون کولموگروف - لکس arcsin ن‌استفاده شد. کلمه Dاده‌های درصدی بصورت X تبدیل شدند. از نتایج واریانس یکطرفه برای مقایسه واریانس بین تیمارها و آزمون Tukey's multiple range test بررسی و یا عدم وجود اختلاف معنی‌دار بین میانگین تیمارها استفاده شد. به منظور بررسی اثر متغیرهای هماً از آزمون Minitab در نرم‌افزار 13 استفاده گردید. نرم‌نرم Excel نیز در نرم‌افزار انجام گرفت.

نتایج

نتایج مربوط به وزن پس از گرستگی، وزن نهایی (FW) ضریب رشد وزن (SGR)، نرخ بقا (S)، ضریب تبدیل غذا (FCR) و درصد مصرف غذای روزانه (PI) در جدول ۲ آمده است.

| جدول ۲: نتایج مربوط به شاخص‌های رشد و تغذیه (میانگین±انحراف معیار) |
|---|---|---|---|---|
| | A | B | C | D |
| p | | | | |
| 0.05 | 1/15±0.23 | 1/13±0.27 | 1/17±0.28 | 1/18±0.29 |
| 0.01 | 2/15±0.22 | 2/14±0.25 | 2/16±0.27 | 2/17±0.28 |
| 0.001 | 3/16±0.21 | 3/15±0.25 | 3/17±0.29 | 3/18±0.29 |
| 0.000 | 4/17±0.24 | 4/16±0.28 | 4/18±0.29 | 4/19±0.30 |
| 0.001 | 5/18±0.27 | 5/17±0.31 | 5/19±0.32 | 5/20±0.32 |
| 0.000 | 6/19±0.30 | 6/18±0.33 | 6/20±0.34 | 6/21±0.34 |
| 0.001 | 7/20±0.33 | 7/21±0.35 | 7/22±0.35 | 7/23±0.35 |
| 0.000 | 8/21±0.36 | 8/22±0.37 | 8/23±0.37 | 8/24±0.38 |
| 0.000 | 9/22±0.39 | 9/23±0.40 | 9/24±0.40 | 9/25±0.41 |

* تفاوت‌های دو جامعه‌ای در نتایج وجود داشت. •
نمودار 1: روند تغییرات هورمون T_3 در طول آزمایش در تیمارهای مختلف (میانگین ± خطای معیار).

* $P < 0.05$، **$P < 0.01$ و ***$P < 0.001$ (است)

حرفه متغیر در نمودار نشان می‌دهد اختلاف معنی‌دار بین تیمارها در هر مقطع زمانی است.

تغییرات این هورمون در تیمارهای گرسنگی پس از انتقال دوران B گرسنگی رو به افزایش بود. روند افزایش T_3 با سرعت بالایی افزایش یافت. اما بین دو نمونه برداری دوم کمتری ایجاد شد (شاهد بود (1001000) (P). اما در نمونه برداری A کمتر از گروه T_3 پلاسمای T_3 بازگشت به بالاتر از گروه شاهد رشد و اختلاف معنی‌داری را نشان داد (P). ویلی بطور B یک تیمار با تیمار D اختلاف معنی‌دار نداشت. اما تیمار D با تیمار A اختلاف معنی‌داری کمر در نمونه برداری A کمتر از سایر نمونه‌ها بود. در روز پنجاه و سوم، تیمار D با سایر تیمارها اختلاف معنی‌داری را نشان دادند و C تیمار در نمونه برداری T_3 پلاسمای T_3 این اختلاف معنی‌داری را نشان دادند.

با توجه به نمودار 2 مشاهده می‌شود که در تیمارهای T_3 نمونه برداری به دلیل زیاد کاهش T_3 در مقایسه با تیمار A (شاهد) بطور معنی‌داری کمتر بود (P). اما تیمار گوردون هیچ‌گونه اختلاف معنی‌داری مشاهده نشد. در نمونه برداری به دلیل زیاد کاهش T_3 از تیمارها اختلاف معنی‌داری وجود نداشت (P). روند تغییرات هورمون T_3 پلاسمای T_3 در دو دوران غذاهای مجدد دوز این هورمون در تیمارهای گرسنگی رو به افزایش است.
بیان
نتایج حاصل از مطالعه حاضر نشان داد که میزان ضربه رشد ویژه در تیمارهای با سابقه گرسنگی بیشتر از گروه شاهد بوده است. اما مقایسه ضربه رشد ویژه بین تیمارهای با سابقه مصرف غذایی نشان می‌دهد که سرعت رشد در طول دوران گیاهی مجدد از گروه‌های ۳ و ۴ هفتگی مصرف گرسنگی نسبت به ۲ هفتگی بیشتر بوده است. نتایج حاصل از تاثیر گرسنگی بر سرعت رشد در این تحقیق با نتایج برخی مطالعات محققان در گذشته مطابقت دارد (Quinton & Black, 1990) و با برخی مطالعات (Weber & Bosworth, 2005) عنوان این نتاوی‌ها در مطالعات می‌توانند نشان‌دهنده اثر گرسنگی باشد (Jobling &). شدت سوء تغذیه با شرایط آزمایشی باشد (Koskela, 1996) رشد سبز پس از گزارشات دوچرخه مصرف غذایی بستگی به میزان سبزی، رشد قبلاً افزایش در میزان سبزی، رشد قبلاً افزایش در مقایسه با تیمار شاهد می‌تواند جنگل بند درآید را رشد جریان گیاهی (2001; Zhu et al., 2001; Tian & Qin, 2003; Nikki et al., 2004). می‌توان نتیجه گیری کرد که افزایش سرعت رشد بعنوان یکی از اهمیت‌های رشد گیاهی در این مطالعه مشاهده می‌گردد.
سال توزیع / شماره ۱ / بهار ۱۳۸۹

