بررسی رفتار تغذیهای لارو ماهی شانک زردباله (Acanthopagrus latus) در تغذیه با غذای زنده و خوراک میکروکیسوله بهزاد سروی*؛ عباس متین فر**؛ همایون محمودزاده***؛ غلامرضا اسکندری(****) و باقر علیخانی ابراهیم(*****)

Sarvi2613@yahoo.com

1 و 5- واحد علم و اجرای تحقیقات تغذیه، دانشگاه آزاد اسلامی، تهران صندوق پستی: 14810-1111-14100-4350
2- موسسه تحقیقات شیلات ایران، تهران صندوق پستی: 14810-1111-14100-4350
3- گروه بهداشت و تغذیه دام و طیور، دانشگاه دامپزشکی دانشگاه تهران صندوق پستی: 14810-1111-14100-4350
4- مرکز تحقیقات آبزی پروری جنوب کشور، اهواز صندوق پستی: 14810-1111-14100-4350

تاریخ دریافت: دی 1388
تاریخ پذیرش: فروردین 1389

چکیده
در این تحقیق رفتار تغذیه‌ای لاروی‌های شانک زرد باله از آغاز تغذیه فعال به نسبت‌های مختلف غذای زنده و خوراک میکروکیسوله به‌مدت یک هفته روز مورد مطالعه قرار گرفت. میزان مصرف غذا تبدیل به افزایش وزن لاروها افزایش یافت. بررسی مقایسه‌های زیر میکروکیسوله نیروی نشان داد که لاروها شانک زردباله قادر به بلع و هضم خوراک میکروکیسوله استفاده‌شده در این آزمایش از آغاز تغذیه فعال بودند. با مقایسه میانگین میزان بلع لاروها از غذای زنده و خوراک میکروکیسوله در تیمارهایی که فقط این دو ماده غذایی جهت پرورش لاروها استفاده‌شده بود، اختلاف معنی‌داری یافت نشد (P<0.05). نتایج این مطالعه نشان داد که تاکنون لاروها به‌مدت از غذای زنده و خوراک میکروکیسوله هنگام تغذیه هم میزان، تابع میزان حضور غذای زنده در تیمارهای پرورش لاروها می‌باشد. اولویت اول لاروها بلع غذای زنده بود حتی زمانی که بی‌تفاوتی به‌عرض می‌رسید. همچنین دیده شد که لاروها به‌مدت و هم‌زمان تغذیه خوراک میکروکیسوله مورد استفاده در پرورش، بالاتر از غذای زنده نقش داشتند. با توجه به اینکه لاروها میکروکیسوله هم‌زمانی با زمان تغذیه غذای زنده، شهامت‌های به‌سیاپه‌نتی و میزان نیاز ماده وجود داشت (P<0.05). با این‌که استفاده لاروها به‌مدت زمانی غذای زنده بلع‌شده شده‌ها میکروکیسوله هم‌زمانی با زمان تغذیه غذای زنده، شهامت‌های به‌سیاپه‌نتی و میزان نیاز ماده وجود داشت (P<0.05). با این‌که استفاده لاروها به‌مدت زمانی غذای زنده، شهامت‌های به‌سیاپه‌نتی و میزان نیاز ماده وجود داشت (P<0.05).

لطفاً کلیدی: غذای زنده، پرورش، روتوش، لاروها، شانک زرد باله

*نویسنده مسئول
مقدمه
شانس زردبلازه از گونه‌های تجاری از شاخصی گردیده است که در بخش‌های مختلف بی‌غذایی ماهی‌های دریایی از آن بهره‌برداری می‌شود. (Al-Hassan, 2000). این گونه انتخاب مناسب برای آزمایش‌های بسیاری است زیرا در آزمایش‌های علمی و تجربیاتی در زمان تغذیه آنها با غذای زردبلازه وارداتی مطالعاتی نیز شکسته شده است. (Jafri et al., 2017). خود نیز، داده‌های موجود در روش تغذیه گونه‌های ماهی دریایی با غذای غنی به گونه‌هایی که در تصویرهای ماهی زردبلازه و مدت‌های مختلف تغذیه آنها با غذای غنی شده‌اند، ارائه می‌گردد. (Gillett seafream).

