بررسی و مقایسه ویژگی‌های مورفولوژیک و مرمیتیک ماهی‌های گورخری

(Anphanis sophiae)

چشمه‌های دامغان و رودخانه شور استهارد

شفق کمال (۱)، مجيد بختياری (۲)، محمود کرمی (۳)، اصغر عبدهی (۴) و سهیل ایگردی (۵)

shafaghkamil@gmail.com

۱- چندان‌شنده منابع طبیعی، چشمه‌های تهران، گرج صندوق پستی: ۴۱۱۱

۲- پژوهشکده علوم محیطی، چشمه‌ها بهشتی‌اریا، تهران

۳- چندان‌شنده: چشمه‌های سرشار تکامل‌های مهردانر، چشمه‌های دامغان

۴- تاریخ دریافت: مداد ۱۳۸۷

چکیده

در این مطالعه ویژگی‌های مورفولوژیک ماهی‌های گورخری (Anphanis sophiae) چشمه‌های دامغان و رودخانه شور استهارد شاهد مورد بررسی و مقایسه قرار گرفت. ۴۴ ویژگی ریخت‌یافته در تصویر ثبت شد. نتایج حاصل از تحلیل واریانس چند متغیره (MANOVA) احتمال معنی‌دار بین ویژگی‌های ریخت‌یافته در ۱۰ ویژگی به روش چند متغیره (P=۰/۰۰۵) را نشان داد. از این‌رو می‌توان احتمال داشت که برخی ویژگی‌های ریخت‌یافته در جوهری‌ها و جنبه‌های نرم و ماده آنها را جدا از یکدیگر نشان دهد. بررسی ویژگی‌های شماره چندی در ماهی‌های نیمه‌فشرده و به نظر می‌رسد تفاوت زیست‌گاه‌ها می‌تواند از نظر دما، شوری و نیز شرایط فیزیکی می‌تواند دلیل این تفاوت‌ها باشد.

لفت کلیدی: ماهی گورخری، سیستم تراس، خصوصیات ژنتیکی، ایران

مقدمه

ماهی‌ها گوهری با نام علمی Anphanis sophiae خانواده Cyprinodontidae (کیپرونداناران) و راسته Cyprinodontiformes تقریباً دوازده گونه است و پراکنش آنها در سواحل دریا و دریاچه‌ها نسبی است. در پژوهش‌های طبیعی آنها، به عنوان مثال، تغییرات در شیوه‌های فیروها و فیش‌های آنها مهم است. استادی محلی آنها (Coad, 2000) نشان داد که در ایران نیز نتوان بدون نگهداری با این جنس زندگی است. برخی از مطالعات (Blanco et al., 2006; Hrbeke et al., 2002) نشان داد که در این منطق به منابع با نام Cyprinodontinae (کیپرونداناران) مانند Cyprinodon species به عنوان سایر گونه‌ها در این منطق با نام Cyprinodontiformes به عنوان سایر گونه‌ها در این منطق با نام Cyprinodontiformes به عنوان سایر گونه‌ها در این منطق با نام Cyprinodontiformes به عنوان سایر گونه‌ها در این منطق با نام Cyprinodontiformes
کمال و همکاران
نمایندگان در مورد ویژگی‌های ریخت‌سنجی و شماری‌سنجی می‌گویند. قبلاً از آن، شاخه‌هایی از این روش‌ها متنوع شده و
قسمتی از آن‌ها برای کنترل حوزه سلسله می‌درایند. بسته به شاید، گروه‌هایی از گیاگان نرم پوش شده است که
با رشد وتغییرات این مصالح سال‌ها در برخی مناطق پوشش لجنس می‌شود. در صفحه‌های مقاله، گرم سال‌های در
منطقه کم عمق گیاهان بن در آب است.

اگرچه در این تحقیق در مورد 124 عضو ماهی‌های مایکروآرگانیسم و روش‌های آن‌ها در دانشگاه، روش‌های شناسایی
و روش‌های ثبت نشانه‌های ماهی‌های زیستی در مورد این مطالعات چشم‌پوشی خواهد شد.

چشم‌پوشی إلى دانشگاه مکملی از جغرافیایی 16, 36 عرض
شمالی و 5, 35 طول شرقی قرار گرفته است. مدت‌های دخیل در آن چشم‌پوشی
در اینجا به صورت خودجوش به میزان 200 متری در آمده
و پس از آن استخری به عمق 20 متر و مساحت 1,500
متری به تکیه می‌گیرد. آب به به و گواست و
شب رودخانه حاصل از آن 45 درصد است. میزان
ایجاد چشم‌پوشی 750 تا 1000 لیتر در ثانیه می‌باشد (کمالی,
1382) با توجه به زمان مصرف، شکاف، ماسه و پودری شده و
پوشش گیاهی آن شامل گیاهان شناور، غوطه ور و بین در آب
است.

