اثر وزن و طول مولدنین ماهی شیربت (Barbus grypus) روی تولید و رشد به ماهی تا مرحله انجکست قد

فرود بسک کامکش(1); روحید پاروی(1); غلامرضا اسکندری(2); غلامحسین محمدی(1)

Foroud.kahkesh@gmail.com

1- 3 و 4 - پژوهشگاه آبی پوری جنوب کشور، اهواز صندوق پستی: 6870-6865-1616
2- دانشگاه علوم و فنون دریایی خرمشهر، صندوق پستی: 669 تاریخ دریافت: مهر 1389

تاریخ پذیرش: شنبه 1389

چکیده

این بررسی برای تعیین اثر وزن و طول کل مولدنین ماهی شیربت (Barbus grypus) روی تولید به ماهی و رشد تا مرحله انجکست قد صورت گرفته است. برای این منظور سه گروه وزن و طول مولدنین ماده (مه تیمار) انتخاب شد. تیمار یک مولدنین با میانگین وزنی 69/146/3/24 میکرو (انحراف استاندارد) وزنی 7/9/17 میکرو گرم مولدنین طول کل 45/2/0 میکرو (انحراف استاندارد) وزنی 4/5/17 میکرو تیمار سه با میانگین وزنی 7/7/7/14 میکرو وزنی 4/5/17 میکرو گرم مولدنین طول کل 45/2/0 میکرو (انحراف استاندارد) وزنی 4/5/17 میکرو مولدنین نر برای کل تیمارها مشترک و میانگین وزن آنها 140 میکرو وزنی 4/5/17 میکرو گرم مولدنین ماده در دو نیت و با فاصله زمانی 10 ساعت با هورمون عصاره گده هیپوفیز به میزان 3 میکرو در کیلوگرم و مولدنین نر در یک مرحله همبرای با ماهی و پارامتوس رش (ضریب بزرگ و زیستی، ضریب جایگزین) تا مرحله انجکست قد در گروه های وزنی مقصود اندام میشود (pH، درجه حرارت، شفافیت، نورهای نشانه‌های شیمیایی، مولدنین بازماندگی و فشارهای فیزیکی) با همیشه تکثیر می‌تواند اثرگذار بر روی نیت و مولدنین ماده باعث بهبود کیفیت و مقدار مولدنین ماده شود و باعث افزایش میزان مولدنین ماده می‌شود.

با مقایسه نتایج داده‌های مربوط به رشد وزن و ضریب جایگزین، درصد بازماندگی به ماهی تیمارهای مختلف در طول دوره پروشر انتخاب منی داری مشاهده گردید. اما با مقایسه نتایج داده‌های مربوط به بازماندگی در انتخاب منی داری بین تیمار دو (مولدنین ماده و طول و طول مولدنین) با سایر تیمار و وجود دارد (در صفحه 95 درصد اطمینان) با افزایش وزن مولدنین، این شاخصها افزایش و در محدوده وزنی (± انحراف استاندارد) 5/18/70 میکرو و مولدنین طول کل 4/24/17 میکرو (تیمار دو) به بعد کاهش می‌یابد. لذا جهت بالا بردن میزان بازماندگی لازم و رشد بیشتر هر گونه است از مولدنین در محدوده وزن و طول میکرو استفاده شده در تیمار دو استفاده گردید.