روش‌شناسی
روش‌های جهت تغذیه لاروها از گونه زردبلازه از قله تا پایین هفت‌گانه بر برای استفاده از غذای زردبلازه (تریپکت و آلبالو) می‌باشند. این گونه از سوی دو قسمت و سبز ماهی‌ها در ماهی‌های دریایی ماهی‌های دریایی (Cahu & Zambonino Infante, 2001) استفاده از زردبلازه غذای جهت پرورش لاروها گونه‌هایی آب‌شیرین نظیر ماهی‌های وارداتی و رشد ماهی‌های جنگلی غذایی وارداتی و رشد ماهی‌های جنگلی غذایی وارداتی است. (Zerafa, 2001). این امر نشان می‌دهد که این گونه از زمان خروج از تخم می‌باشد. بر اساس استفاده از زردبلازه غذای جهت تغذیه لاروها ماهی‌های دریایی تجاری از زمان تغذیه غذای ماهی‌های دریایی به فعالیت‌های غذایی و تغذیه غذایی ماهی‌های دریایی از زمان تغذیه غذایی به فعالیت‌های غذایی و تغذیه غذایی ماهی‌های دریایی گزینش می‌گردد. (Kolokskis, 2001) این گونه از زمان تغذیه غذایی به فعالیت‌های غذایی و تغذیه غذایی ماهی‌های دریایی از زمان تغذیه غذایی به فعالیت‌های غذایی و تغذیه غذایی ماهی‌های دریایی گزینش می‌گردد. (Kolokskis, 2001) ماهی‌های دریایی در هنگام تغذیه با غذای غنی به ساختن و تغذیه دست‌کم ۵۰۰ گرم در لیتر سبز می‌باشد. (Kolokskis, 2001) ماهی‌های دریایی در هنگام تغذیه با غذای غنی به ساختن و تغذیه دست‌کم ۵۰۰ گرم در لیتر سبز می‌باشد. (Kolokskis, 2001)
همجنسی روی‌تیفر در Brachionus rotundiformis
منفعت جهت پرورش لاروها در این آزمایش مورد استفاده قرار گرفت (روی‌تیفرهای نر به اندازه تقریبی 20:100 میکروکریز از آغاز تغذیه فعال تا روز هشتم بعد از تخم‌گذاری، روی‌تیفرهای نر و بالغ (100:10) میکروکریز بی‌رو را به صورت تصادفی به 15 تاک اختصاص داده شدند.
- روی‌تیفر انتخابی A (تیمار کنترل): لاروها از آغاز تغذیه فعالتا یا پایان دوره آزمایش به تناوب توسط روی‌تیفر با تراکم 1000 دسرد تغذیه شدند.
- روی‌تیفر A غذایی B (از آغاز تغذیه فعالتا 60 درصد تراکم روی‌تیفر) (فهرست این تغذیه شده در زریم غذایی A به همراه خوراک میکروکریز در تغذیه تنها حد سیری اشتاق) تا پایان دوره آزمایش تغذیه شدند.
- روی‌تیفر A غذایی C (از آغاز تغذیه فعالتا 50 درصد تراکم روی‌تیفر) استفاده شده در زریم غذایی C به همراه خوراک میکروکریز (تغذیه تنها حد سیری اشتاق) تا پایان دوره آزمایش تغذیه شدند.
- روی‌تیفر A غذایی D (از آغاز تغذیه فعالتا 25 درصد تراکم روی‌تیفر) استفاده شده در زریم غذایی D به همراه خوراک میکروکریز (تغذیه تنها حد سیری اشتاق) تا پایان دوره آزمایش تغذیه شدند.
- روی‌تیفر استفاده شده در زریم غذایی E به همراه خوراک میکروکریز (تغذیه تنها حد سیری اشتاق) تا پایان دوره آزمایش تغذیه شدند.

برای ثابت نمک داشتن تراکم روی‌تیفر در تیمارهای مختلف روی‌تیفرهای (صرب و عصر) از تاک که گونه‌نویسی آب جوان می‌باشد و سپس شمارش تعداد روی‌تیفرهای در زمره میکروکریز و نوری به میزان کاهش یافته در تناوب اضافه گردید. روی‌تیفرهای بیرون از مصرفی به نانکیه‌پرورش لاروها توسط مسیر منظم ناپایی جلب کننده گونه‌‌سازی شدند.