رودخانه شور در منطقه‌ها جغرافیایی "1146, 25 عرض
شمالی و "1146, 25 طول شرقی قرار گرفته است. این
رودخانه با طول حدود 500 کیلومتر است. سپس از طی منطقه

جدول 1: ویژگی‌های فیزیکی و شیمیایی آب مناطق مورد مطالعه

<table>
<thead>
<tr>
<th>منطقه مورد مطالعه</th>
<th>pH</th>
<th>SD ± (میلیگرم در لیتر)</th>
<th>SD ± (درجه سانتیگراد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>چشم‌پوشی</td>
<td>10/2</td>
<td>4/8 5 4 6 5</td>
<td>1/4 3 2 1</td>
</tr>
<tr>
<td>رودخانه شور</td>
<td>11/8</td>
<td>5 4 6 5</td>
<td>1/4 3 2 1</td>
</tr>
</tbody>
</table>
با توجه به اینکه ویژگی‌های شمارشی در طول دوام زندگی ماهی ثابت نیست و ارتقا و تغییرات را در اندازه‌گیری داده می‌دهد، تحلیل مقایسه ویژگی‌های اندازه‌گیری با ویژگی‌های شمارشی و تغییرات آنها در زمان با ویژگی‌های MANOVA و آزمون آماری Pillai's و آزمون آماری MANOVA استفاده می‌شود. تحلیل مولفه‌های اصلی (PCA) و آزمون MANOVA مربوط به نتایج م分化 اندازه‌گیری شده را به‌صورت تعداد کمتری از مولفه‌های اصلی ترکیب و خلاصه کرده که این مولفه‌ها ترکیب خلاصه کننده می‌باشند که تغییرات شکل بدن را در هر مولفه‌ها نشان می‌دهند. تحلیل مولفه‌های اصلی نیاز به گروه‌های افراد می‌باشد (Turan, 1999). همچنین داده‌های درمانی روش ریخت‌سنجی و داده‌های شمارشی به منظور بررسی اختلاف احتمال جمع‌یا و جنگ‌ها تحت تحلیل نسبی می‌باشد (ε). قرار داده‌های (DF) تحت تحلیل نسبی می‌باشد (ε). قرار داده‌های (DF) تحت تحلیل نسبی می‌باشد (ε). قرار داده‌های (DF) تحت تحلیل ثابت می‌باشد (ε). قرار داده‌های (DF) تحت تحلیل ثابت می‌باشد (ε). قرار داده‌های (DF) تحت تحلیل ثابت می‌باشد (ε). C (Elliott et al., 1995).

$M_{eq} = M(L_0/L_0)$.

که در آن M_{eq}: اندازه واقعی فاصله اندازه‌گیری شده، M: اندازه اصلی شده، L_0: میانگین طول چنگالی \log_{10} کل مولفه، L_0: طول چنگالی ماهی، \log_{10} به تغییرات در کل مولفه‌ها سیب کارایی داده‌های اصلاح شده از طریق آزمون معنی‌دار بودن همبستگی بین متفاوتی اصلاح شده و طول استاندارد مورد شرایط قرار گرفت. معنی‌دار بودن این همبستگی نشان‌دهنده حذف کامل اثر اختلاف اندازه‌گیری داده‌ها می‌باشد. تحلیل آماری داده‌های ریخت‌سنجی و شمارشی پیوسته چگالی اندازه گرفت. به منظور برآورد اختلاف معنی‌دار بین متغیرها در بین گروه‌ها از تحلیل

نتایج

مقاوم ویژگی‌های اندازه‌گیری و شمارشی گرفت نشان داد که هم ویژگی‌های ریخت‌سنجی Pillai's تحلیل واریانس چند متغیره و آزمون MANOVA و به کمک آزمون صورت گرفت. نشان داد که هم ویژگی‌های ریخت‌سنجی Pillai's
بررسی و مقایسه ویژگی‌های مورفومتریک و مربیستیک ماهی کوره‌رخی…
کمال و همکاران

اصلی سوم بودند. میزان جداسازی جنس‌های نر و ماده دو منطقه با استفاده از مؤلفه‌های اول و دوم در نمودار 1 آمده است.

از 3 مؤلفه اصلی که از ویژگی‌های شمارشی بدست آمده، سه مؤلفه اصلی اول و دوم درصد تغییرات واریانس نمونه‌ها را شامل می‌شوند. درصد واریانس کل نمونه‌ها بود و مؤلفه‌های اصلی اول و دوم درصد واریانس کل نمونه‌ها را پوشش دادند. در نمودار 2 میزان جداسازی جنس‌ها و جمعیت‌ها نشان داده شده است.

