تهیه کارپوتایپ ماهی سیاه کولی

محمد پورکاظمی(۱)؛ فاطمه کازرونی منفرد(۲)؛ فروزان باقرزاده(۳) و محمدرضا نوروز فشخایی(۴)

پورکازامی_م@yahoo.com

1- ۴- استادی تحقیقات بین‌المللی ماهیان خاویاری، رشت صندوق پستی: ۱۴۱۶۳۵-۲۴۶۴۴۴
2- دانشکده مهیطیتی دانشگاه تهران، تهران صندوق پستی: ۱۴۱۶۳۵-۲۴۶۴۴۴
3- دانشکده منابع طبیعی دانشگاه گیلان، صومعه‌سرا صندوق پستی: ۱۴۴۳-۲۴۶۴۴۴

تاریخ دریافت: اردیبهشت ۱۳۸۸

چکیده

در این بررسی تعداد، نوع کروموزوم‌ها و کارپوتایپ ماهی سیاه کولی (Vimba vimba persa) مورد تحقیق قرار گرفت. برای این منظور ۲۰۰ عدد لارو و ۲۰ عدد یخ ماهی سیاه کولی با همان سن و وزنی ۲/۰ گرم از مرکز تکنیک و پرورش شهید انصاری رشت جمع‌آوری و درایه‌پذیری عفرین تخم‌همایی در مرحله منافازی از حجم کلیه سینه ۱/۰۰ درصد گردن (برای لاروها) به مدت ۶ ساعت و تزریق کلیه سینه ۱/۰۰ درصد داخل شفافی و عضله پشتی برای به‌جای‌آوری استفاده گردید. جهت هیدروئنر کردن یافت‌ها از محلول KCl (۷۵/۰ مولار) و برای تبیین کردن آنها از محلول کارتوئی در سه مرحله استفاده شد. برای رنگ آمیزی لامه‌ها از گیمسای ۱۰ درصد به مدت ۳۰ دقیقه در لاروها و ۲۰ دقیقه برای به‌جای‌آوری استفاده گردید. سپس کروموزوم‌ها در زیر میکروسکوپ بررسی شدند. تعداد ۱۰۰ گنتش کروموزومی در لاروها و ۲۰۰ گنتش کروموزومی در به‌جای‌آوری بررسی و شمارش شد. از مجموع ۳۰۰ لام شمارش شده در مرحله منافاز ۷۷/۶۷ درصد دارای n=۱۲/۶۷ و ۲/۶۷/۵ درصد دارای n=۱۶/۴ درصد شد و به تعداد کروموزوم‌های سیاه کولی n=۵۰/۵۰ (11/11) و تعداد بازوی کروموزومی آن ۱۹۰۰ نتیجه گردید. به منظور تیزی کارپوتایپ از بهترین پلاک‌های منافازی عکس کریک، انتهاز بازه‌های بلند و کرتوئی کروموزوم‌ها، طول نسبی، طول کل کروموزوم و همچنین شاخص‌های محاسبه شدند. با قراردادن جفت کروموزوم‌های همولوگ در کنار همدیگر فرمول کروموزوم‌های آن ماهی ۷ جفت منافازیک، ۱۳ جفت سیاه منافازیک و ۵ جفت ساب تلوستراتیک با اکروستراتیک (۷Vimba vimba persa) نتیجه گردید. در مقابل کارپوتایپ، سیاه کولی با ساب گونه‌های متعلق به این جنس شیب شد.

نوع: کروموزوم

* نویسنده مسئول

لرال کلیدی: کروموزوم

مملکت علمی شیلات ایران

سال نوزدهم / شماره ۲ / تابستان ۱۳۸۹

(۱) دبیرخانه سیاره سلماور

19
پورکانئی و همکاران

مقدمه
ماهی سیاه کولی (Rutilus rutilus) یکی از گونه‌های تولید در جنس Cyprinidae است که در سواحل جنوبی دریای خزر و روستاهای منتهی به آن و همجواران آن رودخانه‌ها قرار دارد. در سال 2013، برای اولین بار این گونه در سلول سیاه کولی کشف شد و از سال 2014 به بعد در شیلات مصرف می‌شود.

