اثر شدت و دوره‌های نور بر رشد و زیتوهه Chlorella vulgaris میکروجلبک

زهراء آمینی خوشنی(1)؛ سید جعفر سیف آبادی(2) و زهره رضوانی‌پور(3) jaseyfabadi@gmail.com

1- دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور صندوق پستی: 36144-364، تهران
2- دانشکده تحقیقات بینالمللی معاونان خارجی، رشت صندوق پستی: 42418-3650، رشت
3- انجمن مهربانی، تهران
تاریخ دریافت: آذر 1388 تاریخ پذیرش: مهر 1389

چکیده

در این تحقیق اثرات شدت نور 400 و 100 میکرومول فوتون بر مترمیتر در تانهای و دوره‌های روشتابی تلاطم Chlorella vulgaris مورد بررسی قرار گرفت. استودیو اولیه از تاپل انلی جداسازی و خالص گردید و در ارنامه 1000 میلی لیتر در دما 25 درجه سانتی‌گراد و با استفاده از محیط (N+8 K) کشت شد. شمارش سلولی بر رویانه از تمیز‌کننده مختلف صورت گرفت و مقدار زیتوهه در اواخر فاز نهایی رشد اندکه‌گیری شد. آنالیز واریانس تفاوت معنی‌داری را در بین تیمارهای مورد نظر داد (P<0.05). البته نیز نرخ رشد 2/13 در روز در شدت 100 میکرومول فوتون بر مترمیتر در تانهای و دوره نوری 2/67 ممایه در نتیجه افزایش در بین تیمارهای مورد نظر داشت. در حالیکه کمترین زمان در نور نیمه نور اتفاق افتاد. پیشرفت زیتوهه 4/78 در گرم در 124/2 در شدت، نور 16/24 میکرومول فوتون بر مترمیتر در تانهای و دوره نوری 16/24 تولید شد.

لفت کلیدی: جلبک، دوره روشتابی، نرخ رشد، تولید اولیه

مقدمه

فرآیند سازگاری نوری (Photoadaptation) کنترل می‌شود در این فرآیند، تغییرات در دنبالکده، فراساختار، بیوفیزیکی و فیزیولوژی جلبک‌ها اتفاق می‌آید که آنها را قادر به سازگاری با تغییر شرایط محیطی می‌سازد (Harrison et al., 1990; Danesi et al., Sanchez-Saavedra & Voltolina, 2002; Etheridge & Roessler, 2005: 2004). شدت و ماهیت دوره‌های نوری متغیر می‌باشند، مقادیر کمی و کیفیت نور باعث ایجاد پاسخ‌های مختلف در جلبک‌ها می‌شود. از مهارت‌های اصلی جلبک‌ها به تغییر در ترکیب رنگ‌گذاری‌ها، تغییر در منجره انگلیکان، دانه‌پوشی، رونده فتوسنتز، رونده نسل‌سازی و همچنین تغییر در ترکیب بیوشیمیایی و در نتیجه تغییر در روند رشد جلبک‌ها اشاره کرد. اثر نر نور بر تغییرات بیوشیمیایی و فتوسنتز جلبک‌ها با نویسنده مسئول

[DOI: 10.22092/ISFJ.2017.109952]
همچنین این عامل بر فعالیت‌های آنزیمی و سنتز مکروموکول‌ها تأثیر دارد (Boutefias et al., 2006; Fabregas et al., 2001). در بررسی Liu et al., 2007 خاصیت مور میزان نیاز است. هر گیاهی میزان نیاز درفتی توسط گیاه کمتر از دامنه تحلیل آن درست گزارش نماده می‌گردد. نظم فعالیت نخواه یک‌همچنین در شرایط نور فاقد از آن است. نیاز ترکیبات سلولی بیشتری را خواهد کرده که عبور به شده و فتوسنتز (Richmond, 2004; Ma et al., 2002; Gatenby et al., 2003).

امروزه میکروجیلک‌ها در صنایع دیگری مانند چره بروش گل‌کوب مراحل اولیه تولید، ثغیری کردن، سیگارو، ماهی، زنبورها و استفاده می‌شود. بروش و تولید غلیظ زنبور به‌کمک بیشتری جمله‌گذاری و بهبود خاصیت و مقاومت به سیگارو و احتمالاً دیگر بخش‌های جهت تغییر عادات برخورد است. انتظار می‌رود که این امکان برخورداری از شرایط محیطی مختلف در مقایسه با از آزمایشگاه‌های دیگر را افزایش دهد. به‌طوری‌که شرایط متفاوت توسط شرایط محیطی مختلف ارزیابی شود.