�ジェ علیه شیلات ایران

امست. اما در دوران غذاخوری مجدد در ماهیان سیاهگلی گرسنگی روند افزایشی بوده است. اثر ویژه تغذیه رباتیک و میکروپلاگیسوم هورمون‌های خواص گیرنده در ماهیان بیرونی بیشتر مورد تحقیقات قرار گرفته‌اند. در ماهیان گرسنگی کامل به ترو و تک ماهی جوان است (O’Mara et al., 1993).

در دوران الکترونی از محرومیت غذاخوری منجر به کاهش ترو در جوجه و ماهی شده است. در عضله گیاهی به ترو و تک ترو کاهش ترو در جوجه گیاهی بایستد و در ماهی بدن تغییر باقیمانده است (Darras et al., 1998). تغییرات در ترو قابلیت گیاهی می‌تواند ترو تک کاهش‌های غذایی باعث آسیب باشد. در این مورد، ترو مجدد مجدداً در جوجه گیاهی بایستد و در ماهی بدن تغییر باقیمانده است (Van Der Geyten et al., 1998).

تورگان و بالاپنا (Leatherland & Farbridge, 1992) محرومیت غذاخوری منجر به کاهش غلظتگذاری و T۴ می‌شود. اگر T۴ به کمترین میزان خود شد و هورمون T۳ نیز کاهش یافته باشد، ماهیان غذاخوری غذایی می‌توانند مجدداً باعث آسیب باشد. در این مورد، T۴ و T۳ دو ماهی موجود بوده است (Jobling & Wansvik, 1983).

یکی از شناخته‌های رشت جبایی (2001) از ارتباط مصرف غذا در نرمگیری رشد و بهبود (Gaylord & Gatlin III, 2001) نوعی است. این تحقیق نشان داده که غذاخوری محرومیت به کاهش ترو و T۴ و T۳ نارمال می‌شود. این تغییرات مجدد کاسه گیاهی و T۳ دو ماهی موجود بوده است (Gaylord & Gatlin III, 2001).

نتایج روند تغییرات هورمون T۴ در طول آزمایش نشان داد که گرسنگی موجب کاهش این هورمون شده است. اما در ماهیان غذاخوری مجدد روند کلی تغییرات در تیمار گرسنگی افزایشی بوده است. این روند افزایش برای تیمارهای C (۴ هفته گرسنگی) و D (۲ هفته گرسنگی) بوده است. اما روند در کلی تغییرات برای B (۴ هفته گرسنگی) کمک بوده است. این روند کلی تغییرات هورمون T۴ در طول آزمایش مثبتی نشان داد که هورمون T۴ پلاسمای نشان داد که هورمون گرما در طول آزمایش کمتر از گروه شاهد بوده و
انرژی دریافتی بیشتری سرشار فعالیت‌های آبی‌لوکی بدن می‌شود. این تغییرات ناشان می‌دهد که هورمون‌های تیروئیدی در دیده رشد جریانی دلخو هستند. اما هورمون‌های تیروئیدی نمی‌توانند به‌طور کلی ناهنجاری‌هایی را برجاری بین تنها باعث افزایش یا کاهش چربی‌زایی دنی در تنها مالیات‌های مختلف. همچنین تنها تیمارهای بالا رشد سریعتر و مصرف غذایی بیشتری را مشاهده کرد. اما ناهنجاری‌های مصرف غذا و سیگار به‌عنوان عامل بیشتری شاخص‌های کاهش هسته‌گنگی به‌عنوان می‌باشد.

با توجه به نتایج حاصل‌شده می‌شود مطالعات آتی در این عرصه از تحقیق به سیاکوکالیون دیور رب دخالت در رشد پرداخته شود تا ناهنجاری‌های فیزیولوژیکی جهت ازابی بسیاری رشد جریانی شاخص‌های شور.