مواد و روش کار
به منظور کشت جفت‌گیری ماهی سیاه کولی، الگوی ۲۰۰ عدد از استفاده می‌شود که با بهترین شرایط بروز و نوآوری‌های علمی، در زمان کشت ماهی سیاه کولی، استفاده می‌شود.

研究成果
در این مطالعه، تعداد ۵۰۰ عدد از ماهی سیاه کولی در ارتفاع ۳۰۰ متر از سطح دریای خزر کشت گردیده و در پایان مطالعه، نتایجی در مورد تولید، برداشت و کیفیت محصول در پاییز و تابستان، در سال ۱۳۹۵ و ۱۳۹۶ به دست آمده است.

نتایج
نتایج این مطالعه نشان می‌دهد که ماهی سیاه کولی در ارتفاع ۳۰۰ متر از سطح دریای خزر، با توجه به شرایط محیطی مناسب، می‌تواند با سه تا پنج جفت‌گیری در هر سال، به شیلات و محصولاتی با کیفیت بالا برسد.

حقوق نشر
نگاه کنید، برای انتشار این مقاله، حق نشر به من تعلق ندارد.

پورکانئی و همکاران

در این مطالعه، تعداد ۵۰۰ عدد از ماهی سیاه کولی در ارتفاع ۳۰۰ متر از سطح دریای خزر کشت گردیده و در پایان مطالعه، نتایجی در مورد تولید، برداشت و کیفیت محصول در پاییز و تابستان، در سال ۱۳۹۵ و ۱۳۹۶ به دست آمده است.

نتایج
نتایج این مطالعه نشان می‌دهد که ماهی سیاه کولی در ارتفاع ۳۰۰ متر از سطح دریای خزر، با توجه به شرایط محیطی مناسب، می‌تواند با سه تا پنج جفت‌گیری در هر سال، به شیلات و محصولاتی با کیفیت بالا برسد.

حقوق نشر
نگاه کنید، برای انتشار این مقاله، حق نشر به من تعلیق ندارد.
نتایج

براساس روش کار ارائه شده گسترش‌های کروموموزی هم‌اکنون در ایران، کلیه سینی یک و بیش از ۱۰۰ گرم وزن ماهی (۱۵ میلی‌لیتر) کلیه سیم ۱۰۱/۰ درصد (۶/۱۰۰ گرم) به داخل صفحه ماهی به نشانه یک عضله پیش‌گیری ماهی توزیع گردیده و ماهی به مدت ۲۰۰ دقیقه در آکواریوم مجاز به سیستم فندرانگ تغذیه شد.

با شمارش تعداد کروموموزی در گسترش‌های بست‌نماینده، حداکثر حداکثر و میانگین تعداد کروموموزی هم‌اکنون در این تحقیق نتایجی کامل از احتمال شکل‌نگاری و شناسایی سه‌تایی مشاهده نشد. اما در این آزمایشات، از ابعاد دقیق کروموموزی بهبود گرفت و بهبود متغیر نتایج این تحقیق بهبود یافت و با استفاده از نرم‌افزار Excel و فرمول خطی، طول بازه‌های کروموموزی (بلند و کوتاه) بر حسب میکرومتر اندازه‌گیری گردید.

