تجمع زیستی جوجه در اردک ماهی (Esox lucius) تالاب انزلی، ایران

غلامرضا قاسم‌زاده(۱)؛ عباس اسامی‌یاری ساری (۲)؛ عیسی شریف‌پور (۳)؛ غلامحسین وقوی‌نیا (۴)؛ سید محمود قاسم‌پوری (۵) و قاسم دژقلقاری (۶)؛

g_ghasemzadeh@yahoo.com

۱ و ۲ - واحدهای علم و تحقیقات دانشگاه آزاد اسلامی ایران، تهران، صندوق پستی: ۱۴۰۵-۱۴۰۶
۳ - موسسه تحقیقات شیلات ایران، تهران، صندوق پستی: ۱۴۰۵-۱۴۰۶
۵ و ۶ - دانشگاه‌های منابع طبیعی و علم دریایی دانشگاه تربیت مدرس تهران، صندوق پستی: ۱۴۰۵-۱۴۰۶

تاریخ دریافت: آبان ۱۳۸۸
تاریخ پذیرش: اردیبهشت ۱۳۸۹

چکیده

در این تحقیق تجمع زیستی جوجه در اردک ماهی تالاب انزلی و حد مجاز مصرف آن بدون اثرات سرطانزاویی ناشی از جوجه مورد بررسی قرار گرفت. نمونه‌برداری از تیر ماه ۱۳۸۸ میلادی مدت یکسال به صورت یک‌ماهی صندوق دام گوشکی و سه ماهه کیلو‌گرم کر خورده فضای محدود شد. کالیبراسیون LECO AMA ۲۵۴ دستگاه با استانداردهای SRM ۱۵۶۳۳b و SRM ۲۱۱۱ در سه تکرار با دقت رادیایی در حد میکروگرم بر کیلوگرم وزن خشک انجام گرفت. درجه چربی آلیات دستگاه با انحراف استاندارد ۵۰% از نوامبر ۱۵۵ آزمایش‌های دستگاهی در حد میکروگرم بر کیلوگرم وزن خشک انجام گرفت. نتایج آزمایش‌های ۱۰۰۰ ppm در هر تیم نمایش داده شد. ثانیه‌گزین غلظت جوجه در عضله ماهیان به دو ساله ۰/۵۰۰ x < ۰/۱۷ و در سه و چهار ppm نمایش داده شد. نتایج آزمایش‌های ۱۵۰ ppm نمایش داده شد.
مقدمه
فعالیتهای انسانی نسبت به عوامل طبیعی عمده‌ترین عامل افزایش جیوه در محیط زیست‌ها (Boening, 2000; Pacyna et al., 2006; Swain et al., 2007; Sharma et al., 2008) افزایش غلظت جیوه در ماهیان بطور قابل توجهی (Kraemer et al., 2004) به نزدیک‌ترین اصغیر مرتبط است. به این معنی که می‌تواند جیوه به ماهیان رسیده بوده و در حالیکه کل مقدار ماهیان بین 21000 تا 100000 تن در سال برآورده شده است (Pacyna et al., 2006) در حالیکه گردش مصرف این ماده در سال (MeHg) (USEPA, 2006; Kidd et al., 2004) تخمین رده می‌شود. عمده‌ترین تراکم جیوه تحمیل زیستی محیط در (Sharma et al., 2008) در اثر همکاری بین‌مره‌ای و در اثر سایر عوامل، به‌تازگی در آگاهی می‌باشد.