لینک کلیدی: بازماندگی (ایمپلنت)، ضریب رشد و وزن، ضریب جایگزین، ماهی شیربت، تکثیر

نویسندگان مسئول
پروزای آبزی‌های فعالیتی با گسترش چه‌چیزی است به‌طوری‌که انجام این فعالیتی در به‌ویژه تندی و کمک به توسعه اقتصادی کشورهای جهان سوم می‌باشد (Oscar, 1990). در حال حاضر، بیش از میلیاردن کمتر از ۱ درصد از نرخ ۲ درصد پروزایی غذا در ۱۴۲۳ هجری قمری و پایدار یک درصد چهارم جهان از طریق تغذیه آبزی‌های مانند ماهی‌های (کاسه‌کی، ۱۳۷۳)
با توجه به وجود بستری بالقوه قسمتی صنعت آبزی پروری امکان ارائه سطح تولید ماهیان غیر آبی و سرد آبی در کشور وجود دارد. در حال حاضر حدود ۲۵۸ ماهی از آبزیان پرورشی (کاسه‌کی) در صنایع آبزی پرورشی استفاده می‌شود.
(سالانه امیرآبادی، ۱۳۷۳)، که در کشورهای (کاسه‌کی) می‌باشد. در این راستا محققی از بخش‌های محیطی این تولید نیازمند ایمنی بوده و در این زمینه ۲۰۲۳، ماهی (کاسه‌کی) در این راستا محققی استفاده می‌شود.
(کاسه‌کی) به‌طور کلی باید بحث و سرچکی از آبزی‌های خانواده کمورهای بوده و در حضور رودخانه هرات، در خیبر فارس و حوضه هومن انارش دارد (Coad, 1992) در ارتباط اثر ویژگی این ماهی بر روی پایام‌های رشد. این فراوانی با چهار روند اضافه شده است. ماهی (کاسه‌کی) و با نام Labeobarbus برای بخش‌هایی از که‌کاسه‌کی بحساب کیویی، شیب‌جای و سرچکی از آبزی‌های خانواده کمورهای بوده و در حضور سرچکی بوده و در حضور رودخانه هرات، در خیبر فارس و حوضه هومن انارش دارد (Coad, 1992) در ارتباط اثر ویژگی این ماهی بر روی پایام‌های رشد. این فراوانی با چهار روند اضافه شده است. ماهی (کاسه‌کی) و با نام Labeobarbus برای B. sharpei و ماهی (کاسه‌کی) در این راستا محققی استفاده می‌شود.
(کاسه‌کی) به‌طور کلی باید بحث و سرچکی از آبزی‌های خانواده کمورهای بوده و در حضور سرچکی بوده و در حضور رودخانه هرات، در خیبر فارس و حوضه هومن انارش دارد (Coad, 1992) در ارتباط اثر ویژگی این ماهی بر روی پایام‌های رشد. این فراوانی با چهار روند اضافه شده است. ماهی (کاسه‌کی) و با نام Labeobarbus برای B. sharpei و ماهی (کاسه‌کی) در این راستا محققی استفاده می‌شود.
(کاسه‌کی) به‌طور کلی باید بحث و سرچکی از آبزی‌های خانواده کمورهای بوده و در حضور سرچکی بوده و در حضور رودخانه هرات، در خیبر فارس و حوضه هومن انارش دارد (Coad, 1992) در ارتباط اثر ویژگی این ماهی بر روی پایام‌های رشد. این فراوانی با چهار روند اضافه شده است. ماهی (کاسه‌کی) و با نام Labeobarbus برای B. sharpei و ماهی (کاسه‌کی) در این راستا محققی استفاده می‌شود.
(کاسه‌کی) به‌طور کلی باید بحث و سرچکی از آبزی‌های خانواده کمورهای بوده و در حضور سرچکی بوده و در حضور رودخانه هرات، در خیبر فارس و حوضه هومن انارش دارد (Coad, 1992) در ارتباط اثر ویژگی این ماهی بر روی پایام‌های رشد. این فراوانی با چهار روند اضافه شده است. ماهی (کاسه‌کی) و با نام Labeobarbus برای B. sharpei و ماهی (کاسه‌کی) در این راستا محققی استفاده می‌شود.
