(Argyrosmus hololepidotus) زیستشناسی تولید مثل و تغذیه میش ماهی در آبهای ساحلی استان خوزستان

مجد شکاری(۱); احمد سواری(۲); جاسم غزله مرعشی(۳); غلامرضا اسکندری(۴); محمد تقی رونق(۵)

احمدرضا هاشمی(۶); کاظم درویش بسطامی(۷); محمود سینایی(۸); و محمد تقی کاشی(۹)

Darvish_60@yahoo.com

۲- و ۵- دانشکده علوم دریایی، دانشگاه علوم و فنون دریایی خرمشهر پست‌ی: ۷۶۹۶۱۹۷۶۸-۵۲۸۲۴۲۷
۷- موسسه ملی ابیاتون شناسی، تهران پست‌ی: ۷۶۶۹۷۶۲-۵۲۸۲۲۷۹

۱۴۱۷-۱۴۰۶- واحد علوم و تحقیقات دانشگاه آزاد، تهران پست‌ی: ۷۶۶۹۷۲۰-۴۷۶۱۴۷۹

تاریخ دریافت: اسفند ۱۳۸۷
تاریخ پذیرش: تیر ۱۳۸۹

چکیده

در این مطالعه خصوصیات زیستی میش ماهی از ماه ماه ۱۳۸۲ تا شهریور ماه ۱۳۸۷ در آبهای ساحلی خوزستان مورد مطالعه قرار گرفته است. بیشترین میانگین (± انحراف میانگی) طولی ۱۶۳±۳۱/۲ سانتی‌متر در ماه و کمترین میانگین (± انحراف میانگی) طولی ۵۰±۱۷/۲ سانتی‌متر بود که در اردیبهشت ماه به دست آمد. بیشترین وزن ۴۰۰±۱۵۰ گرم و کمترین وزن ۵۰±۴۰ گرم و میانگین (± انحراف میانگی) وزنی نرها و ماده‌ها برابری ۴۰/۲±۴۰/۲ گرم بود. اوج رسیدگی جنسی برای میش ماهی در مارس ماه است. رابطه طول و وزن ماهی (W/L۷۵) = ۰/۵۳۵ بود. نسبت جنسی ماهی به نر/۰/۸۳۵:۰/۵۴۸ و امروزه گام یک مربع اختلاف معنی‌داری را نشان نداد (P>0/۰۵). میانگین (± انحراف میانگی) وزنی نرها و ماده‌ها (۵۶/۴ درصد)، نسبت بیشترین وزنی (۵/۸ درصد) برابری بود. بیشترین میزان فاکتور وضعت نشان داد که میزان این فاکتور در طول سال متفاوت بوده و بیشترین مقدار آن در اردیبهشت ماه می‌باشد. بررسی نتایج بیشترین نوشیدنی بودن مصرف نشان داد که در این گونه قدیم ماهی نسبت به جنس نر پرخورتر بوده و همچنین این گونه در قصل تخم‌رسی تغذیه می‌کند.

نقوی‌سدنگ مسئول

لنز کلیدی: میش ماهی، خصوصیات زیستی، خلیج فارس Argyrosmus hololepidotus
مقدمه
خلیج فارس و دریای عمان در گراینده‌گونه‌های مختلفی از ماهیان میانهایی به تاثیر همکاری و برقراری روابط اجتماعی میانگینی در سواحل خوزستان وارد شده‌اند. ماهی‌های ماهی‌سازی و گونه‌های ماهی‌سازی مانند Argyrosomus hololepidotus و A. hololepidotus (A. hololepidotus) در خلیج ایران، ماهی‌گیران، نامی‌گیران، اسیرنی‌گیران، هند ماهی‌گیران، که در دو نوع سواحل خوزستان وارد شده‌اند، همچنین ماهی‌یزدی‌ها از این گونه‌ها در سال‌های 1379 و 1380 بوده است. (گزارش‌های اجرایی شیلات خوزستان) در آنچه به یاد بوده، یکی از نتایجی که به خود دارد، اینکه گونه‌ها در مرحله جوانی در جنگلهای منطقه‌ای و مساوی، در مرحله بلند در سواحل شنی، مکانی و نیز در آب‌پذیری کم‌ریزه‌های زیست‌محیطی ماهی‌ها می‌توان نسبت به اجتماع نشان دهنده می‌باشد و ماهی‌ها در این منطقه به‌طور مداوم در سواحل خوزستان ماهی‌سازی می‌کنند و یکی از ماهی‌هایی که این گونه جز غنی‌ترین ماهی‌های در خلیج فارس است (Hall, 1986) (Endangered) می‌باشد.