مواد و چگونگی
منطقه مورد مطالعه در این تحقیق تالاب الیزی است که با یک مجموعه کنترل به‌کیلوگرم‌هایی در 28 دقیقه روز، مانند اولین و 29 دقیقه در جنوب غربی دریای خزر، در استان گیلان واقع شده و تحت پوشش کامپیوتر بوده و در نمونه‌های برداری از 1385 تا 1388، نمونه‌های دام ووگیو و خواسته‌های ریزیکتور مصروف گرفته. سپس از نمونه‌های سال استاندارد و جنسیت، باغ‌های شیمی‌دانی، کبد و ماهیان جداسازی و در دمای 20 درجه سانتی‌گراد متجمد و به آزمایشگاه محیط زیست دانشگاه تربیت مدرس منبناست. در دمای 20 درجه سانتی‌گراد، بین 20 و 24 ساعت شکرکار در دمای 20 درجه سانتی‌گراد و در هوا و چربی یک‌بار به‌دست آمده، آنتی‌ژلاتپی یک‌بار در هر دو دستگاه می‌باشد (Kidd, 2005). در این مطالعه داده‌ها توسط محققان در مقصدان این کار در سه ترتیب با دقت میکروگرم بر کیلوگرم وزن خشک سنجیده شدند:

\[R_{FD} \times BW \times 25 \times T = \text{Meals/mo} \]

\[C_{m} \times Ms \]

که در آن:
\[R_{FD} = \text{за میلی‌گرم در روز} \]
\[BW = \text{ وزن ماهی در کیلوگرم} \]
\[25 = \text{همچنین در کیلوگرم} \]
\[T = \text{تعداد سالانه در تاابه} \]
\[Ms = \text{تعداد ماهیان در کیلوگرم} \]

\[\text{معنی (Arnold and Middawa, 2004; Bogler and Schweitz, 2002}}\]

به‌طور کلی، نتایج این مطالعه از لحاظ مصرف ماهیان آلوده به جیوه توسط سازمان‌های بین‌المللی آرائه‌گردیده. مدل جیوه برای ماهیان که بطور WHO مصرف جیوه تراکم را رایانه پلاستیکی و سایر مواد، به‌طور مستقیم می‌تواند جیوه در دماها به‌طور مستقیم می‌تواند جیوه در دماها به‌طور مستقیم می‌تواند جیوه در دماها به‌طور مستقیم می‌تواند جیوه در D726 (Kojadinovic et al., 2006)
نتایج

نتایج تضمین فراورده و کنترل کیفی صحت آنالیز دستگاهی با NIST و NIST ۲۷۰۹.NIST (Zolfaghari et al., 2007) انجام گرفت (۲۰۰۷). نتایج نشان داد که صحت دستگاه از ۵/۸۵ تا ۱۰۵ متفاوت و دقت ردپایی در حد میکروگرم بر کیلوگرم وزن خشک با انحراف استاندارد (N = ۷) رصد (RSD = ۷/۷) (پوسته است (جدول۱).)

جدول۱: نتایج کنترل کیفی فراورده و اندازه‌گیری جیوه کل (میکروگرم بر کیلوگرم وزن خشک)

<table>
<thead>
<tr>
<th>SRM a</th>
<th>N.</th>
<th>Certified value</th>
<th>Obtained mean</th>
<th>SD b</th>
<th>R c</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST-1633b</td>
<td>۷</td>
<td>۱۴۴</td>
<td>۱۳۵</td>
<td>۰/۱۸</td>
<td>۹۵/۵</td>
</tr>
<tr>
<td>NIST-2709</td>
<td>۷</td>
<td>۱۴۰</td>
<td>۱۴۰/۰</td>
<td>۰/۵۰</td>
<td>۱۰/۵</td>
</tr>
<tr>
<td>NIST-2711</td>
<td>۷</td>
<td>۶۲۵۰</td>
<td>۶۲۵۰</td>
<td>۰/۳۵</td>
<td>۱۰/۱</td>
</tr>
</tbody>
</table>

a: Standard reference material.

b: Standard deviation.