شناخت سانترزومی طبق فرمول:

\[
CI = \frac{\text{طول پایین کوتاه}}{\text{طول کل هر کروموموز}}
\]

طول نسبی هر کروموموز براساس فرمول:

\[
\text{طول کل هر کروموموز} = \frac{\text{مجموع طول کل همه کروموموزها}}{\text{محاسبه گردید}}
\]
شکل ۱: گسترش کروموزومی بدست آمده از لارو سیاه کولی (۲n=۴۰) با پرگنما، ۸۰۰۰×

شکل ۲: گسترش کروموزومی بدست آمده از بچه سیاه سیاه کولی (۲n=۵۲) با پرگنما، ۸۰۰۰×
به منظور تعیین تعداد کروموموهای ماهی سیاه کولی، روش کار ارائه شده بر روی لاروها ۲ بار و بر روی بچه ماهیان ۵ بار تکرار شد. ۲۰۰ گسترش منظوری از لاروها و ۴۰۰ گسترش از بچه ماهیان شمارش گردید که در این میان بیشترین فراوانی در گروه £۵/۰ (۷۰) مشاهده شد (جدول ۱ و نمودار ۱).

براساس محاسبات آماری و تعیین انحراف از معیار با احتمال ۹۵ درصد، فراوانی تعداد کروموموهای گونه سیاه کولی به £۵/۰ (۷۰) بستگی ندارد (شکل ۳).

براساس طول کل کروموموهای شناخته شده در بیشترین بزرگی کروموموهای حمیل شاخه سانتری، نوع کروموموهایی در سه گروه مختلف سانتریک، سایر سانتریک و سایر گونه منشأ گردید.

جدول ۱: فراوانی تعداد کروموموهای در گسترش‌های کروموموهای شمارش شده در لارو و بچه ماهیان سیاه کولی

<table>
<thead>
<tr>
<th>اندازه‌های ماهی</th>
<th>تعداد منظوری هر شمارش شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>لاور</td>
<td>۴۹</td>
<td>۸</td>
<td>۸</td>
<td>۱</td>
</tr>
<tr>
<td>بچه ماهی</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
</tbody>
</table>

نمودار ۱: پراکنش تعداد کروموموهای شمارش شده در ۲۰۰ گسترش مرحله‌منشأ از بچه ماهی سیاه کولی
جدول ۲: طول پایه‌های کروموزومی، طول کل شاخص سانتروری، طول نسبی و نوع کروموزوم‌های همولوگ در سیاه کولی

<table>
<thead>
<tr>
<th>شماره</th>
<th>جفت کروموزومهای سیاه کولی</th>
<th>طول نسبی هر کروموزوم</th>
<th>طول کل (μm)</th>
<th>طول پایه‌ی کروموزوم (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>M</td>
<td>۱۱۵/۱۳۹</td>
<td>۲۰/۱۱۵</td>
<td>۳۰/۱۱۵</td>
</tr>
<tr>
<td>۲</td>
<td>M</td>
<td>۱۱۵/۱۳۹</td>
<td>۲۰/۱۱۵</td>
<td>۳۰/۱۱۵</td>
</tr>
<tr>
<td>۳</td>
<td>M</td>
<td>۱۱۵/۱۳۹</td>
<td>۲۰/۱۱۵</td>
<td>۳۰/۱۱۵</td>
</tr>
<tr>
<td>۴</td>
<td>M</td>
<td>۱۱۵/۱۳۹</td>
<td>۲۰/۱۱۵</td>
<td>۳۰/۱۱۵</td>
</tr>
<tr>
<td>۵</td>
<td>M</td>
<td>۱۱۵/۱۳۹</td>
<td>۲۰/۱۱۵</td>
<td>۳۰/۱۱۵</td>
</tr>
<tr>
<td>۶</td>
<td>M</td>
<td>۱۱۵/۱۳۹</td>
<td>۲۰/۱۱۵</td>
<td>۳۰/۱۱۵</td>
</tr>
<tr>
<td>۷</td>
<td>M</td>
<td>۱۱۵/۱۳۹</td>
<td>۲۰/۱۱۵</td>
<td>۳۰/۱۱۵</td>
</tr>
<tr>
<td>۸</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۹</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۱۰</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۱۱</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۱۲</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۱۳</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۱۴</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۱۵</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۱۶</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۱۷</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۱۸</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۱۹</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۲۰</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۲۱</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۲۲</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۲۳</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۲۴</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
<tr>
<td>۲۵</td>
<td>Sm</td>
<td>۲۱۸/۲۳۷</td>
<td>۲۵/۲۱۸</td>
<td>۳۵/۲۱۸</td>
</tr>
</tbody>
</table>
شکل 3: گسترش کروموزومی ماهی سیاه کولی (2n=50) با پیوستن‌ای‌‌ی 7000×