در نمودار 1، مؤلفه‌های اصلی اول فلکه‌های دم و اطراف دم با توجه به ویژگی‌های مکرر، در مؤلفه اصلی اول مرحله‌های بالا، پایین و وسط و در مؤلفه اصلی دوم شکم‌های ختم جنوبی و شمالی پایین‌تر ختف جنوبی تا بالا شکم‌های جمو مثبت و ویژگی‌های شمارشی بودند.

نمودار 1: مؤلفه‌های اصلی برای ویژگی‌های ریخت‌سنگی (مؤلفه‌های اصلی 1 و 2)

نمودار 2: مؤلفه‌های اصلی برای ویژگی‌های شمارشی (مؤلفه‌های اصلی 1 و 2)
نمودار ۳: نمودار نتایج متافاکسکنه ۱ و ۲ برای ویژگی‌های ریخت‌سنگی مخلوط‌دار ماهیان در منطقه

جدول ۲: شایعه و روند افراد در جمعیت و جنس‌های اصلی خود برای ویژگی‌های ریخت‌سنگی

<table>
<thead>
<tr>
<th>منطقه</th>
<th>جنس</th>
<th>رودخانه شور</th>
<th>برداشت دامغان</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>مرد</td>
<td>۱</td>
<td>۴۵</td>
<td>۱۴۶</td>
</tr>
<tr>
<td></td>
<td>زن</td>
<td>۱</td>
<td>۴۵</td>
<td>۱۴۶</td>
</tr>
<tr>
<td>دامغان</td>
<td>مرد</td>
<td>۱</td>
<td>۸۵/۵</td>
<td>۱۰۰</td>
</tr>
<tr>
<td></td>
<td>زن</td>
<td>۱</td>
<td>۸۵/۵</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

در نتایج متافاکسکنه اول فاصله‌های ۱۲۸-۱۳۰ و ۱۰۸-۱۰۹ درصد ذخیره شده بطور میانگین ۹۲ درصد از افراد را بطور صحیح در جمعیت‌های اصلی خود جای داد. بیشترین درصد موفقیت در طبقه‌بندی افراد مربوط به ماهیان ماده رودخانه شور بود که ۹۶/۷ درصد از افراد بطور صحیح در این جمعیت قرار داشتند (جدول ۲).

در نتایج متافاکسکنه دوم فاصله‌های ۹۸-۱۰۲ و ۱۱۲-۱۱۴ درصد ذخیره شده بطور میانگین ۹۵ درصد از افراد را بطور صحیح در جمعیت‌های اصلی خود جای داد. بیشترین درصد موفقیت در طبقه‌بندی افراد مربوط به ماهیان ماده رودخانه شور بود که ۹۷/۸ درصد از افراد بطور صحیح در این جمعیت قرار داشتند (جدول ۲).
در تابع متمایزکننده اول فلزهای پایین خط جانی تا باله شکمی و فلزهای بالا باین خط جانی تا باله مخرج هیستنگی بالایی نشان دادند (مرتبه ۲۸۰ و ۲۳۵/۰۰۰). در تابع متمایزکننده دوم شاخص باله سینهای هیستنگی بالایی (۲۸۵/۰۰۰) داشت. طبق نمودار ۴ نمودار متمایزکننده ۱ و ۲ ماهیان منطقه رودخانه شور را در بالا و ماهیان جنوبی را در پایین آنها قرار داد. ماهیان ماده در سمت راست ماهیان نر قرار داشتند. اما همچنین تفاوت‌هایی بین نمونه‌ها در مورد ویژگی‌های شمارشی وجود داشت و این امر تشخیص‌دهنده کارایی کمتر ویژگی‌های شمارشی در مقابل ویژگی‌های ریخت‌سنجی به‌حتم کننده جمع‌بندی است.

نمودار ۴: نمودار تابع متمایز کننده ۱ و ۲ برای ویژگی‌های شمارشی ماهیان در منطقه...
جدول ۲: طبقه‌بندی صدح افراد در جمعیت‌ها و چنین‌های اصلی خود پرای ویژگی‌های شمارشی

<table>
<thead>
<tr>
<th>منطقه</th>
<th>چنین‌های دادمیان</th>
<th>رودخانه‌ای شور</th>
<th>مجموع</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماهی</td>
<td>ماده</td>
<td>زن</td>
<td>ماده</td>
</tr>
<tr>
<td>دامغان</td>
<td>۱۷</td>
<td>۳</td>
<td>۱۷</td>
</tr>
<tr>
<td>تعداد</td>
<td>۴۷</td>
<td>۷</td>
<td>۴۰</td>
</tr>
<tr>
<td>رودخانه‌ای شور</td>
<td>ماده</td>
<td>زن</td>
<td>ماده</td>
</tr>
<tr>
<td>دامغان</td>
<td>۴</td>
<td>۱</td>
<td>۴</td>
</tr>
<tr>
<td>تعداد</td>
<td>۱۷</td>
<td>۳</td>
<td>۱۷</td>
</tr>
</tbody>
</table>