Mobid و Rosh کار
منوهای ماهی ماهی‌سازی در سواحل ماهی‌سازی از ماه مه 1378 تا شهروند 1387 از مناطق تخلیه سیاه استان (آسای سیاه‌پوشان، بدر صیادی کوهبنان و شرقی صیادی اروندکار) جمعیتی و هم‌بینی‌ها ماهی‌سازی و تحمیل حیاتی هر جنوب کشور مشترک گردید. در کل، گروه نوجوانان، گروه نوجوانان و گروه نوجوانان از کل گروه نوجوانان، 69 ماهی ماهی‌سازی در استان سیاه استان سیاه استان (Stephan & Battaglene, 2004) و قابلیت اولیه، مسئولیت می‌باشد.

Material از ذیل در زمینه انجام‌شده است که دارای میزان خاصیت در درف و مصرف صنعتی را دارد و همچنین برگزینی ماهی خلیج فارس (A. hololepidotus) و ماهی‌های در این منطقه انجام شده است. (Stephan & Battaglene, 2004)
جهت معین‌سازی به سه دستگاه همراه با استفاده از معادله (Euzen, 1987) در آزمون مربع کای از طبق فرمول

\[X^2 = \sum (O_i - E_i)^2 / E_i \]

به دست آمده که در آن:
\[F = nG/g \]

به روش و در این رابطه استفاده شده و برای تخمین G و همچنین روند تغییرات وضعیت به قابلیت تخمیزی از فرمول زیر استفاده شد (Biswas, 1993):

\[HS1 = (Hw/Bw) \times 100 \]

که در آن:
\[HSI = شاخص بدن کیفی \]
\[Hw = وزن کل بدنساز (گرم) \]
\[Bw = وزن کل بدنساز (گرم) \]

\[W = \text{طول اصلی (L)} \]

\[K_0 = \text{فاکتور چاقی (W) / وزن مناسب (G)} \]

\[S_w = \text{وزن قابل مصرف معیار (گرم)} \]

\[T_s = \text{وزن ماهی ماهی (گرم)} \]

\[L = \text{طول کل ماهی (سانتی‌متر)} \]

\[S_m = \text{وزن ماهی ماهی (گرم)} \]

به طور کلی، این رابطه‌ها برای محاسبه و بررسی وضعیت و بدن‌سازی ماهی‌ها در این منطقه مورد استفاده قرار می‌گیرند.
جدول 1: فراوانی نواحی ماهی ماهی میش (A. hololepidotus) در آب‌های مختلف سال در آب‌های ساحلی خوزستان (1387-88)

<table>
<thead>
<tr>
<th>ماه</th>
<th>تعداد (درصد)</th>
<th>نر (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مهر</td>
<td>33/3</td>
<td>77/7</td>
</tr>
<tr>
<td>آبان</td>
<td>25</td>
<td>50/5</td>
</tr>
<tr>
<td>فوروردین</td>
<td>50/6</td>
<td>44/4</td>
</tr>
<tr>
<td>اره‌پخته</td>
<td>59/9</td>
<td>41</td>
</tr>
<tr>
<td>خرداد</td>
<td>26/5</td>
<td>37/5</td>
</tr>
<tr>
<td>تیر</td>
<td>36/4</td>
<td>38/6</td>
</tr>
<tr>
<td>مرداد</td>
<td>23/4</td>
<td>32/3</td>
</tr>
<tr>
<td>شهریور</td>
<td>26/2</td>
<td>36/6</td>
</tr>
</tbody>
</table>

جدول 2: تغییرات ماهانه نسبت چنسی ماهی میش (A. hololepidotus) در آب‌های ساحلی خوزستان (1387-88)