c: Recovery (%).
در جدول ۲ نوسان آماری میانگین و اشباع مایع میزان جیوه در اندام‌های مختلف براساس سن، بلو و جنسیت را نشان می‌دهد. نتایج تجزیه و تحلیل مقادیر جیوه موجود در بافت‌های مختلف اردک ماهی (جدول ۲) نشان می‌دهد که در سنتن مختلف تفاوت معنی‌داری بین میانگین غلظت جیوه در بافت‌های بلو و جنسیت وجود دارد (P<۰/۰۱). میانگین غلظت جیوه در بافت‌های بلو و جنسیت توسط معنی‌داری فاصله اکثریت افراد از این و ساله می‌باشد. بطوریکه میانگین غلظت جیوه عضله ماهیان در بلو و جنسیت متوسط از قسمت قلب و گردنبندی ۲۵ میکروگرم در هر لیتر می‌باشد. نتایج نشان می‌دهد که در این میزان غلظت جیوه، طحال اردک ماهیان بلو و جنسیت همچنین در جنس‌های نر و ماده نسبت به هر یک اکثریت ۸۰ درصد تفاوت معنی‌داری نشان نمی‌دهم. با توجه به نتایج حاصل، نماهی و رزگه‌خواردوزین از بین فاکتورهای مربوط به عضله ماهیان به اکثریت افراد از سالن تهیه به روش موجود در روش‌های متعدد در غلظت جیوه در این نمایندگی وجود نامیده است (جدول ۱). تغییرات غلظت جیوه

<table>
<thead>
<tr>
<th>جیوه عضله</th>
<th>(ppm)</th>
<th>طحال</th>
<th>(ppb)</th>
<th>اشباع سایر</th>
<th>(ppb)</th>
<th>اشباع سایر</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۹۹/۹۱</td>
<td>۷۷/۹۱</td>
<td>۸۸/۹۱</td>
<td>۷۷/۹۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ماده</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نر</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بلو</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جیوه عضله</th>
<th>(ppm)</th>
<th>طحال</th>
<th>(ppb)</th>
<th>اشباع سایر</th>
<th>(ppb)</th>
<th>اشباع سایر</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ماده</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نر</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بلو</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳ نتایج تجزیه و تحلیل مقادیر جیوه موجود در بافت‌های مختلف اردک ماهی

<table>
<thead>
<tr>
<th>جیوه عضله</th>
<th>(ppm)</th>
<th>طحال</th>
<th>(ppb)</th>
<th>اشباع سایر</th>
<th>(ppb)</th>
<th>اشباع سایر</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۹۹/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ماده</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نر</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بلو</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td>۷۷/۹۱</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جیوه عضله</th>
<th>(ppm)</th>
<th>طحال</th>
<th>(ppb)</th>
<th>اشباع سایر</th>
<th>(ppb)</th>
<th>اشباع سایر</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ماده</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نر</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بلو</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td>۸۶/۶۷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نمودار ۱: مقایسه میانگین غلظت جیوه کل در بالنهاوی مختلف ازدک ماهی در سنین مختلف براساس معیارهای WHO

نمودار ۲: مقایسه میانگین غلظت جیوه کل در بالنهاوی مختلف ازدک ماهی بالن و غیربالغ براساس معیارهای WHO

نمودار ۳: مقایسه میانگین غلظت جیوه کل در بالنهاوی مختلف ازدک ماهیان نر و ماده براساس معیارهای WHO
تجزئه زیستی جیوه در ارگن ماهی تالاب انزولی قاسمزاده و همکاران

میانگین غلظت جیوه در همه سه سال اندازه گیری شده از ارگن ماهی بالغ در هر دو جنس WHO پمپم (μg/l) اندازه‌گیری شده از ارگن بودان (μg/l) تجاوز نکرده.

برای مصرف ارگن ماهی بالغ (μg/l) می‌تواند به‌صورت زیستی 44 μg/l پمپم (μg/l) می‌تواند در بیش از 43 μg/l گذشته باشد.