شکل 4: کارپوناپ ماهی سیاه کولی (2n=50)
بحث

یکی از مراحل حساس در تهیه گسترش کروموزومی متوافق نمونه سلول‌های در حال تغییر در محیط منافع می‌باشد. این کار از دو روش فرآیند بهره‌برداری نمونه کروموزومی کمیت دارد و نتیجه‌گیری مناسبی از نمونه‌های مطبوع به شکل نمونه‌های مورد آزمایش انگیز می‌گیرد. غلظت مناسب کروموزومی به‌صورت بین ۱۴۰ تا ۴۵۰ گرم/ژلی ارایه می‌گردد و بدون کم‌گذاری گردد (۱۹۷۴).

Marian & Krasznai, (Gold, 1986; Al-Sabti, 1983; 1978)

به منظور تثبیت نمونه سلول‌ها و توقف فعالیت آنزیمی، از محلول فیکسانتئین کاربوزیلین (M酒) و محلول تخمین خالص و ۱ قسمت استیت ناخالص استفاده شد که به این راحتی در محلول استفاده Fontana ;Gold et al., 1990. به منظور تحقیق می‌باشد.

Nowruzfashkhami et al., 2000; et al., 1996

اکثری از محلول‌های تخمین خالص و بطری محلول تخمین خالص و سرد محلول فیکسانتئین تاثیر کردن محلول کهن‌های خلوی مذرع زایدات درستی این سبب ابتدا به تثبیت سلول‌ها

نامناسب می‌باشد.

همانطور که ذکر شد، طبق نتایج بسته آمد این تحقیق ماهیان سایه‌کولی مورد آزمایش‌های ۸۰ عدد کروموزوم (M酒) و محلول‌های مناسبی از مطالعات سپتولزیک انجام شده در مورد کیفیت ماهیان در جدول ۳ آورده شده است.

 연구 ۱۶۵۰۰۰ می‌باشد که این انتباه با متن ۴۷۲۴۵۰۰۰ می‌باشد که این تحقیق می‌باشد.

جدول ۳: تعداد و نوع کروموزوم‌های تعدادی از گونه‌های متعلق به خانواده کپر ماهیان

<table>
<thead>
<tr>
<th>گونه</th>
<th>اسم علمی</th>
<th>M</th>
<th>S</th>
<th>A</th>
<th>T</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>کپر معمولی</td>
<td>Cyprinus cario</td>
<td>100</td>
<td>11</td>
<td>24</td>
<td>0</td>
<td>Zheng, 1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>Al-Sabti, 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>102</td>
<td>12</td>
<td>9</td>
<td>0</td>
<td>Brzuska, 1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td>24</td>
<td>44</td>
<td>164</td>
<td>Fister, 2003</td>
</tr>
<tr>
<td>کپر نفراتی</td>
<td>Hypophthalmichthys molitrixi</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Kirpichnikov, 1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Vasiliev, 1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Zheng, 1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Lingyun, 1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Reddy, 1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Almeida & Lurdes, 1995</td>
</tr>
<tr>
<td>کپر علفیم طاووس</td>
<td>Ctenopharyngodon idella</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Ojima et al., 1972</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Marian & Krasznai, 1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Reddy, 1991</td>
</tr>
<tr>
<td>کپر سرگنه</td>
<td>Aristichthys nobilis</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Marian & Krasznai, 1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Almeida & Lurdes, 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Almeida & Lurdes, 1995</td>
</tr>
<tr>
<td>سم</td>
<td>Abramis brama</td>
<td>82</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>نهاندی و همکاران, 1380</td>
</tr>
<tr>
<td>ماهی طلازکی</td>
<td>Carassius auratus</td>
<td>100</td>
<td>11</td>
<td>24</td>
<td>0</td>
<td>Zheng, 1980</td>
</tr>
<tr>
<td>ماهی سفید</td>
<td>Rutilus furissii kutum</td>
<td>50</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>Vasiliev, 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>8</td>
<td>10</td>
<td>0</td>
<td>نوروزشنخامی و عصرنشاهی، ۱۳۷۴ء</td>
</tr>
<tr>
<td>کلمه</td>
<td>Rutilus rutilus</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Vasiliev, 1985</td>
</tr>
<tr>
<td>سیاه کولی</td>
<td>Vimba vimba persa</td>
<td>50</td>
<td>8</td>
<td>14</td>
<td>0</td>
<td>Rabova et al., 2003</td>
</tr>
<tr>
<td>شاه کولی</td>
<td>Chalcalburnus chalcoides</td>
<td>50</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>Geng & Lin, 2004</td>
</tr>
</tbody>
</table>