بحث

ماهی Aphanitus sophiae در قسمتهای بادی رودخانه‌ها، آبگیرهای ریختنی از خانواده آریآزی و به میزان کمتر در ایستاده، شور و لب شور دیده می‌شود و آن‌ها را تحقیق می‌کند (عیضای، ۱۳۸۷). در بررسی‌های ریختنی‌سنجی و شمارش‌های این تحقیق با تحلیل نویاب، میزان کندن حاصل از ویژگی‌های ریخت‌سنگی، جهش گروه‌های و ماده چشمی و رودخانه‌ای شور تا حدی از یکدیگر جدا نشان داد. اگر سنگریزقی و چسبنده‌تری برای بررسی ویژگی‌های شمارشی بررسی نماید، با تحلیل مؤلفه‌های اصلی ویژگی‌های ریخت‌سنگی، ارتفاع سطح، طول باله سینه‌ای، فاصله باله شکمی تا مخمری مهترین ویژگی‌های مؤلفه‌ای اصلی دوم و قابلیت ابتدا تا انتهای باله مخمری و فاصله باله سینه‌ای تا باله شکمی مهترین ویژگی‌های مؤلفه‌ای اصلی سوم بودند. در مورد ویژگی‌های شمارشی، فاصله باله سینه‌ای و سطح باله سینه‌ای به مخمری مهترین ویژگی‌های مؤلفه‌ای اصلی و شمارشی باله سینه‌ای و پشتی مهترین ویژگی‌های مؤلفه‌ای اصلی دوم بودند.

براساس مطالعات Abdoli و Coad (۲۰۰۴) روی A. sophiae جمعیت‌های چشمی بالهای مهتنی و باله‌های اصلی در جمعیت‌ها تغییرات ریخت‌سنگی به سرعت بیشتری در باله‌های دوم و مقایسه براساس مطالعات بالا در سال ۲۰۰۰ و میانگین با بیشترین پیوستگی و شیب‌پیش (پیوستگی داخلی و پیوستگی داخلی شور) و شیب‌پیش در باله‌های دوم و باله‌های دوم شور انجام شده و با استفاده از روش‌های انتخابکننده انجام شده است. پیچیدگی‌ها می‌تواند به منظور کامل شدن تحقیقات بعده از روش‌های رژیمی بسیار مفید باشد.
孬 سایر روشهای مقایسه جمعیت مانند روش‌های مورفومتریک استفاده شود.

تشکر و قدردانی

بدیولوم داشتهباشند از شرکت آرا آبزی گستر به یاد راهنماهایها و خدمات ارزان‌دانشان تشکر می‌نماییم.

منابع

عبدی، ا. 1378. ماهیان آب‌های داخلی ایران. انتشارات موزه طبیعت و حیات ایران. 227 صفحه.
کمالی، ش. 1382. بررسی امکان پیروزش ماهی در استان سمنان پرورش کارشناسی شیلات دانشگاه نهاران. 124 صفحه.

Morphometric and meristic traits of Killifish, *Aphanius sophiae*, in Cheshme-Ali Damghan and Shour River of Eshteherd

Kamal S.\(^{(1)*}\); Bakhtiyari M.\(^{(2)}\); Karami M.\(^{(3)}\); Abdoli A.\(^{(4)}\) and Esgderi S.\(^{(5)}\)

1,2,3 – Faculty of Natural Resources, University of Tehran, P.O.Box: 4111 Karaj, Iran
4 – Environmental Science Institute, Shahid Beheshti University, Tehran, Iran
5 - Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium

Received: August 2008 Accepted: April 2010

Keywords: *Aphanius sophiae*, Truss system, Morphometric and meristic, Iran

Abstract

Killifish (*Aphanius sophiae*) of the Cheshme-Ali of Damghan and Shour River of Eshteherd were studied and compared from morphological point of view. For morphometric studies, 34 Truss morphometric measurements and 10 traditional measurements were made for each individual. Nine meristic traits were counted. Multi-variate analysis of variance (MANOVA) revealed a significant different between variables (\(P=0.000\)). Sexes and populations were using multi-variate analysis techniques such as Principle Component Analysis and Discriminate Function Analysis based on morphometric variables. These variables seem to be under the influence of environmental factors such as temperature, salinity and feed condition. However, no separation was achieved based on meristic traits.

\(^{*}\) Corresponding author