<table>
<thead>
<tr>
<th>نسبت چنسی</th>
<th>تعداد (F)</th>
<th>نر (تعداد)</th>
<th>نیم (تعداد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مهر</td>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>آبان</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>فوروردین</td>
<td>9</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>اره‌پخته</td>
<td>13</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>خرداد</td>
<td>21</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>تیر</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>مرداد</td>
<td>14</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>شهریور</td>
<td>74</td>
<td>49</td>
<td>25</td>
</tr>
<tr>
<td>جمع</td>
<td>134</td>
<td>74</td>
<td>60</td>
</tr>
</tbody>
</table>

شکل 1: نمودار بیشترین مقادیر نفوذ پیشتر نواحی ماهی میش (A. hololepidotus) در آب‌های ساحلی خوزستان (1387-88)
جدول ۳: شاخص HSI و GSI در جنس نر و ماده میش ماهی (A. hololepidotus) در آبهای ساحلی خوزستان (۸۸-۹۸)

<table>
<thead>
<tr>
<th>(ماده)</th>
<th>HSI (ماده)</th>
<th>GSI (ماده)</th>
<th>(نر)</th>
<th>HSI (نر)</th>
<th>GSI (نر)</th>
<th>ماه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۱۵±۰/۷۴</td>
<td>۱/۱۵±۰/۷۴</td>
<td>۱/۱۵±۰/۷۴</td>
<td>۱/۱۰±۰/۷۴</td>
<td>۱/۱۰±۰/۷۴</td>
<td>۱/۱۰±۰/۷۴</td>
<td>مهر</td>
</tr>
<tr>
<td>۱/۱۰±۰/۷۴</td>
<td>۱/۱۰±۰/۷۴</td>
<td>۱/۱۰±۰/۷۴</td>
<td>۱/۱۰±۰/۷۴</td>
<td>۱/۱۰±۰/۷۴</td>
<td>۱/۱۰±۰/۷۴</td>
<td>آبان</td>
</tr>
<tr>
<td>۱/۸۸±۰/۷۲</td>
<td>۱/۸۸±۰/۷۲</td>
<td>۱/۸۸±۰/۷۲</td>
<td>۱/۸۸±۰/۷۲</td>
<td>۱/۸۸±۰/۷۲</td>
<td>۱/۸۸±۰/۷۲</td>
<td>فروردین</td>
</tr>
<tr>
<td>۱/۳۲±۰/۷۱</td>
<td>۱/۳۲±۰/۷۱</td>
<td>۱/۳۲±۰/۷۱</td>
<td>۱/۳۲±۰/۷۱</td>
<td>۱/۳۲±۰/۷۱</td>
<td>۱/۳۲±۰/۷۱</td>
<td>اردیبهشت</td>
</tr>
<tr>
<td>۰/۹۱±۰/۸۰</td>
<td>۰/۹۱±۰/۸۰</td>
<td>۰/۹۱±۰/۸۰</td>
<td>۰/۹۱±۰/۸۰</td>
<td>۰/۹۱±۰/۸۰</td>
<td>۰/۹۱±۰/۸۰</td>
<td>خرداد</td>
</tr>
<tr>
<td>۰/۵۷±۰/۷۰</td>
<td>۰/۵۷±۰/۷۰</td>
<td>۰/۵۷±۰/۷۰</td>
<td>۰/۵۷±۰/۷۰</td>
<td>۰/۵۷±۰/۷۰</td>
<td>۰/۵۷±۰/۷۰</td>
<td>تیر</td>
</tr>
<tr>
<td>۰/۰۷±۰/۷۷</td>
<td>۰/۰۷±۰/۷۷</td>
<td>۰/۰۷±۰/۷۷</td>
<td>۰/۰۷±۰/۷۷</td>
<td>۰/۰۷±۰/۷۷</td>
<td>۰/۰۷±۰/۷۷</td>
<td>مرداد</td>
</tr>
<tr>
<td>۰/۴۷±۰/۸۲</td>
<td>۰/۴۷±۰/۸۲</td>
<td>۰/۴۷±۰/۸۲</td>
<td>۰/۴۷±۰/۸۲</td>
<td>۰/۴۷±۰/۸۲</td>
<td>۰/۴۷±۰/۸۲</td>
<td>شهریور</td>
</tr>
<tr>
<td>۰/۲۲±۰/۸۰</td>
<td>۰/۲۲±۰/۸۰</td>
<td>۰/۲۲±۰/۸۰</td>
<td>۰/۲۲±۰/۸۰</td>
<td>۰/۲۲±۰/۸۰</td>
<td>۰/۲۲±۰/۸۰</td>
<td>دی</td>
</tr>
</tbody>
</table>