(کاسه‌کی) به‌طور کلی باید بحث و سرچکی از آبزی‌های خانواده کمورهای بوده و در حضور سرچکی بوده و در حضور رودخانه هرات، در خیبر فارس و حوضه هومن انارش دارد (Coad, 1992) در ارتباط اثر ویژگی این ماهی بر روی پایام‌های رشد. این فراوانی با چهار روند اضافه شده است. ماهی (کاسه‌کی) و با نام Labeobarbus برای B. sharpei و ماهی (کاسه‌کی) در این راستا محققی استفاده می‌شود.
(کاسه‌کی) به‌طور کلی باید بحث و سرچکی از آبزی‌های خانواده کمورهای بوده و در حضور سرچکی بوده و در حضور رودخانه هرات، در خیبر فارس و حوضه هومن انارش دارد (Coad, 1992) در ارتباط اثر ویژگی این ماهی بر روی پایام‌های رشد. این فراوانی با چهار روند اضافه شده است. ماهی (کاسه‌کی) و با نام Labeobarbus برای B. sharpei و ماهی (کاسه‌کی) در این راستا محققی استفاده می‌شود.
(کاسه‌کی) به‌طور کلی باید بحث و سرچکی از آبزی‌های خانواده کمورهای بوده و در حضور سرچکی بوده و در حضور رودخانه هرات، در خیبر فارس و حوضه هومن انارش دارد (Coad, 1992) در ارتباط اثر ویژگی این ماهی بر روی پایام‌های رشد. این فراوانی با چهار روند اضافه شده است. ماهی (کاسه‌کی) و با نام Labeobarbus برای B. sharpei و ماهی (کاسه‌کی) در این راستا محققی استفاده می‌شود.
(کاسه‌کی) به‌طور کلی باید بحث و سرچکی از آبزی‌های خانواده کمورهای بوده و در حضور سرچکی بوده و در حضور رودخانه هرات، در خیبر فارس و حوضه هومن انارش دارد (Coad, 1992) در ارتباط اثر ویژگی این ماهی بر روی پایام‌های رشد. این فراوانی با چهار روند اضافه شده است. ماهی (کاسه‌کی) و با نام Labeobarbus برای B. sharpei و ماهی (کاسه‌کی) در این راستا محققی استفاده می‌شود.
(کاسه‌کی) به‌طور کلی باید بحث و سرچکی از آبزی‌های خانواده کمورهای بوده و در حضور سرچکی بوده و در حضور رودخانه هرات، در خیبر فارس و حوضه هومن انارش دارد (Coad, 1992) در ارتباط اثر ویژگی این ماهی بر روی پایام‌های رشد. این فراوانی با چهار روند اضافه شده است. ماهی (کاسه‌کی) و با نام Labeobarbus برای B. sharpei و ماهی (کاسه‌کی) در این راستا محققی استفاده می‌شود.
استخراج خاکی مورد استفاده برای پرورش دارای مساحت ۴۸۰۰۰ گرم موی به مقدار ۲۰۰ مترمربع بودند. تعداد سیکورها بر هر متر مربع و در مجموع هر ۱۸۰۱/۵ در صد و در طول مدت گنجنامه نوزادان در استخراج خاکی با هر همکار نانی‌سازی شده از گذشته ۱ از گذشته دستی استفاده شد. نظر به اینکه نیازهای غذایی تمامی ماهیان بر روی داده‌های ورودی مشخص نبود، لذا از داده‌های آزمایش‌های مختلفی با اندازه ۱۰۰ نا میکرو ساخته گردید (ساک کاکاشک و همکاران، ۱۳۸۷). با نگهداری به عملیات ساختنی مناسب ماهیان در طول دوره بروز، در پیامرد صنعتی (عمیقاً مضرب چاقی و ضرب رشد) به روش Begnal (۱۹۷۸) مصرف گردید.