برعلاوه در این تحقیق جهت پرورش لاروها در تمامی تیمارها از آب منظر استفاده گردید. برای این منظور جلبک نانو‌نیکولاپورس اوکلاتا (نامنویسی آب جوان) در این آزمایش در دو اندازه منفعت 5000 میکروکریز تعداد روی‌تیفرهای به صورت نیم‌وزن و بالغ (400:100) میکروکریز بی‌رو را به صورت تصادفی به 15 تاک اختصاص داده شدند.

نمودار 1: روند تغییرات تراکم روی‌تیفر در تیمارهای مختلف در طول دوره آزمایش
بررسی رفتار تغذیه‌ای لاک‌ماهی شانک زرد بالده در تغذیه با قزحی زنده و به منظور اگاهی از رفتار تغذیه‌ای لاک‌ماهی در تیمارهای مختلف، میزان بلع غذا زنده و ریزدانه‌ای غذایی با بررسی دستگاه گوارش لاک‌ماهی در زیر میکروسکوپ نوری کنترل شد. به همین منظور از روز سوم بعد از تخم‌گذاری، هر سه روز یکبار تا پایان دوره آزمایش، تعداد 20 عدد لاک‌ماهی از هر تیمار خارج و در انتهای هر 15 دقیقه توزیع و حین تشویق به در مقطع بالا قرار گرفته این سه روز به مدت 10 دقیقه به هر تیمار خارج گردید.

به منظور بررسی محیوت‌ها، روده لاک‌ماهی ایندی از لاک‌ماهی پرورش گردید. مدت 30 دقیقه قبل از صبح از قسمت سوم پایینی روده لاک‌ماهی، لیزر در رنگ‌های مختلفی قرار داده شد. به‌طور کلی، روده لاک‌ماهی به سه بخش تقسیم می‌گردد: بخش خارجی، بخش داخلی و بخش بین‌بینی. در این تحقیق، روده لاک‌ماهی با رنگ‌های مختلف قرار گرفته بود.

فوتومتر:

فوتومتر در دمای به‌طور کلی 10 درجه C به این تیمار خارج گردید.

(Fernandez-Diaz &; Fernandez-diaz et al., 1994)
(Yufera, 1995, 1997)

![شکل 1: پوسته روتوپ موجود در داخل روده لاک‌ماهی (بزرگ‌نمایی x40)](image1)

![شکل 2: از هم پاشیدگی خوراکی میکرونوکولو در داخل روده لاک‌ماهی و رنگ‌دانی آستانه‌گذاری قابل رؤیت است (بزرگ‌نمایی x100)](image2)
نتایج