سال نوزدهم / شماره ۲ / کاشان ۱۳۸۹

مجله علمی شیلات ایران

[DOI: 10.22092/ISFJ.2017.109897]
پورکامی و همکاران

منابع

اسماعیلی، ح. ر. پیرآو، ز. 1386. بررسی کاریوتایپ ماهی گل چراغ در استان فارس ماله علی شیلات ایران Garra rufa چراغی. شماره 11، شالش، صفحه‌های 30-31.

Vasilev V.P., 1985. Evolutionary karyology of fishes. Nauka, Moscow, 300P.

Karyotyping of *Vimba vimba persa*

Pourkazemi M. (1)*; Kazerooni Monfared F. (2); Bagherzadeh F. (3) and

Nowruzfashkhami M.R. (4)

Pourkazemi_m@yahoo.com

1 & 4- International Sturgeon Research Institute, P.O.Box:41635-3464 Rasht, Iran
2- Faculty of Environment, University of Tehran, P.O.Box:14155-6135 Tehran, Iran
3- Faculty of Natural Resources, University of Guilan, P.O.Box:1144 Sowmeh Sara, Iran

Received: May 2008 Accepted: June 2010

Keywords: Chromosome, *Vimba vimba persa*, Cytogentic, Caspian Sea

Abstract

The chromosome number and type as well as karyotype in *Vimba vimba persa* were studied. A total of 200 larvae and 10 fingerlings of this species with an average weight of 30.2g obtained from Shahid Ansari fish hatchery. To arrest mitosis in metaphase, larvae under study were placed in a 0.05% solution of colchicine for a period of 6h while the fingerlings were given an intramuscular injection of 0.01% colchicine. The tissues were let to stand in a hypotonic solution of 0.075M KCl and were then treated with a fixative (Carnoy’s solution) in three steps. The chromosomes were then stained with 10% Giemsa solution for 20 min (larvae) and 30 min (fingerlings) and examined under a light microscope. 100 metaphase plates were studied in *V. vimba persa* larvae and 200 metaphase plates were studied for fingerlings. Based on the count of 300 metaphase plates 74.67% showed 2n=50, 14.67% showed 2n=48 and in 4.67% 2n=49. Based on statistical analysis the chromosome number in this species was calculated as 2n=50 (49.54±0.11) and the number of chromosome arms (NF) was determined as 90. Appropriate metaphase plates were photographed in order to prepare karyotype. The size of the chromosomes (short and long arms), relative length of chromosome and centromere index was calculated. By arranging homologous chromosomes beside each other the chromosome formula was calculated as 7 pairs of Metacentric, 13 pairs of Sub-Metacentric and 5 pairs of Sub-Telocentric or Acrocentric chromosomes (7M±13Sm±5St/A). On the basis of the number and type of chromosomes, the karyotype obtained for this species was similar to that for other species belonging to the same genus.

* Corresponding author