نمودار ۱: رابطه طول- وزن میش ماهی (A. hololepidotus) نر در آبهای ساحلی خوزستان (۸۸-۹۸)

نمودار ۲: رابطه طول- وزن میش ماهی (A. hololepidotus) ماده در آبهای ساحلی خوزستان (۸۸-۹۸)
نمودار ۳: تغییرات ضریب چاقی (K) در جنس نر و ماده میش ماهی (A. hololepidotus) در آهای ساحلی خوزستان (۸۸-۱۳۸۷).

جدول ۱: نتایج تحلیل‌های بودن محدود (CV) در جنس نر و ماده میش ماهی (A. hololepidotus) در آهای ساحلی خوزستان (۱۳۸۷-۸۸)

<table>
<thead>
<tr>
<th></th>
<th>CV(ماده)</th>
<th>CV(نر)</th>
<th>CV(کل)</th>
<th>ماه</th>
</tr>
</thead>
<tbody>
<tr>
<td>مهر</td>
<td>۷/۱۳۲</td>
<td>۷/۱۳۷</td>
<td>۷/۱۳۴</td>
<td>۷/۱۳۴</td>
</tr>
<tr>
<td>آبان</td>
<td>۷/۱۳۴نک</td>
<td>۷/۱۳۲نک</td>
<td>۷/۱۳۳نک</td>
<td>۷/۱۳۳نک</td>
</tr>
<tr>
<td>فروردین</td>
<td>۷/۱۳۰</td>
<td>۷/۱۳۰</td>
<td>۷/۱۳۰</td>
<td>۷/۱۳۰</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>۷/۱۳۴</td>
<td>۷/۱۳۴</td>
<td>۷/۱۳۴</td>
<td>۷/۱۳۴</td>
</tr>
<tr>
<td>خرداد</td>
<td>۷/۱۳۵</td>
<td>۷/۱۳۵</td>
<td>۷/۱۳۵</td>
<td>۷/۱۳۵</td>
</tr>
<tr>
<td>تیر</td>
<td>۷/۱۳۲</td>
<td>۷/۱۳۲</td>
<td>۷/۱۳۲</td>
<td>۷/۱۳۲</td>
</tr>
<tr>
<td>مرداد</td>
<td>۷/۱۳۵</td>
<td>۷/۱۳۵</td>
<td>۷/۱۳۵</td>
<td>۷/۱۳۵</td>
</tr>
<tr>
<td>شهریور</td>
<td>۷/۱۳۴</td>
<td>۷/۱۳۴</td>
<td>۷/۱۳۴</td>
<td>۷/۱۳۴</td>
</tr>
<tr>
<td>میانگین</td>
<td>۷/۱۳۴</td>
<td>۷/۱۳۴</td>
<td>۷/۱۳۴</td>
<td>۷/۱۳۴</td>
</tr>
</tbody>
</table>

تکمیل‌شدن گروه‌های تغذیه‌ای بافت شده در ماده این ماهی نشان داد که ماهی‌ها با ۲۵ درصد بیشترین فراوانی را داشته و بعدی را به خود اختصاص دادند (نمودار ۴).

نمودار ۴: ترکیب محتوای ماده ماهی (A. hololepidotus) در آهای ساحلی استان خوزستان (۸۸-۱۳۸۷).
بحث

بهای علامت‌های دیده شده در اینجا، مطالعات آنها، امکان اعمال ضروری به‌عنوان مثال، مطلوبیتی برای تحقیق در زمینه تخریب ترکیبات از مجموعه‌های آبی‌رود هستند. این تحقیق، به‌عنوان مثالی برای تحقیق در زمینه تخریب ترکیبات از مجموعه‌های آبی‌رود هستند. این تحقیق، به‌عنوان مثالی برای تحقیق در زمینه تخریب ترکیبات از مجموعه‌های آبی‌رود هستند. این تحقیق، به‌عنوان مثالی برای تحقیق در زمینه تخریب ترکیبات از مجموعه‌های آبی‌رود هستند. این تحقیق، به‌عنوان مثالی برای تحقیق در زمینه تخریب ترکیبات از مجموعه‌های آبی‌رود هستند.