بررسی محتوای روده از رواه نشان داد که در طول دوره از میان‌شیبی‌های کم‌از روند آزمایش افزایش یافته و ارتباط‌ها حاکی از روند‌های برخی از رواه‌ها بود. تجزیه و تحلیل اطلاعات با استفاده از روش آنالیز واریانس ANOVA یک‌طرفه جهت انجام عملیات آماری استفاده شد. عملیات آماری SPSS Version 12 استفاده شد. محاسباتی نشان داد که در طول دوره از میان‌شیبی‌های کم‌از روند آزمایش افزایش یافته و ارتباط‌ها حاکی از روند‌های برخی از رواه‌ها بود. تجزیه و تحلیل اطلاعات با استفاده از روش آنالیز واریانس ANOVA یک‌طرفه جهت انجام عملیات آماری استفاده شد. محاسباتی نشان داد که در طول دوره از میان‌شیبی‌های کم‌از روند آزمایش افزایش یافته و ارتباط‌ها حاکی از روند‌های برخی از رواه‌ها بود. تجزیه و تحلیل اطلاعات با استفاده از روش آنالیز واریانس ANOVA یک‌طرفه جهت انجام عملیات آماری استفاده شد. محاسباتی نشان داد که در طول دوره از میان‌شیبی‌های کم‌از روند آزمایش افزایش یافته و ارتباط‌ها حاکی از روند‌های برخی از رواه‌ها بود. تجزیه و تحلیل اطلاعات با استفاده از روش آنالیز واریانس ANOVA یک‌طرفه جهت انجام عملیات آماری استفاده شد. محاسباتی نشان داد که در طول دوره از میان‌شیبی‌های کم‌از روند آزمایش افزایش یافته و ارتباط‌ها حاکی از روند‌های برخی از رواه‌ها بود. تجزیه و تحلیل اطلاعات با استفاده از روش آنالیز واریانس ANOVA یک‌طرفه جهت انجام عملیات آماری استفاده شد. محاسباتی نشان داد که در طول دوره از میان‌شیبی‌های کم‌از روند آزمایش افزایش یافته و ارتباط‌ها حاکی از روند‌های برخی از رواه‌ها بود. تجزیه و تحلیل اطلاعات با استفاده از روش آنالیز واریانس ANOVA یک‌طرفه جهت انجام عملیات آماری استفاده شد. محاسباتی نشان داد که در طول دوره از میان‌شیبی‌های کم‌از روند آزمایش افزایش یافته و ارتباط‌ها حاکی از روند‌های برخی از رواه‌ها بود. تجزیه و تحلیل اطلاعات با استفاده از روش آنالیز واریانس ANOVA یک‌طرفه جهت انجام عملیات آماری استفاده شد. محاسباتی نشان داد که در طول دوره از میان‌شیبی‌های کم‌از روند آزمایش افزایش یافته و ارتباط‌ها حاکی از روند‌های برخی از رواه‌ها بود. تجزیه و تحلیل اطلاعات با استفاده از روش آنالیز واریانس ANOVA یک‌طرفه جهت انجام عملیات آماری استفاده شد. محاسباتی نشان داد که در طول دوره از میان‌شیبی‌های کم‌از روند آزمایش افزایش یافته و ارتباط‌ها حاکی از روند‌های برخی از رواه‌ها بود. تجزیه و تحلیل اطلاعات با استفاده از روش آنالیز واریانس ANOVA یک‌طرفه جهت انجام عملیات آماری استفاده شد. محاسباتی نشان داد که در طول دوره از میان‌شیبی‌های کم‌از روند آزمایش افزایش یافته و ارتباط‌ها حاکی از روند‌های برخی از رواه‌ها بود. تجزیه و تحلیل اطلاعات با استفاده از روش آنالیز واریانس ANOVA یک‌طرفه جهت انجام عملیات آماری استفاده شد. محاسباتی نشان داد که در طول دوره از میان‌شیبی‌های کم‌از روند آزمایش افزایش یافته و ارتباط‌ها حاکی از رRON
مونیو ۳ : روند تغییرات میزان بلع لاروها از خوراک میکروکپسول در تیمارهای مختلف در طول دوره آزمایش میزان بلع از این ماده غذایی در تیمار E در طول دوره آزمایش همواره به میزان معنی‌داری در مقایسه با سایر تیمارها بیشتر بود و در تیمارهای ترکیبی نسبت کاملی ویژه‌ای با میزان غذای زنه استفاده شده نشان داد. (P<0.05)، بیمارت C بیشتر با ۲۵ درصد و D با ۲۰ درصد غذای زنه تیمار کنترل، میزان خوراک میکروکپسول بلع یافته شده در طول دوره آزمایش در تیمار B کمتر از C و تیمار D کمتر از B می‌باشد (نموند ۳). این وضعیت در حالی رخ داد که خوراک میکروکپسول در این آزمایش در تمامی تیمارها به میزان مساوی مورد استفاده قرار گرفت.

جدول ۱ : مقایسه میانگین (± خطا استاندارد) گرافی لاروها به بلع غذای زنه و خوراک میکروکپسول در تیمارهای تغذیه ترکیبی در کل دوره آزمایش

<table>
<thead>
<tr>
<th></th>
<th>تیمار A</th>
<th>تیمار B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده غذایی (عدد)</td>
<td>۲/۸۸±۰/۱۴</td>
<td>۲/۹۸±۰/۱۴</td>
</tr>
<tr>
<td>رویتفر</td>
<td>۱/۱۳±۰/۱۴</td>
<td>۱/۱۴±۰/۲۱</td>
</tr>
<tr>
<td>ریز دانه‌های غذایی</td>
<td>۱/۲۰±۰/۲۱</td>
<td>۱/۲۰±۰/۲۱</td>
</tr>
</tbody>
</table>

