بررسی دانشبنی و کریم آمی رسوبات بستر جهت استقرار زیستگاههای مصنوعی
در آبیاب ساحلی هرمزگان

سیامک بهزادی، فعلی اکبرزاده، علی سالارپور و محمد درویشی

S_behzady@yahoo.com

پژوهشکده اکولوژی خلیج فارس و دریای عمان، بندرعباس صندوق پستی: 79145-15977
تاریخ پذیرش: شهروز 1389
تاریخ دریافت: اسفند 1388

چکیده
دانشبنی و کریم آمی رسوبات بستر آبیاب ساحلی حوزه مرکزی و غرب استان هرمزگان جهت انتخاب بهترین مکان برای استقرار زیستگاههای بصورت فصل در سال 1386 بررسی شد. منطقه حد فاصل بین جنوب جزیره فشم تا جزیره هندورابی به 10 تراکمکت 1500 متر طول و 200 متر عرض تقریبی و از روش نمونه‌برداری تصادفی استفاده شد. بیشینه و کمینه درصد ذرات سیلیت در تراکمکت‌های بستر حسینی و بستر چیروهی به ترتیب 57/29 و 25/39 درصد، ذرات ماسا در تسکه‌های بستر حسینی و بستر حسینی به ترتیب 36/79 و 38/79 درصد و ذرات رس در تسکه‌های اسکله بهمن و بستر حسینی به ترتیب 24/7 و 20/2 درصد بست آمده. همچنین تسکه‌های بستر کنگ با 1/64 درصد بیشتری و تسکه‌های جزیره هنگام با 1/60 درصد کمترین مقدار کریم آمی را دارا بودند.

نتایج آنالیز واریانس یک طرفه نشان داد که تسکه‌های جزیره هنگام، بستر حسینی و بستر گره با بیشترین تراکمکت‌های میزان موارد آمی در حال اختلاف می‌باشند (P<0/05). این آزمون برای رسوبات و کریم آمی در 3 زیر تسکه‌های مورد مطالعه هیچگونه اختلاف معنی‌داری را نشان نداد (P>0/05). نتایج حاصل از آزمون هموگینیزی بین دانشبنی و کریم آمی در دو سطح نشان داد که ارتباط معنی‌داری (P<0/01) بین درصد ذرات سیلیت (P=0/03) و رس (P=0/01) با کریم آمی وجود داشته است. اولویت تراکمکت‌های مورد مطالعه جهت انتخاب مناطق بهبود استقرار زیستگاه‌ها بر حسب استحکام بستر (جزیره هنگام، بستر حسینی، صنف و چیروهی) تولید (جزیره هنگام، بستر حسینی، صنف) می‌باشد.

لغات کلیدی: زیستگاه مصنوعی، اکوسیستم، مناطق ساحلی، خلیج فارس
مقدمه
робوت‌های بازیگر در خطوط ساحلی در دهمه گذشته زیستگاه‌های طبیعی برخی از آبزیان خلیج فارس از آن برداشته‌اند، زیستگاه‌پیمان از ترمیم مهم است، رنگ‌های زیستگاه‌های آبزیان در اثر از بین رفتن جمعیت‌های آنها به محل جایگزینی لازم، هندوراپی و شیمی طبیعی آنها است. بعلاوه کل بستر خلیج فارس از نظر صخره‌ای نیست، سبیل از گونه‌های تزئینی به تغییر گونه‌های پلازدیک در خلیج فارس به سبیل خزه‌های محل برخوردار می‌باشد، و جلوه‌های زیستگاه‌های متنوع خود را شکل می‌دهند. رزروت قرار گرفتن از املاح و غیره از اینtractات نشان دهنده حرکت که زیستگاه‌ها، طبیعی، سگواری نهایی و حتی غرق شدن خلیج فارس نشان دهنده بستر خزه‌های طبیعی را تا حدود ایفا می‌نماید. یکی از نیازهای بسیار مهم از مناطق طبیعی، است، خزه‌های انسانی را تدوین نشان دهنده انتخاب نشان گلاک که قبایل توده ندارند نشان دهنده آنها تا حدودی صخره‌ها و ابه و سهگاه مرجانی در نظر گرفته و باروری را از این منطقه ایفا می‌نماید. ایجاد زیستگاه‌های مصنوعی در کنار این گونه جوانه می‌گیرد. تا زیست‌گاه‌های طبیعی و مصنوعی در کنار خلیج فارس به سبیل خزه‌های محل برخوردار می‌باشند. در نزدیکی غرب یک کاهه یک بستر ساخت و گذشته داشته باش با لایه‌ای تزئینی و نمونه‌ای از صخره‌های زیستگاه‌های مصنوعی در آمریکا در اثر این انتخابات یک بستر ساخت و گذشته می‌باشد. در نزدیکی غرب یک کاهه یک بستر ساخت و گذشته داشته باش با لایه‌ای تزئینی و نمونه‌ای از صخره‌های زیستگاه‌های مصنوعی در آمریکا در اثر این انتخابات یک بستر ساخت و گذشته می‌باشد.