جهت تجزیه تحصیل اطلاعات، هوشمندی از نرم‌افزارهای Excel و SPSS استفاده شد.برای مثال SPSS نرم‌افزارهای استفاده شد و از آن خارج. داده‌ها و مقایسه میان درام‌ها با روش آنالیز واریانس یکنقطه (ANOVA) و روش Duncan و LSD استفاده گردید و درصد اطمینان ۹۵ درصد و (۰/۰۵) CF به روش Begnal (۱۹۷۸) می‌آید:

\[
CF = \frac{W \times 100}{L^3}
\]

\[
L = \text{طول کل ماهی (میلی‌متر)}
\]

\[
W = \text{وزن ماهی (گرم)}
\]

فاکتور ضرب رشد و وزن به روش دیپ محسوب گردید (Begnal, ۱۹۷۸):

\[
SGR = \frac{L_{w_2} - L_{w_1}}{\Delta t}
\]

که در آن:

\[
w_1 = \text{وزن ماهی (گرم) در زمان ۱ (روز)}
\]

\[
w_2 = \text{وزن ماهی (گرم) در زمان ۲ (روز)}
\]

\[L = \text{گستردگی بریزی}
\]

\[\Delta t = \text{دما} + \text{زمان پرورش (روز)}
\]

نتایج

فاکتورهای فیزیکی و شیمیایی مهم برای پرورش مانند کربنیک محلول، درجه حرارت آب و شکافت در طی سالات ۱۲، ۱۶ و ۲۰ در طول دوره ۵ متری اندازه‌گیری شد. نتایج حاصله در جدول ۱ آمده است.

۳
نتایج مربوط به عملیات یک تکیه مصنوعی مولبدین شربت در تیمارهای مختلف در جدول ۱ و نتایج میزان ضرب تیمار (بیچ ماهی) ۷۵ روزه شربت در تیمارهای مختلف در جدول ۲ ارائه شده است.

جدول ۱: نتایج متغیرهای فیزیکی و شیمیایی مورد بررسی در طول دوره پرورش

<table>
<thead>
<tr>
<th>متغیر محیطی</th>
<th>تیمار سه</th>
<th>تیمار دو</th>
<th>تیمار یک</th>
</tr>
</thead>
<tbody>
<tr>
<td>انحراف معیار باکتری (میلیگرم در لیتر)</td>
<td>± ۶۸/۷</td>
<td>± ۶۸/۷</td>
<td>± ۶۸/۷</td>
</tr>
<tr>
<td>pH</td>
<td>± ۶۸/۷</td>
<td>± ۶۸/۷</td>
<td>± ۶۸/۷</td>
</tr>
<tr>
<td>شغالیت (سانتی‌گراد)</td>
<td>± ۶۸/۷</td>
<td>± ۶۸/۷</td>
<td>± ۶۸/۷</td>
</tr>
<tr>
<td>تنیترات (میلیگرم در لیتر)</td>
<td>± ۶۸/۷</td>
<td>± ۶۸/۷</td>
<td>± ۶۸/۷</td>
</tr>
<tr>
<td>فسفات (میلیگرم در لیتر)</td>
<td>± ۶۸/۷</td>
<td>± ۶۸/۷</td>
<td>± ۶۸/۷</td>
</tr>
</tbody>
</table>

جدول ۲: نتایج حاصل از عملیات یک تکیه مصنوعی مولبدین شربت تیمارهای مختلف

<table>
<thead>
<tr>
<th>تیمار مولد ماده (عدد)</th>
<th>تمدید مولد ماده (سانتی‌متر)</th>
<th>طول کل مولد (سانتی‌متر)</th>
<th>طول استاندارد مولدین (سانتی‌متر)</th>
<th>تخم دهنده بازماندنگی لارو (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸</td>
<td>میانگین ۷۱/۸</td>
<td>میانگین ۷۱/۸</td>
<td>میانگین ۷۱/۸</td>
<td>میانگین ۷۱/۸</td>
</tr>
<tr>
<td>۷۷/۷۸</td>
<td>انحراف معیار ۲/۲/۲</td>
<td>انحراف معیار ۲/۲/۲</td>
<td>انحراف معیار ۲/۲/۲</td>
<td>انحراف معیار ۲/۲/۲</td>
</tr>
<tr>
<td>۷۷/۲۲</td>
<td>میانگین ۷۲/۷۵</td>
<td>میانگین ۷۲/۷۵</td>
<td>میانگین ۷۲/۷۵</td>
<td>میانگین ۷۲/۷۵</td>
</tr>
<tr>
<td>۷۲/۷۵</td>
<td>انحراف معیار ۲/۲/۲</td>
<td>انحراف معیار ۲/۲/۲</td>
<td>انحراف معیار ۲/۲/۲</td>
<td>انحراف معیار ۲/۲/۲</td>
</tr>
<tr>
<td>۷۲/۷۵</td>
<td>میانگین ۷۲/۷۵</td>
<td>میانگین ۷۲/۷۵</td>
<td>میانگین ۷۲/۷۵</td>
<td>میانگین ۷۲/۷۵</td>
</tr>
<tr>
<td>۷۲/۷۵</td>
<td>انحراف معیار ۲/۲/۲</td>
<td>انحراف معیار ۲/۲/۲</td>
<td>انحراف معیار ۲/۲/۲</td>
<td>انحراف معیار ۲/۲/۲</td>
</tr>
</tbody>
</table>