امکان‌ها و هیمنکاران

میزان بلع از این ماده غذایی در تیمار E در طول دوره آزمایش همواره به میزان معنی‌داری در مقایسه با سایر تیمارها بیشتر بود و در تیمارهای ترکیبی نسبت کاملی ویژه‌ای با میزان غذای زنه استفاده شده نشان داد. (P<0.05)، بیمارت C بیشتر با ۲۵ درصد و D با ۲۰ درصد غذای زنه تیمار کنترل، میزان خوراک میکروکپسول بلع یافته شده در طول دوره آزمایش در تیمار B کمتر از C و تیمار D کمتر از B می‌باشد (نموند ۳). این وضعیت در حالی رخ داد که خوراک میکروکپسول در این آزمایش در تمامی تیمارها به میزان مساوی مورد استفاده قرار گرفت.

جدول ۱ : مقایسه میانگین (± خطا استاندارد) گرافی لاروها به بلع غذای زنه و خوراک میکروکپسول در تیمارهای تغذیه ترکیبی در کل دوره آزمایش

<table>
<thead>
<tr>
<th></th>
<th>تیمار A</th>
<th>تیمار B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده غذایی (عدد)</td>
<td>۲/۸۸±۰/۱۴</td>
<td>۲/۹۸±۰/۱۴</td>
</tr>
<tr>
<td>رویتفر</td>
<td>۱/۱۳±۰/۱۴</td>
<td>۱/۱۴±۰/۲۱</td>
</tr>
<tr>
<td>ریز دانه‌های غذایی</td>
<td>۱/۲۰±۰/۲۱</td>
<td>۱/۲۰±۰/۲۱</td>
</tr>
</tbody>
</table>

امکان‌ها و هیمنکاران
روند تغییرات قطر دهان لاروها در طول دوره آزمایش در نمودار 4 نشان داده شده است. همانطور که ملاحظه می‌گردد از روز دوازدهم به بعد تخم‌گذاری یک افزایش محسوس در این روند در تمامی تیمارها قابل مشاهده است. در این تحقیق میانگین قطر دهان لاروها در روز سوم و نهف بعد از تخم‌گذاری بترتیب 124 و 274 میکرون انداره گیری شد.

بررسی روند تغییرات رشد وزن لاروها در طول دوره آزمایش حاکی از وجود دو افزایش واضح در فاصله روزهای سوم تا ششم و دوازدهم ناپدیده بعد از تخم‌گذاری است (نمودار 5).

مقا_hashe میانق وزن شکل لاروها در پایان دوره آزمایش A نشان داد که بیشترین میانگین رشد وزنی متعلق به تیمار E بود.

جدول 2: مقایسه میانگین (+ خطای استاندارد) وزن لاروها از غذای زنده و خوراک میکروکیسهوله بین دو تیمار A و E در هر نوبت تخم‌گذاری

<table>
<thead>
<tr>
<th>نوبت تخم‌گذاری</th>
<th>ماه غذایی (عدد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز 6</td>
<td>وزن (گرم)</td>
</tr>
<tr>
<td>15/12/13</td>
<td>46±10</td>
</tr>
<tr>
<td>22/12/13</td>
<td>30±12</td>
</tr>
<tr>
<td>روز 9</td>
<td>وزن (گرم)</td>
</tr>
<tr>
<td>29/12/13</td>
<td>31±12</td>
</tr>
<tr>
<td>26/12/13</td>
<td>30±12</td>
</tr>
<tr>
<td>روز 12</td>
<td>وزن (گرم)</td>
</tr>
<tr>
<td>05/01/14</td>
<td>36±12</td>
</tr>
<tr>
<td>03/01/14</td>
<td>32±12</td>
</tr>
<tr>
<td>01/01/14</td>
<td>31±12</td>
</tr>
<tr>
<td>22/01/15</td>
<td>30±12</td>
</tr>
</tbody>
</table>

انکا: اختلاف در سطح 0.05 معنی‌دار نیست.

* صفر شدن میزان 4 درک برای بیون میزان بلق روتنفس و خوراک میکروکیسهوله در روز سوم بعد از تخم‌گذاری می‌باشد.

نمودار 4: روند تغییرات قطر دهان لاروها در طول دوره آزمایش (Mean±SE) فلسی در دهان لاروها در دو تیماره مختلف می‌باشد.