مواد و روش کار

جلبک Chlorella vulgaris از تالاب‌های آبی در آزمایشگاه‌های آکواریوم است. بین سال‌های ۱۹۶۵ و ۱۹۷۵، ۱۰۱ میکرومول فوتون به مترا مربع در برابر ۲۴ ساعت مدت گزارش با درجه سانتی‌گراد ۵ در میان می‌گردید. در میان از گونه‌ها، نیاز بیشتری شرایط را توانایی داشته باشد که در اینجا می‌تواند در محیط‌های مختلف تولید گردد. به‌طوری‌که به شرایط محیطی مختلف ارزیابی شود.

محاسبه شد (Janett et al., 1997) از (Zehnder & Gorham, 1960) ۱۹۰۵ سولون (Z.6) با هم‌پدیدانی (۲+3) نسبت ۹۰ درصد است. سیستم تولید و (Binder, Germany, ۲۵۰L capacity) و (Zehnder & Gorham, 1960) از درجه سانتی‌گراد فوتون. تنظیم نور توسط SPSS محاسبه شد.
مجله علمی شیلات ایران

شماره 3 / پاییز 1389

نامه

با شماره سلول‌های جلبک کلر، محتوی رشد در سه شدت نور 37/5 و 100 میکرومول فوتون بر مترمربع در ثانیه در دوره‌های نوری (روشنایی: تاریکی، 12/14 و 8/16 ساعت) تریم گردید (نمودار 1 الف). در شدت نور 37/5 میکرومول فوتون بر مترمربع در ثانیه، طولانی‌ترین دوره رشد مربوط به دوره 148 ساعت بود که حداکثر غلظت سلول‌ها تا روز دهم به 6/40×1010 سلول در میلی‌لیتر رسید. پس از آن در دوره 12/14 تعداد سلول‌ها در روز نهم حداکثر به مقدار 6/40×1010 سلول در میلی‌لیتر رسیدند. نرخ رشد ویژه در دوره‌های نوری اختلاف معنی‌داری نشان داد (0/64). بطوریکه بیشترین نرخ رشد ویژه در دوره 8/16 به مقدار 8/16 در روز و کمترین آن در دوره 148 مقدار 16/8 در روز بود (نمودار 1 الف).

در شدت نور 37/5 میکرومول فوتون بر مترمربع در ثانیه، طولانی‌ترین دوره رشد مربوط به 148 ساعت بود که حداکثر غلظت سلول‌ها به 6/40×1010 سلول در میلی‌لیتر رسیدند. پس از آن در دوره 12/14 تعداد سلول‌ها در روز نهم حداکثر به مقدار 6/40×1010 سلول در میلی‌لیتر رسیدند. بطوریکه بیشترین نرخ رشد ویژه در دوره 8/16 به مقدار 8/16 در روز بود (نمودار 1 الف).

در شدت نور 37/5 میکرومول فوتون بر مترمربع در ثانیه، طولانی‌ترین دوره رشد مربوط به 148 ساعت بود که حداکثر غلظت سلول‌ها به 6/40×1010 سلول در میلی‌لیتر رسیدند. بطوریکه بیشترین نرخ رشد ویژه در دوره 8/16 به مقدار 8/16 در روز بود (نمودار 1 الف).

نمودار 1 الف: محتوی رشد در شدت نور 37/5 میکرومول فوتون بر مترمربع در ثانیه
نمونه‌آمار 1: منحني رشد در شدت نور ۲۵/۰۰۵۰۰۰۰ میکرویولت در ثانیه

نمودار 2: منحني رشد در شدت نور ۱۰۰ ۱۰۰۰۰۰۰ میکرویولت در ثانیه

مقادیر نرخ رشد وزه (G) و سرعت دو برای شدت (D) از شاخه‌های رشد هستند که پس از شمارش سلولی از طریق معادلات مربوطه محاسبه شدند (جدول ۱). همانطور که مشاهده می‌شود، بیشترین نرخ وزه مربوط به شدت ۱۰۰ و دوره نوری ۱۶/۰۰۸ با نرخ ۱۳/۰۱۳ در روز و کمترین در ۲۷/۰۰۵ و دوره ۱۶/۰۰۸ به مقدار ۱/۰۴ در روز تعیین شد (جدول ۱).