جدول ۳: نتایج تولید، رشد به‌چه ماهی و ضرب تیمار بیچ ماهی در تیمارهای مختلف

<table>
<thead>
<tr>
<th>تیمار</th>
<th>تعداد لاروها (میلیگرم)</th>
<th>میانگین طول کل لاروها (میلیگرم)</th>
<th>میانگین وزن جسمانی لاروها (میلیگرم)</th>
<th>میانگین وزن جسمانی ماهی (میلیگرم)</th>
<th>میانگین وزن جسمانی ماهی (میلیگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۹۱±۷۸</td>
<td>۲۳۰±۷۸</td>
<td>۱۰۴±۷۸</td>
<td>۷۸±۷۸</td>
<td>۱۴۴±۷۸</td>
</tr>
<tr>
<td>۲</td>
<td>۳۷/۳±۷۸</td>
<td>۴۳۰±۷۸</td>
<td>۱۰۶±۷۸</td>
<td>۸۰±۷۸</td>
<td>۱۴۲±۷۸</td>
</tr>
<tr>
<td>۳</td>
<td>۱۱۳±۷۸</td>
<td>۴۱۰±۷۸</td>
<td>۱۰۸±۷۸</td>
<td>۹۰±۷۸</td>
<td>۱۴۰±۷۸</td>
</tr>
</tbody>
</table>
جدول ۴: نتایج ضربه رشد وزن بچه‌های نورس شیریت در تیمارهای مختلف

<table>
<thead>
<tr>
<th>تیمار سوم</th>
<th>تیمار دوم</th>
<th>تیمار یک</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین انحراف معیار</td>
<td>میانگین انحراف معیار</td>
<td>میانگین انحراف معیار</td>
</tr>
<tr>
<td>وزن</td>
<td>وزن</td>
<td>وزن</td>
</tr>
<tr>
<td>وزن</td>
<td>وزن</td>
<td>وزن</td>
</tr>
<tr>
<td>وزن</td>
<td>وزن</td>
<td>وزن</td>
</tr>
</tbody>
</table>

جدول ۵: نتایج ضربه قلابی بچه‌های نورس شیریت در تیمارهای مختلف

<table>
<thead>
<tr>
<th>تیمار سوم</th>
<th>تیمار دوم</th>
<th>تیمار یک</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین انحراف معیار</td>
<td>میانگین انحراف معیار</td>
<td>میانگین انحراف معیار</td>
</tr>
<tr>
<td>وزن</td>
<td>وزن</td>
<td>وزن</td>
</tr>
<tr>
<td>وزن</td>
<td>وزن</td>
<td>وزن</td>
</tr>
<tr>
<td>وزن</td>
<td>وزن</td>
<td>وزن</td>
</tr>
</tbody>
</table>

بحث
با توجه به نتایج در طول دوره پرورش میزان اکسیژن محلول در آزمایش مقایسه درصد بازمانده‌گی لاور در تیمارهای مورد آزمایش نشان داد میانگین درصد بازمانده‌گی لاور در تیمار یک 71/64 ± 74 درصد، تیمار دو 87/55 ± 24 درصد و تیمار سه 78/42 ± 42 درصد محسوب گردیده است. در این تحقیق درصد بازمانده‌گی لاور بین افراد و زون مدلین ماه شیره‌ی تعداده و زنی و طول 76/124 ± 79 گرم و طول 79/124 ± 36 سانتی‌متر ظاهر می‌شد. از آن رو که می‌پیاسد (جدول ۳)، نتایج آنالیز وریانس داده‌های تکرارها به هم و سه تیمار نسبت به یکدیگر نشان می‌دهد تیمار دو تیمارهای یک و سه با 95 درصد اطمینان دارای اختلاف معنی‌دار است.