57
نمودار ۵: روند تغییرات رشد وزن لاروها در طول دوره آزمایش (Mean±SE). فلش‌ها نشان‌دهنده زمان آغاز تغییرات محصور در روند رشد وزن لاروها در تیمارهای مختلف می‌باشند.

جدول ۳: مقایسه معنی‌نهایی (خطای استاندارد) وزن خشک و بازماندگی نهایی لاروها در تیمارهای مختلف در پایان دوره آزمایش

<table>
<thead>
<tr>
<th>وزن خشک (میکروگرم)</th>
<th>رژیم غذایی (تیمارهای)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92/73±6/08</td>
<td></td>
</tr>
<tr>
<td>97/67±6/72</td>
<td></td>
</tr>
<tr>
<td>96/75±3/85</td>
<td></td>
</tr>
<tr>
<td>87/63±1/80</td>
<td></td>
</tr>
<tr>
<td>8/67±2/63</td>
<td></td>
</tr>
<tr>
<td>18±2/70</td>
<td></td>
</tr>
</tbody>
</table>

مقداری که در هر ستون با حروف منفی مشخص شده‌اند دارای اختلاف معنی‌دار می‌باشند (P<0.05).

ضرر همبستگی پیروی‌رسان برای تمام ویژگی‌های مورد بررسی در این آزمایش بی‌روی دو دو محاسبه و نتایج آن در جدول ۴ نشان داده شده است. بین میزان روتیفر برای دو دو و بی‌روی به‌طور کلی تفاوت‌های قلیایی داشتند. رشد وزن و میزان بازماندگی نهایی همبستگی مثبت بود و بیشتر معنی‌داری وجود داشت (P<0.01). میزان خوراک میکروکیسهول برای دو دو با قطع دهان و رشد وزن لاروها همبستگی معنی‌داری را نشان داد اما با بازماندگی نهایی همبستگی معنی‌داری نداشت (P>0.05).
جدول 1: ضریب همیستگی پررسون برای تمام ویژگی‌های مورد بررسی در این آزمایش

<table>
<thead>
<tr>
<th>ویژگی</th>
<th>تعداد روتیفر بلیغه شده</th>
<th>مقادیر خوراک میکروکیکوله بلیغه شده</th>
<th>فرآیندهای خوراک</th>
<th>وزن شکل</th>
<th>وزن خشک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/۱۰۶۴</td>
<td>۱۰۶۴</td>
<td>۱۰۶۴</td>
<td>۱۰۶۴</td>
<td>۱۰۶۴</td>
<td>۱۰۶۴</td>
</tr>
</tbody>
</table>

**: همیستگی در سطح 0.01
: همیستگی در سطح 0.05

بحث

دو افتزایش واضح در فاصله بین روزهای سوم تا ششم و دوازدهم تا نوزدهم بعد از تخم‌گذاری در نمونه روند تغییرات بلیغ روتیفر قابل روانی است (نمونه ۲). در عین حال در فاصله بین روزهای ششم تا دوازدهم بعد از تخم‌گذاری میکروکیکوله بلیغ روتیفر از سیب صودای کمتری برخوردار می‌باشد و در برخی از تیمارها نیز تغییری ثابت نوده است. این روند تقریباً با روش یکبار گرفته شده چگونه نتایج تراکم روتیفر در این آزمایش هم‌ساز می‌باشد (نمونه ۱) حاکم تراکم روتیفر در فاصله روزهای دوم تا چهارم بعد از تخم‌گذاری سبب افزایش میزان بلیغ روزهای نوزدهم بعد از تخم‌گذاری سبب وابستگی به تغییرات روند تغییرات در فاصله روزهای نوزدهم بعد از تخم‌گذاری چهارم تا نوزدهم بعد از تخم‌گذاری بیشتری می‌باشد (نمونه ۲). از روز دوازدهم بعد از تخم‌گذاری مجدداً تراکم روتیفر افزایش یافته چهارم روزهای، سوم تا ششم و بزرگ‌تر می‌باشد. این روند صعودی برخوردار می‌باشد. این وضعیت را می‌توان اینگونه توصیف کرد که با ورود افزایش یافته تراکم روتیفر در این دوره، احتمالاً نتایج از تخم‌گذاری بالغ و نازک به صورت مخلوط از روزهای نوزدهم بعد تا نوزدهم بعد از تخم‌گذاری، به سبب میزان روتیفر به بیش از حد تغییر می‌یابد.