زمان دو برای شدت نیاز به توانایی در نرخ رشد وزه در همه تیمارها اختلاف معنی‌داری را نشان داد (۵/۰۰۵۰). در مورد زمان برای دو برای شدت ۳۷/۰۰۵ و دوره ۱۶/۰۰۸ زمان برای رشد به مقدار ۱۰۰۰۰۰۰۰ میکرویولت در ثانیه تولید شد. نرخ رشد به مقدار ۳۷/۰۰۵ و دوره ۱۶/۰۰۸ بیشتر در این شرایط با رشد پوسته‌ای از ۳۷/۰۰۵ و بیشتر از ۱۰۰ بود. در این شرایط، نرخ رشد به مقدار ۱۰۰۰۰۰۰۰ میکرویولت در ثانیه پوسته‌ای از میکروایولت در ثانیه تولید شد. نرخ رشد بیشتر در دوره ۱۶/۰۰۸ به مقدار ۸/۰۰۷ گرم در دوره ۱۶/۰۰۸ به مقدار ۸/۰۰۷ گرم در

هم زمان با شمارش سلولی، مقادیر جذب نوری به منظور تعیین حداکثر رشد در تیمارهای مختلف مریک داده شد. معنی‌داری دارد (۵/۰۰۵). حداکثر مقادیر جذب

۱۴
جدول 1: مقایسه ترخ رشد ویژه (گذارنده) نرخ رشد ویژه (گذارنده) سرعت دو برابر شدن (گذارنده) گذارنده جذب نوری در شدت نور (میکرومول فوتون بر مترمربع در ثانیه)

<table>
<thead>
<tr>
<th>شدت نور (میکرومول فوتون بر متر مربع در ثانیه)</th>
<th>37.5</th>
<th>42.5</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>دو برابری نوری در روز ± خطای استاندارد</td>
<td>168</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>نرخ رشد ویژه در روز ± خطای استاندارد</td>
<td>1/81±1/21</td>
<td>1/81±1/21</td>
<td>1/81±1/21</td>
</tr>
<tr>
<td>سرعت دو برابر شدن ± خطای استاندارد</td>
<td>1/14±1/5</td>
<td>1/14±1/5</td>
<td>1/14±1/5</td>
</tr>
<tr>
<td>جذب نوری ± خطای استاندارد</td>
<td>0/8±0/06</td>
<td>0/8±0/06</td>
<td>0/8±0/06</td>
</tr>
</tbody>
</table>

حرفه غیر مشابه در میان دارنده در مقطع 5/0 و 6/0 داشت (P<0.05).

نمودار 2: میزان زیباتردن در شدت و دوره‌های نوری متفاوت
بحث

عامل محیطی مانند نور، دما، و pH تاثیر مهمی بر نرخ رشد و تولید Chlorella vulgaris دارند. کمکی و کمکی نور محیطی عامل تاثیرگذار بسیاری هستند و تولید کربوهیدرات در سلول‌ها می‌بندند (Ma et al., 1997; Zhu et al., 1997; Renaud et al., 1991).

نرخ رشد مهیم راه یافتنی از پهناوری Meseck et al., 2005، اولویت‌های نورتولیدین و گونه نسبت به شرایط محیطی طبیعی از آزمایشگاهی است (Isik et al., 2006; Rivkin, 1989).

مقدار بیشتر نور به ویژه در دمای زمان رشدی به حداکثر تراکم در سه شدت 75/237، 100 و 150 میکروولت در تئوری به دست آمده در پایان دوره رشد در بیماران مورد آزمایش منتفی است. افزایش زمان رشدی میزان رشد در هر دو شدت 75/237 و 100 میکروولت در افزایش بیشتر و طبیعی‌تر بوده تولید در پایه شیمیاء و 700 میکروولت در شدت 100 میکروولت در نتیجه تشکیل شده به زمان محدود نش داشته که علت این افزایش در غلظت 15 درصد تولید رشد و مدیر رشد بوده (Boufeta et al., 2005; Hohnam, 2005).

نتایج تحقیق همچنین نشان داد که علاوه بر فنکل سلول‌ها میزان جذب نوری و مقدار رشد به مقدار آن در پایان دوره رشد در بیماران مورد آزمایش منتفی است. افزایش زمان رشد و غلظت میزان رشد در هر دو شدت 75/237 و 100 میکروولت در افزایش بیشتر و طبیعی‌تر نشان داده که علت این افزایش در غلظت 15 درصد تولید رشد و مدیر رشد بوده (Boufeta et al., 2005; Hohnam, 2005).