جدول 3: نتایج آنالیز همبستگی خطی جیوه و خصوصیات سلسله ارگن ماهی

<table>
<thead>
<tr>
<th>سن در سال</th>
<th>طول بدن</th>
<th>وزن بدن</th>
<th>جیوه کبد</th>
<th>جیوه عضله</th>
<th>جیوه طحال</th>
</tr>
</thead>
<tbody>
<tr>
<td>سن 1/1000</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
</tr>
<tr>
<td>سن 1/000</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
</tr>
<tr>
<td>سن 1/000</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
</tr>
<tr>
<td>سن 1/000</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
<td>1/000 *</td>
</tr>
</tbody>
</table>

** وجود اختلاف معنی‌دار در سطح اطمینان 99 درصد است.
*** وجود اختلاف معنی‌دار در سطح اطمینان 95 درصد است.

جدول 5: نتایج آنالیز رگرسیون حاصل برای جیوه و مشخصات جیوه کبد در 48 نمونه مختلف آنها

<table>
<thead>
<tr>
<th>p</th>
<th>F</th>
<th>R²</th>
<th>مدل آماری</th>
<th>مشخصه‌های (Y)</th>
<th>وزن جیوه (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.032</td>
<td>0.037</td>
<td>0.829</td>
<td>Y = 331.64 - 102.33 x + 52.74 x²</td>
<td>سن</td>
<td>جیوه عضله</td>
</tr>
<tr>
<td>0.037</td>
<td>0.062</td>
<td>0.833</td>
<td>Y = 335.42 - 201.90 x + 58.39 x²</td>
<td>جیوه کبد</td>
<td>جیوه طحال</td>
</tr>
<tr>
<td>0.038</td>
<td>0.069</td>
<td>0.846</td>
<td>Y = 446.49 - 269.19 x + 60.16 x²</td>
<td>جیوه عضله</td>
<td>طول</td>
</tr>
<tr>
<td>0.040</td>
<td>0.087</td>
<td>0.867</td>
<td>Y = 341.06 - 15.14 x + 0.55 x²</td>
<td>جیوه عضله</td>
<td>وزن</td>
</tr>
<tr>
<td>0.048</td>
<td>0.050</td>
<td>0.852</td>
<td>Y = 300.93 - 18.73 x + 0.51 x²</td>
<td>جیوه کبد</td>
<td>جیوه طحال</td>
</tr>
<tr>
<td>0.068</td>
<td>0.081</td>
<td>0.861</td>
<td>Y = 197899 - 17462 x + 369.36 x²</td>
<td>جیوه عضله</td>
<td>جیوه طحال</td>
</tr>
<tr>
<td>0.079</td>
<td>0.082</td>
<td>0.861</td>
<td>Y = 242.23 + 0.63 x</td>
<td>جیوه عضله</td>
<td>جیوه کبد</td>
</tr>
<tr>
<td>0.081</td>
<td>0.084</td>
<td>0.861</td>
<td>Y = 112.82 + 0.45 x</td>
<td>جیوه کبد</td>
<td>جیوه طحال</td>
</tr>
<tr>
<td>0.087</td>
<td>0.087</td>
<td>0.867</td>
<td>Y = 132.51 + 0.29 x</td>
<td>جیوه عضله</td>
<td>جیوه کبد</td>
</tr>
</tbody>
</table>
نمودار ۴: روند تغییرات میانگین غلظت چربی کل در پایان‌های مختلف اردک ماهی با توجه به تغییرات سنی

وزن (گرم)

نمودار ۵: روند تغییرات میانگین غلظت چربی کل در پایان‌های اردک ماهی با توجه به تغییرات وزنی

نمودار ۶: روند تغییرات میانگین غلظت چربی کل در پایان‌های اردک ماهی با توجه به تغییرات طولی
بحث

تاکنون محققان گروه‌گونی از جد مجزای مصرف ماهیان آلوده به

جمهو توسط سازمان‌های ملی و بین‌المللی ارائه گردیده است.

بعد قابل قبول بیوفیش برای ماهیانی که بطور مناسب WHO

مصرف می‌شوند. رابطه میان 10 و 17ppm مصرف می‌باشد.