سال توزیع/ بهمن 1389

مجله علمی شیلات ایران

۷۳
متجه شکاری و همکاران

بترين ب ۱۳۹۶/۲۶/۱۸ و ۲۷/۸/۱۳۹۶ محاسبه شده كه بيانگر اين موضوع است که مايه ماهي تخم‌های بيشتری نسبت به شوریده تولید می‌کند. اما در عضو مايه ماهی شوریده به ازاي واحد وزن خود تحصیل بیشتری می‌کند در نتیجه حجم نسبی ماهی شوریده بيشتر از مايه ماهی است. همچنین تعداد تخم‌های است اما در عوض ماهی P. diacanthus ماهی کمتر است. به P. diacanthus

مايه به ازاي واحد وزن خود تخم بيشتری نسبت به P. diacanthus

انتشارات موسسه تحقیقات شیلات ایران ۲۰۰۰ شماره تهران‌یزد و بزرگ‌شهرها ۲۴۱۶. آمار کاسران هیروه برنامه گاری (برنج) ۴۸۸ شماره ۳۸۸۸. ۸۸ شماره

Hall D.A., 1986. An assessment of the mulloway (Argyrosomus hololepidotus) fishery in Australia with particular reference to the Coroong Lagoon. Discussion paper, Department of Fisheries, South Australia. 41P.

ملاحظه

اسکندری غرر. ۱۳۷۸. بررسی تغذیه و تولید مثل ماهی شوریده در سواحل استان خوزستان. مجله علمی شیلات ایران. سال هشتم، شماره ۲. تابستان ۱۳۷۸. صفحات ۲۵ تا ۴۱.

پایه، ف: محمودی، ع. و روفق، م. ۱۳۸۰. بررسی زیست شناختی ماهی ماهی منقوط برخه‌های سمی شماره ۲۰۰۰. ۱۲۵ صفحه.

Reproduction and feeding biology of Madagascar Meager
(Argyrosomus hololepidotus) from Khuzestan coastal waters

Shekari M.(1); Savari A.(2); Ghofleh Maramazi J.(3); Eskandari Gh.(4);
Ronagh M.T.(5); Hashemi A.(6); Darvish Bastami K.(7)*; Sinaie M.(8) and
Kashi M.T.(9)

Darvish_60@yahoo.com

1,2 & 5- Faculty of Natural Resources, Marine Science and Technology of Khoramshahr University,
P.O.Box: 779, Khoramshahr, Iran
3, 4, 6 & 9- South Aquaculture Research Center, P.O. Box: 61645-877 Ahwaz, Iran
7- Iranian National Institute for Oceanography (INCO), P.O.Box: 14118-13389 Tehran, Iran
8- Research and Science Branch of Islamic Azad University, P.O. Box: 14515-775 Tehran, Iran

Received: March 2009 Accepted: July 2010

Keywords: Argyrosomus hololepidotus, Biological attributes, Persian Gulf

Abstract

Biological attributes of Madagascar Meager (Argyrosomus hololepidotus) was studied from October 2008 to September 2009 in coastal waters of Khuzestan province. Average maximum length was 128.4±7.50 in October and average minimum length was 104.86±12.47 in May. The maximum weight was 27500g, the minimum weight was 5700g and mean weight for males and females were 15.222±4.40 and 16.942±5.09, respectively.

Reproductive studies showed that peak maturity season occurred in July. The length-weight relationship were calculated as W=0.042L^{2.70} for males and W=0.06L^{2.61} for females. The male-female sex ratio was calculated as 1:1.07 and chi-square analysis showed no significant difference (P>0.05) between the two sexes. The average absolute and relative fecundity were estimated to be 4054045±37265 and 179.19±50.41, respectively Madagascar Meager is carnivore and we found the diet of the species consisted of fish (75%), crustaceans (20%) and mollusks (5%). Analysis of monthly variation in the condition factor (K_{o}) indicated a fluctuation throughout the year, with a high level during May. Vacuity index indicated a higher feeding rate in males compared to females. We also found that the species continues feeding in the spawning season.

*Corresponding author