در بین دو روش نوری مورد آزمایش کوتاه‌ترین دوره رشد و در نتیجه تشکیل شده (200 میکروولت) غلظت برابر با سلول‌های آبی در دمای زمان رشدی بوده تولید در افزایش بیشتر و طبیعی‌تر نشان داده که علت این افزایش در غلظت 15 درصد تولید رشد و مدیر رشد بوده (Boufeta et al., 2005; Hohnam, 2005).

در بین دو روش نوری مورد آزمایش کوتاه‌ترین دوره رشد و در نتیجه تشکیل شده (200 میکروولت) غلظت برابر با سلول‌های آبی در دمای زمان رشدی بوده تولید در افزایش بیشتر و طبیعی‌تر نشان داده که علت این افزایش در غلظت 15 درصد تولید رشد و مدیر رشد بوده (Boufeta et al., 2005; Hohnam, 2005).

در بین دو روش نوری مورد آزمایش کوتاه‌ترین دوره رشد و در نتیجه تشکیل شده (200 میکروولت) غلظت برابر با سلول‌های آبی در دمای زمان رشدی بوده تولید در افزایش بیشتر و طبیعی‌تر نشان داده که علت این افزایش در غلظت 15 درصد تولید رشد و مدیر رشد بوده (Boufeta et al., 2005; Hohnam, 2005).

در بین دو روش نوری مورد آزمایش کوتاه‌ترین دوره رشد و در نتیجه تشکیل شده (200 میکروولت) غلظت برابر با سلول‌های آبی در دمای زمان رشدی بوده تولید در افزایش بیشتر و طبیعی‌تر نشان داده که علت این افزایش در غلظت 15 درصد تولید رشد و مدیر رشد بوده (Boufeta et al., 2005; Hohnam, 2005).

در بین دو روش نوری مورد آزمایش کوتاه‌ترین دوره رشد و در نتیجه تشکیل شده (200 میکروولت) غلظت برابر با سلول‌های آبی در دمای زمان رشدی بوده تولید در افزایش بیشتر و طبیعی‌تر نشان داده که علت این افزایش در غلظت 15 درصد تولید رشد و مدیر رشد بوده (Boufeta et al., 2005; Hohnam, 2005).

در بین دو روش نوری مورد آزمایش کوتاه‌ترین دوره رشد و در نتیجه تشکیل شده (200 میکروولت) غلظت برابر با سلول‌های آبی در دمای زمان رشدی بوده تولید در افزایش بیشتر و طبیعی‌تر نشان داده که علت این افزایش در غلظت 15 درصد تولید رشد و مدیر رشد بوده (Boufeta et al., 2005; Hohnam, 2005).

در بین دو روش نوری مورد آزمایش کوتاه‌ترین دوره رشد و در نتیجه تشکیل شده (200 میکروولت) غلظت برابر با سلول‌های آبی در دمای زمان رشدی بوده تولید در افزایش بیشتر و طبیعی‌تر نشان داده که علت این افزایش در غلظت 15 درصد تولید رشد و مدیر رشد بوده (Boufeta et al., 2005; Hohnam, 2005).

در بین دو روش نوری مورد آزمایش کوتاه‌ترین دوره رشد و در نتیجه تشکیل شده (200 میکروولت) غلظت برابر با سلول‌های آبی در دمای زمان رشدی بوده تولید در افزایش بیشتر و طبیعی‌تر نشان داده که علت این افزایش در غلظت 15 درصد تولید رشد و مدیر رشد بوده (Boufeta et al., 2005; Hohnam, 2005).

در بین دو روش نوری مورد آزمایش کوتاه‌ترین دوره رشد و در نتیجه تشکیل شده (200 میکروولت) غلظت برابر با سلول‌های آبی در دمای زمان رشدی بوده تولید در افزایش بیشتر و طبیعی‌تر نشان داده که علت این افزایش در غلظت 15 درصد تولید رشد و مدیر رشد بوده (Boufeta et al., 2005; Hohnam, 2005).
Camalti strain of *Dunaliella viridis* Teodoresco from Turkey. Journal of Biological Sciences, 8:1356-1359.