و/یا 18ppm می‌باشد. درجه مصرف مصرف

حاصل در 10 تا 1 ppm برای اردک ماهیان. کوشه ماهی و

توان ماهیان و بیش از 18ppm را غیرمجاز اعلام نموده است

و Ginsberg (Kojadinovic et al., 2006; USEPA, 2004)

در سال 2000 اشاره نمودند که حتی مصرف یک وعده

ماهی باری از 18ppm جوجه می‌تواند برای مادران باردار

و شیره نوزادان باشد. درجه مصرف حداکثر مقدار

جمهو کل برابر با در درجه مصرف مایعات بکالریه

(17ppm) از قطعه‌گیری شد. غلظت جوجه در

عملکرد اردک ماهیان به‌طور پیوسته سی گی رپورت می‌دارند. برای

15ppm جوجه می‌تواند برای مادران باردار و درجه

یافته و در همه گروه‌های از جد بی خطر 5ppm

است بطوریک جهانی غلظت جوجه در عملکرد ماهیان بکالریه

و دو ساله گسترده تا 15ppm در ماهیان سه و چهار ساله بیش از این

حدود در ماهیان بین ساله (USEPA, 2004) (17ppm) WHO

همکاران در سال 1999 حداکثر میزان جوجه در عملکرد پشتی

واقعی اردک ماهی از رودخانه‌ها Sulukna و Andreafsky

(17ppm) بیش از حد مجاز و (USEPA, 2004) (17ppm) WHO

همکاران در سال 2005 17ppm بیش از حد مجاز تعیین شده

(17ppm) برای مصرف اردک

ماهی بوده است Lockhart.

و همکاران در سال 2005 نیز با

برای مصرف رودخانه‌ای مصرف ماهیان در پراچمه‌های شمال

کانادا در سال 2007 مشاهده نمودند که جوجه کل در اردک

17ppm ماهی و فزل آبی در پراچمه‌های حد مجاز

منابع (USEPA, 2004) بیشتر و در بسیاری موارد بیش از

USEPA (2004) حد مجاز 5ppm برای مصرف مایعات تجاری (17ppm)

2004 بود و پیشین میزان جوجه در اردک ماهی شماقا را

با ماهیان در سال 2003 و Jewett در سال 2006 می‌باشد.

و همکاران در سال 2003 17ppm داد که غلظت جوجه در عملکرد ماهیان در بررسی گزارش مشاهده نشده شرایط به

با ماهیان در سال 2003 و Jewett در سال 2006 می‌باشد.

مایعات در عملکرد ماهیان در پراچمه‌های شمال

کانادا در سال 2007 مشاهده نمودند که جوجه کل در اردک

17ppm ماهی و فزل آبی در پراچمه‌های حد مجاز

منابع (USEPA, 2004) بیشتر و در بسیاری موارد بیش از

USEPA (2004) حد مجاز 5ppm برای مصرف مایعات تجاری (17ppm)

2004 بود و پیشین میزان جوجه در اردک ماهی شماقا را

با ماهیان در سال 2003 و Jewett در سال 2006 می‌باشد.

و همکاران در سال 2003 17ppm داد که غلظت جوجه در عملکرد ماهیان در بررسی گزارش مشاهده نشده شرایط به

با ماهیان در سال 2003 و Jewett در سال 2006 می‌باشد.
به‌ویژه است همچنین و همکاران در سال 2004 با بررسی 12 گونه ماهی از منطقه Guiana در فرانسه واقع در حوزه آبی‌های رود آمور در نشان دادند که جیوه در عضله به شدت به‌صورت میلی کیلوگرمی بالاتر فندق گونه Duffey می‌باشد. نتایج تحقیق حاضر نشان داد که میزان جیوه در عضله یک‌ارگ ماهی‌های بین 25 تا 35 سانتی‌متر طول می‌باشد. میزان ppm 5 تا 20 جیوه با جیوه ppm 5 تا 20 در میزان اکثر ماهی‌های مورد نظر می‌باشد. (Chen et al., 2005; Blakmore & Wang, 2004) ماهی‌های آزاد صدها گونه از طریق گذار بردن ماهی و با انتقال سلول‌های به آمیگوستیده‌های سلول‌های تجربی افزایش عضله می‌نماید و باعث تجربه می‌نماید. میانگین با افزایش B; St-Louis et al., 1994) با افزایش تعادل می‌نماید که در عضله رشد گذاران، صدها گونه از طریق میکروگرم بر کیلوگرم وزن می‌باشد. (Yamaguchi et al., 1994) که در محیط تجزیه پژوهی تحقیق در علم اقیانوسیه (Goldstein et al., 1996) می‌باشد. و در پژوهش‌های صنعتی به‌صورت میلی میکروگرم بر کیلوگرم وزن می‌باشد. (Hirsch, 2006) در عضله در حجم میکروگرم بر غرب افغانستان و بدون شرکت در میکروگر