تشکر و قدردانی

بر خود لازم دانستن از آقایان دکتر تورج ولی‌نسب، مهندس سید حاجی رضایی مهندس مجدبختیاری و مهندس احمد امینی که ما در انجام این تحقیق و گزارش مقاله باری کردن، تشکر و قدردانی نمایم.

منابع

حسینی نجدرد، ا.؛ منافی‌فرد، ر.; مشکینی، س. و سلیمی، ب.، 1388. «بررسی تاثیر تغذیه اولیه بر رشد وارو نورس فزل آرای نگین کمان (Oncorhynchus mykiss)»، نشریه علمی انجمن تربیت علمی، شماره 2، پیام و تمام‌پهلوان، 1386، صفحات 487-486:

صفحه 1.

سفری، ا.; بلادجی ف.; حاجی مرادی، ع.; عیضایی، ف. و علامه، س. ک.، 1386. تاثیر جایگزینی کننده کالسیوم، آرد ماهی بر رشد، جریان عصبی و هورمون‌های تیروئیدی در جیره فزل آرای نگین کمان (Oncorhynchus mykiss) مجله علمی کشاورزی و منابع طبیعی گرگان، آذر ماه 1386، شماره 15، صفحات 119 تا 112.

علی‌萎缩الله، م.؛ عابدیان، ع. و رضایی، م.، 1387. اثر استفاده از آرد گاماسور در دیکی و روغن‌دانی اعضا مکمل غذا بر رشد و تغییر آرسال ماهی فزل آرای نگین کمان مجله زوئه و پزشکی سازمانی: (Oncorhynchus mykiss) زمستان 1386، شماره 30، صفحات 119 تا 123.

Leatherland J.F. and Farbridge K.J., 1992. Chronic fasting reduces the response of the thyroid to growth hormone and TSH, and alters the growth hormone related changes in hepatic 50-monodeiodinase activity in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 87:342-353.

Temporal pattern in growth, nutrient deposition, feed intake and body composition.

Effect of fasting and re-feeding on thyroidal hormone concentrations and growth performance of Rainbow trout (Oncorhynchus mykiss)

Rahimi R. (1)*; Farhangi M. (2); Mojazi Amiri B. (3); Rezaie F. (4); Sadough Nirri A. (5) and Karimi M.R. (6)

1, 5- Faculty of Marine Sciences, Chabahar Maritime and Marine Sciences University, Chabahar, Iran
2, 3- Faculty of Natural Resources, Tehran University, P.O.Box: 31585-4314, Karaj, Iran
4- Environmental Science Research Institute, Shahid Beheshti University, Tehran, Iran
6- Faculty of Natural Resources, Isfahan University of Technology, P.O.Box: 84156-83111 Isfahan, Iran

Received: January 2010 Accepted: May 2010

Keywords: Rainbow Trout, Compensatory growth, T₃, T₄, Special Growth Rate, Food Coefficient Ratio

Abstract

The aim of this study was to show the effect of four feeding regimes on thyroid hormones concentrations, growth performance and food coefficient in Rainbow Trout applied through 4 treatments and 3 replications in winter 2006. In this research, samples of rainbow trout with an initial mean weight (SD) 47.19±0.42 used in each rearing unite. Fish were fed twice a day ad libitum as follows: Treatment A (TA): which was the control treatment; Continues feeding, Treatment B (TB): 4 weeks of starvation and 5 weeks of re-feeding, Treatment C (TC): 3 weeks of starvation and 5 weeks of re-feeding, and Treatment D (TD): 2 weeks of starvation and 5 weeks of re-feeding. Indexes like food coefficient ratio (FCR), specific growth rate (SGR), daily food intake and thyroid hormones (T₃, T₄) were also examined during the experiment. Blood samples were taken for thyroid hormones concentration at the beginning of the experiment and at the end of the starvation and every 12 days in re-feeding periods. TB and TC had significant difference (P<0.01) in comparison with other treatments in SGR but no significant difference were observed between TB and TC (P>0.05). There were no significant differences between the treatments in FCR (P>0.05). T₃ concentration came down in comparison with the control treatment at the end of the starvation (day 29) (P<0.001) but increased in the re-feeding periods. T₄ concentrations of fasting groups were lower than the control group at the end of fasting periods (P<0.05), but T₄ trend in re-feeding periods increased. According to the results, different treatments of feeding regimes could affect the thyroid hormones concentrations. Fasting periods reduced and re-feeding periods increased thyroid hormones concentrations. TB and TC showed more indexes of CG in comparison with TA and TD. We concluded that thyroid hormones alone are enough to assess CG and we suggest to use other growth relating physiological elements in different feeding diets and regimes in future studies to complete the evaluation.

* Corresponding author