راشد در دوره ۱۵ در شدت‌های نوری مختلف به‌طور معنی‌داری کمتر بوده است. در فتوتریتوافرا مقدار انرژی که در دسترس سیستم فتوسنتز‌کننده قرار می‌گیرد میزان تولید زیتونه و تنبلت کربن را تعیین می‌کند (Tzovenis et al., 2003). بنابراین شاید بتوان گفت که زمان روشنایی طولانی‌تری بازیبیک آسیب بدنی‌ها را به‌دست آورد. باعث افزایش تسمیم سلول‌ها می‌گردد. نتایج تحقیق با معکوس و همکاران (۲۰۰۶) روی سه جزیی سبز آب شیرین نشان داد که دوره‌های طولانی‌تر روشنایی در افزایش تولید زیتونه موثرتر از افزایش شدت نور در زمان کوتاه‌تر است. همچنین افزایش میزان زیتونه در دوره‌های نوری روشنایی تا حد زیادی از معرض روشنایی مداوم بودن نمی‌تواند است.

بررسی‌های این نتایج مشخص گردید که سلول‌های رشد یافته در شدت نور ۲۵/۵ و دوره روشُنایی ۱۸/۱۴ توانایی بالاتری در سازگاری با شرایط محیطی اشتکان و تراکم سلولی و زیتونه بالاتری را دارند. نتایج مشخص نشان می‌دهد که در شدت نور و دوره‌های نوری فتوسنتز و بدنان آلیان تولید زیتونه و سنگین مکروکولولها از زمان توجه به شرایط نور عمیقی در زمان کشش و پروشر میکروژلک‌ها ضروری به نظر می‌رسد.

تشکر و قدردانی

با سیاس columna از مستند‌های استنبوتی بین‌المللی بهمکاری که ایکائو، چ شرکت‌های ایرانی انجام این تحقیق را فراهم نمودند. همچنین از مستند‌های دانشکده علوم دریایی دانشگاه تربیت مدرس تشکر و قدردانی می‌گردد.

منابع

[سیف‌آبادی، س.‌ه.؛ مینی، ف. و ابراهیم‌زاده، ج.‌ه.، ۱۳۸۳] *Skeletonema costatum* ۱۳۸۳. مطالعه میزان ردش، دانشکده علوم دریایی. تحت تأثیر نیک‌کلاد خاکستری نوری مجله علوم زیست‌شناسی شیلات، سال سیزدهم شماره ۲، تابستان ۱۳۸۳، صفحات ۱۱۷ تا ۱۲۴.

Ak L., Cirik S. and Goksan T., 2008. Effect of light intensity, salinity and temperature on growth in

Effect of light intensity and photoperiod on growth rate and biomass of *Chlorella vulgaris*

Amini Khooei Z.\(^{(1)}\); Seyfabadi J.\(^{(2)}\)∗ and Ramezanpour Z.\(^{(3)}\)

jseyfabadi@gmail.com

1,2- Faculty of Marine Science and Natural Resources, Tarbiat Modares University, P.O.Box: 46414-356 Noor, Iran

3- International Sturgeon Research Institute, P.O.Box: 41635-3464 Rasht, Iran

Received: December 2009 Accepted: October 2010

Keywords: *Chlorella vulgaris*, Photoperiod, Growth rate, early stock

Abstract

This study provides information on the effect of three light intensities (37.5, 62.5 and 100\(\mu\)mol photons.m\(^{-2}\) s\(^{-1}\)) and photoperiods (light:dark) cycle 8:16, 12:12 and 16:8h on growth rate, duplication time and biomass production in microalga *Chlorella vulgaris*. Stock of *C. vulgaris* was separated from water samples taken at Anzali Wetland, purified and cultured in 1000ml Erlenmeyer at constant temperature 25±0.5°C, using Zehnder medium. Cell count was conducted daily and biomass was measured at the exponential growth phase in different treatments. Analysis of variance indicated significant difference (P<0.05) among light regimes. The maximum growth rate 1.13d\(^{-1}\) was observed at 100\(\mu\)mol photons.m\(^{-2}\) s\(^{-1}\) and 16:8h light duration and also the minimum duplication time 0.61d\(^{-1}\) occurred at this treatment. The maximum biomass 2.05g.l\(^{-1}\) was recorded at 62.5\(\mu\)mol photons.m\(^{-2}\) s\(^{-1}\) and 8:16h light period.

∗ Corresponding author