Kolovski (2000) Klings & Baskerville-Bridges و همکاران (1976) برتسب نشان دادند که میزان تغییه از روزهای نوزدهم روزهای بیان‌دره نوزدهم بعد از تخم‌گذاری که تراکم یافته می‌باشد. این وضعیت نوزدهم بعد از تخم‌گذاری که در نمونه روند تغییرات قطع دهان از روزهای قابل روانی است (نمونه ۴). به نظر می‌رسد با این افتزایش قابل ملاحظه قطع دهان از روزهای نوزدهم، لازم به تراکم روتیفر در این دوره، احتمالاً نتایج از تخم‌گذاری بالغ و نازک به صورت مخلوط از روزهای نوزدهم بعد تا نوزدهم بعد از تخم‌گذاری، به سبب میزان روتیفر به بیش از حد تغییر می‌یابد.

doi:10.22092/isfj.2017.110283
بررسی رفتار تغذیهای لاور ماهی شانک زرد بالا در تغذیه با غذای زرد و...

سرور و همکاران

میکروکیستول مثالی نشده در نزدیکی مخرج اذهان‌های طبیعی تبرکی‌بندی اشک غذایی داشته که از آن می‌دهد از یک نوع خوراک میکروکیستول استفاده شده در این آزمایش‌های داشته‌اند. (Darias, 2007)

بررسی تغذیه لاور میکروکیستول نشان داد که میزان تغذیه لاور در ماهی غذایی با رگ لاقب‌بندی می‌باشد. میزان تغذیه لاور در ماهی غذایی با رگ لاقب‌بندی می‌باش...
مجله علمی شیلات ایران

۱۳۸۹ نوزدهم / شماره ۱۱ بهار

می‌گردد. در حالیکه روزانه‌های غذایی نهایی در صورت داشتن ترخیص مناسب از دیسپلور و آماده‌سازی آنزیم‌های آماده‌سازی غذایی می‌تواند در شرایط تغذیه فعال، به رغم اینکه به نظر می‌رسد با توجه به قطع دلاد آنزیم‌های غذایی در نهایت به یافتن راه‌های افزایش مصرف خانواده‌های مناسب شناخت کردن و ارعاب زیادی از این مرحله با استفاده از روشنایی‌های کوچک توسط محققین مختلف مورد تأیید قرار گرفته است. (Cunha & Planas, 1992; Polo, et al., 1997; Polo, et al., 2008; Polo, et al., 2007)

در روی نهم از تحقیگ‌های میانگین قطر دلاد آنزیم‌های غذایی به حدود ۲۲۴ میکرون رسیده که به نظر می‌رسد از انتقال غذایی افزایش می‌شود. (Fernandez-Diaz, et al., 1994) در ۱۰۰ میکرون با روش ساده‌تری از تحقیقات در زمان اندازه‌گیری در دلاد نشان می‌دهد که در‌آوردن زمان بیشتر به صورت میکروکیستولوژی استفاده شده از اندازه‌گیری همه‌پوش به تحقیق غذاهای تغذیه‌ای از دیسپلور‌ها و بررسی آنها با میکروکیستولوژی استفاده شده‌اند. (Shan et al., 2008; Shan et al., 2007)

در روز نهم از تحقیق‌ها میانگین قطر دلاد آنزیم‌های غذایی به حدود ۲۲۴ میکرون رسیده که به نظر می‌رسد از انتقال غذایی افزایش می‌شود. (Fernandez-Diaz, et al., 1994) در ۱۰۰ میکرون با روش ساده‌تری از تحقیقات در زمان اندازه‌گیری در دلاد نشان می‌دهد که در‌آوردن زمان بیشتر به صورت میکروکیستولوژی استفاده شده‌اند. (Shan et al., 2008; Shan et al., 2007)

در روز نهم از تحقیق‌ها میانگین قطر دلاد آنزیم‌های غذایی به حدود ۲۲۴ میکرون رسیده که به نظر می‌رسد از انتقال غذایی افزایش می‌شود. (Fernandez-Diaz, et al., 1994) در ۱۰۰ میکرون با روش ساده‌تری از تحقیقات در زمان اندازه‌گیری در دلاد نشان می‌دهد که در‌آوردن زمان بیشتر به صورت میکروکیستولوژی استفاده شده‌اند. (Shan et al., 2008; Shan et al., 2007)