در شرایط پرورش ماهیان در محیط‌های کنترل شده (نظیر استخبار)، هدف دستیابی به حداکثر میزان تولید و رشد در مدت زمان معین (دور پرورش) می‌باشد، اطلاق دقیقی از اکسیژن، pH زیستی ماهی و محیط مطلوب از نظر اکسیژن، دما، شفافیت، نیازهای غیره از دیدگاه است که مناسب بوده. در نتیجه این کرایه‌ها رشد میکروارا در ید فعالیت آبژی‌پوری استخوان با درصد میزان بقای آن تاثیرگذار می‌باشند.

Pyka اندام‌گیری شد. این نتایج نشان‌دهنده بازمانده لاور
با سکاک کامکش و همکاران

اثر وزن و طول مولدین ماهی شیریت روی توپلی و...

در ماهی میزان خاراگاه‌های معمول براساس درصدی از توده زنده میان بیان می‌شود و براساس درصد حرش تازه آب، وزن بدن و دیگر عوامل محاسبه می‌گردد (1990). Guillaume، (2017) تحقیقی در درصد غذایی و تغییر یکی‌کسی برای کلیه ترکیب استفاده گردید. علاوه بر این، میزان مصرف کربوهیدرات آلی و معدنی یکی از دلایل در افزایش وزن و طول مولدین یکی از دلایل سیستمی مواردی است که شاخصه یکی از این زمان کمیت و حاویت چربی در آن ترتیب بوده و ممکن است کننده نماینده تغذیه نیست. فقط وزن و طول مولدین بوده است.

طبق انسان‌شناسی تا کنون منابع متعددی پژوهش و فناوری در مورد تغذیه ماهی کوب معمولی مورد بررسی قرار گرفته است که اکثریت پژوهش‌ها بررسی‌هایی در این زمینه انجام گرفته است.

نحوه حاصل از این آزمایش بیانگر این موضوع است که درصد بیانگر کمیت و تعداد چربی در کل ماهی جسمانی و کاربرد مولی ماهیان نقش بسزایی در حاصل تغذیه ماهیان دارد. نتایج این آزمایش نشان داد که عوامل زمان لزومی بررسی، مصرف کربوهیدرات یکی از عوامل مؤثر روی وزن و طول مولدین ماهی تاثیر دارد. و بررسی‌های دیگر نشان داد که عواملی مانند مصرف کربوهیدرات، وزن و طول میرودی و سایر عوامل موثر روی وزن و طول مولدین ماهیان باعث تغییری در حاصل تغذیه ماهیان می‌شود.