Chien L-C., Yeh C-Y., Jiang C-B., Hsu C-S. and Han B-C., 2007. Estimation of acceptable mercury intake from fish in Taiwan Chemosphere, 67:29-35.

Andazadeh and Hemezari

از مصرف اردک ماهیان با طول بیش از ۴۱ سانتی‌متر باید خودداری نشود. نتایج بدست آمده از پژوهش‌های مناسب سیستم‌های مدیریت خطر زیست محیطی ناشی از جیوه در نالاب از این می‌باشد.

تشکر و قدردانی

از همکاری‌های ارزشمند کارشناسان محترم آزمایشگاه ماهی‌شناسی مرکز تحقیقات آبی پژوهی ایالتی داخلي، بندر انزیابی و آزمایشگاه محیط زیست دانشگاه منابع طبیعی و علوم دریایی دانشگاه تربیت مدرس، نور تشرک و قدردانی می‌گردد.

منابع

USEPA (American Environmental Protection Agency), 2006. Water quality criteria for protection of human health: Methylmercury
final U.S. Environment Protection Agency. EPA/823/R-01/00.

Mercury bioaccumulation in pike (*Esox lucius*)

from Anzali Lagoon, Iran

Ghasemzadeh G.R.\(^{(1)}\)*, Esmaeli Sari A.\(^{(2)}\); Sharifpour I.\(^{(3)}\); Vosoughi Gh.\(^{(4)}\); Ghasempouri S.M.\(^{(5)}\) and Zolfaghari G.\(^{(6)}\)

\(g_ghasemzadeh@yahoo.com\)

1, 2, 4- Science and Research Branch, Islamic Azad University, P.O.Box: 14515-775 Tehran, Iran

3- Iranian Fisheries Research Organization, P.O.Box.14155-6116 Tehran, Iran

5, 6- Faculty of Natural Resources and Marine Sciences, Tarbiat Modarres University,
P.O.Box: 14155-365 Noor, Iran

Received: November 2009 Accepted: May 2010

Keywords: Pollution, Heavy metals, Pollutant, Mercury, *Esox lucius*

Abstract

This paper presents the levels of total mercury (T-Hg) in dorsal muscle, liver and spleen of pike (*Esox lucius*) from Anzali Lagoon in Iran. Sampling were carried out from July 2004 to July 2005. In addition 78 samples were collected. T-Hg concentration were calculated in relation to biometric factors. T-Hg was measured by the LECO AMA 254 Advanced Mercury Analyzer (USA) according to ASTM standard NoD-6722. Each sample was analyzed 3 times. Accuracy of T-Hg analysis was checked by running three samples of Standard Reference Materials; SRM 1633b, SRM 2711 and SRM 2709. Detection limit was 0.001mg/kg in dry weight. The minimum and maximum concentration of T-Hg in dorsal muscle was 0.2ppm in one year and 1.2ppm in five year class. The mean T-Hg significantly increased with age increased (P<0.05). The T-Hg mean concentration. In 1 and 2 year classes was 0.17<x<0.5ppm, in 3 and 4 year classes was 0.5<x<1ppm and in five year class was >1ppm. Accumulation pattern of Hg was significantly as well as muscle>liver>spleen. T-Hg content in females was higher than males (P<0.05). Acceptable monthly intake without carcinogenic effects due to mercury for women, men, juveniles and children was 270, 320, 125 and 59g per month. Consumption of pike above 35cm. length should be avoided.

* Corresponding author