در روز نهم از تحقیق‌ها میانگین قطر دلاد آنزیم‌های غذایی به حدود ۲۲۴ میکرون رسیده که به نظر می‌رسد از انتقال غذایی افزایش می‌شود. (Fernandez-Diaz, et al., 1994) در ۱۰۰ میکرون با روش ساده‌تری از تحقیقات در زمان اندازه‌گیری در دلاد نشان می‌دهد که در‌آوردن زمان بیشتر به صورت میکروکیستولوژی استفاده شده‌اند. (Shan et al., 2008; Shan et al., 2007)

غذایی توسط روشهای متمول مورد ازبینی قرار گیرد. این امر بخصوص در مراکز تولید بچه ماهیان فوق العاده حائز اهمیت بوده و از روش تغذیه گسترده و همجنس‌نامجه‌های اسکلتی در لاروها جلوگیری یک می‌آورد. به‌ویژه این عمل لازم است در راستای ساخت مواد غذایی فرصتی مناسب با تولیدی فیزیولوژیکی و احتیاط‌های تغذیه‌ای لازم ماهیان دریایی، تاثیر بر هم کنش عواملی شناوری، اندازه‌زننگ، تکنیک ساخت تراوش مواد جذب کننده تغذیه‌ای بی‌محتیز پرسورس. کاربرد پروتئین هیدرولیز و فسفو لیپیده بر پایه تغذیه‌ای لاروها به این عوامل مورد بررسی قرار گیرد.

تشکر و قدردانی

به‌دینوسیله از زحمات کارکنان ایستگاه تحقیقات ماهیان دریایی بندر آمام خمیسی که در طول انجام این تحقیق کمک‌های فراوانی نمودند، تشکر و قدردانی می‌نماییم. همچنین از آقایان دکتر مرتضی، دکتر سیروان، دکتر بهرام و دکتر سیفی به‌سمه پیشرفت علمی و کمک‌هایی که در پیشگامی در طول انجام این تحقیق و پژوهش داریم.

منابع

feeding in larval red drum (Sciaenops ocellatus). Aquaculture, 188:339-351.

Investigation on feeding behaviour of Yellowfin seabream larvae, *Acanthopagrus latus*, fed on live food and microencapsulated diet

Sarvi B. (1)*; Matinfar A. (2); Mahmoudzadeh H. (3); Eskandary G.R. (4) and Abdollah Tabar Y. (5)

Sarvi2613@yahoo.com

1, 5- Science & Research Branch of Islamic Azad University, P.O. Box: 14515-775 Tehran, Iran
2- Iranian Fisheries Research Organization, P.O.Box: 14155-6116 Tehran, Iran
3- Dept. of Health and Nutrition of Animal and Poultry, Faculty of Veterinary Medicine, University of Tehran, P.O.Box: 14155-6453 Tehran, Iran
4- South Aquaculture Research Center, P.O.Box: 61645-866 Ahwaz, Iran

Received: March 2009 Accepted: April 2010

Keywords: Live Food; Breeding, Rotifer, Yellowfin seabream larvae

Abstract

Feeding behavior of yellowfin seabream larvae during the first two weeks of larval life was studied by feeding larvae on different ratios of live food and microencapsulated diet (MED). Food consumption rate increased progressively with increasing larval weight. The results from visual observation of the larval guts under a light microscope indicated that yellowfin seabream larvae were able to ingest and digest MED from the onset of exogenous feeding.

Comparing the average number of rotifers and MED ingested by larvae in treatments including either only live food or MED did not show any significant differences (P > 0.05). In addition, the gut contents examination from the larvae fed simultaneously on both rotifer and MED, revealed that the larva’s tendency towards live food and/or MED was a function of live food density in the rearing tanks. The larvae preferentially ingest live food even when these are present at a very low concentration in comparison to MED. The mouth diameter of larvae has a strong influence on the amount of ingested rotifers and MED.

There was a significant positive correlation between larva growth and the average number of both live food and MED ingested by larvae in this trial (P < 0.01). Although larva survival rate had a positive correlation with the number of rotifers ingested, the amount of MED in the larva’s gut did not show effect on larva survival rate (P > 0.05).

* Corresponding author