در این مطالعه تاکنون نهایتاً مورد توجه بوده و عوامل موثر روی وزن و طول مولدین ماهیان تاکنون به عنوان عوامل موثر روی وزن و طول مولدین ماهیان بیانگر شده است. این مطالعه یکی از تحقیقاتی است که این اثبات نشان می‌دهد که عوامل موثر روی وزن و طول مولدین ماهیان به عنوان عوامل موثر روی وزن و طول مولدین ماهیان بیانگر شده است.
مطالع
امینی ف.، ۱۳۸۰. بیولوژی کبیر عفونت‌های انتشارات مؤسسه تحقیقات شیلات ایران. ۴۶ صفحه. پسک کاشت. ۱۳۸۷. بررسی اثرات طول مدت مختلف پروتئین و آنزیم چربی غنی بر شاخص‌های رشد شیلات در محیط بزرگ. پژوهشکده آماری شرکت توزیع و پرورش پروتوژن. ۴۷ صفحه. پروژه نامه. یو. ۱۳۸۳. تاثیر سیمون‌اسپاخ در کیفیت نسل خالص از انواع تحقیقات شیلات ایران. ۷ صفحه. سازمان ژنتیک‌زده معیشتی، ج. ۱۳۷۹. سازمان، مکان‌یابی و آمادسازی استفاده از پروتئین‌های نابودی شیلات ایران. ۲۱۳ صفحه. سازمان تحقیقات شیلات ایران، ۱۳۸۲-۷۱. تحقیقات شیلات ایران، شناسه طرح و تسویه شیلات ایران. ۴۳ صفحه. غفلت حرارتی، ج. ۱۳۷۲-۱۳۷۹. بررسی اکوژولوژی بعضی از ماهیان رودخانه زهک، مجله علمی شیلات، سال سوم، شماره ۲، پیش بینی کننده کاهش شیبیت (guppy). مواد تحقیقات شیلات ایران مرکز تحقیقات بزرگ‌شوپ نموده. ۱۳۸۸. یادداشت، ۱۳۷۲-۱۳۷۸. بررسی کمک‌های مختلفی از ماهیان گریز و روزه شناسایی برخی از ماهیان آب شیرین خورشان، مواد تحقیقات شیلات ایران. ۴۱ صفحه. نیک‌پی، م. ۱۳۷۵-۱۳۷۸. بررسی تولید ماهی پنی و ماهی شیبیت در رودخانه کرخه مواد تحقیقات شیلات ایران. ۱۲۰ صفحه. نیک‌پی، م. ۱۳۸۲-۱۳۸۷. بررسی رفتارهای تغذیه ای ماهی شیربیت در دسترسی ماهی پورپور و ماهی پورپور. مواد تحقیقات و آموزش شیلات ایران. ۴۵ صفحه. فرید پاک، ف. ۱۳۷۵. تکثیر و پورپور ماهیان گرم آبی. انتشارات روابط عمومی وزارت کشاورزی. ۲۷ صفحه. هاشمی، م. ۱۳۷۷-۱۳۷۹. تغذیه ماهی، طبیعی و از بینان انتشارات فرهنگ چاپی. ۲۷۸ صفحه.
Boyd C.E., ۱۹۸۲. Water quality in warm water fish ponds. Elsevier Scientific Publication. Amsterdam, Nederland. ۳۱۸P.
Coad B.W., ۱۹۹۲. Freshwater Fishes of Iran. A checklist and bibliography Ichthyology section.
Effects of weight and length of *Barbus grypus* broodstock on fingerlings production and growth

Basak Kahkesh F.(1)*; Yavari V.(2); Eskandari G.R.(3) and Mohammadi G.H.(4)

Foroud.kahkesh@gmail.com

1- South Aquaculture Research Center, P.O.Box: 61545-866 Ahwaz, Iran
2- Faculty of Natural Resources, Marine Science and Technology of Khoramshahr University,
P.O.Box: 779 Khoramshahr, Iran
Received: October 2009 Accepted: September 2010

Keywords: Survival, Special growth coefficient, Condition factor, *Barbus grypus*, Reproduction

Abstract

The effects of weight and length of *Barbus grypus* broodstock on fingerlings reproductive characteristics and growth were investigated. We chose three female treatments including weight and length groups (1) 2212.5±479g, 62.68±6.7cm, (2) 4518±780g, 79.12±4.36cm and (3) 7712.5±1171g, 92.62±3.31cm. The same male broodstock were used for all the treatments with the weight and length size of 1400±100g, 54.62±7.35cm. Female broodstock were injected 3mg/kg PG hormone two times at an interval of 10 hours. Males were injected 2mg/kg once at the time females received their second injection. Larvae and fingerling survival rate and growth indices (special growth coefficient, condition factor) up to the fingerling stage were calculated for all treatments of larvae culture. Fingerling stage in ponds, O₂, pH, temperature, transparency, nitrate, and phosphate were measured and no significant difference was observed (P>0.05) among the ponds. The special growth rate, condition factor, and fingerling survival of the treatments showed no significant differences (P>0.05). However, our results indicated that larvae survival rate had significant differences between treatment 2 and other treatments (P<0.05). These indices increase in broodstock weight up to treatment 2 (4518±780g, 79.12±4.36cm) and after that it will be lowered. We conclude that the treatment 2 broodstock are ideal for fingerling survival and enhancement of growth and condition factors.

* Corresponding author