مواد و روش کار
پس از حدف منطقه مصنوعی ایجاد زیستگاه‌های مصنوعی در ایجاد مصنوعی قرار گرفت در اثر این انتخابات یک بستر ساخت و گذشته می‌باشد. در نزدیکی غرب یک کاهه یک بستر ساخت و گذشته داشته باش با لایه‌ای تزئینی و نمونه‌ای از صخره‌های زیستگاه‌های مصنوعی در آمریکا در اثر این انتخابات یک بستر ساخت و گذشته می‌باشد.

References

مقایسه مناطق مختلف جهت انتخاب بهترین منطقه برای استقرار زیستگاههای مصنوعی از منظر دانه‌بندی رسوبات بستر و غنای کریم آی جهت سهولت در مطالعه و امکان مقایسه مناطق نام گذاری شد (شکل 1). در کلیه ایستگاه‌ها از دستگاه گربه مدل بیترسون با سطح پوشش 400/1 متومبیر برای نمونه‌برداری از رسوبات بستر استفاده شد. در هر زیر تراسکت یک نمونه برای تعیین دانه‌بندی و یک نمونه جهت مطالعه کریم آی بستر برداشته شد. نمونه‌برداری از گرد و همچنین روش انتخاب دانه‌بندی و اندازه‌گیری رسوبات براساس دستورالعمل مطالعه مواد آلی کل (TOM) بود و مطالعه میزان کریم آی در رسوبات به روش سورانن نمونه‌ها در کوره الکتریکی با دمای 550 درجه سانتی‌گراد و محاسبه براساس درصد وزن حاصل صورت گرفت (1984). برای تعیین نوع بستر شن (sand) رس (silt) و لای (clay) از منطقه

![شکل 1: موقعیت تراسکت‌های (دکه) بررسی زیستگاههای مصنوعی](image-url)
نتایج
مطالعه روند تغییرات درصد ذرات رسوبی در بین ترانسکت‌های مورد مطالعه به‌شینه و کمینه درصد ذرات سیلیس، را در ترانسکت‌های بند حسینه و بند حیروبی ببینید. درصد ذرات رسوبی در ترانسکت‌های بند حسینه و بند حیروبی ببینید.

نمودار 1: تغییرات دائمی رسوایی در ترانسکت‌های مورد بررسی 1382
نمودار 2: تغییرات کربن آلی در ترانسکت‌های مورد بررسی 1386

بحث

do شاخه دانش‌های روابط بستر و کریم آن از عوامل تعیین‌کننده مکان مناسب‌سازی‌های مصنوعی می‌باشد (Munsiri et al., 1995). این شاخه از احاطه جنس بستر برای استخراج نگهداری سازه مناسب زیست‌انماژی و مصرف زمینه‌ای است. از انجایی که انتقال ماده از روابط داخل سطح بستر، یکی از راه‌های تأمین مواد غذایی موجود در پیشه اکسیمیسم آبی محصول می‌شود، نتایج بررسی‌های پراکنش ذرات در بررسی‌های آکروزولز حالت اهیمت می‌باشد و مقادیر ترکیبات رستانه و تولیدهای که وجود می‌آید به فاکتورهای متعددی مانند ترکیبات غذایی و سطوح آنها در سطح آب در جهت عرض و عمق سطح بستر تاثیر دارد (Silver, 1992). همچنین، نتایج فیزیکی بستر و بارف روابط

از جمله عوامل مهم تعیین کننده است. از استقرار اکسیمیسم (Munsiri، 2009) و نوع موجودیات است که می‌تواند (Barber، 2010) در ملل‌سیستم از اثرات مختلف در تنش‌ها و ترکیبات آن، اندازه‌گیری شده‌اند. (Barber، 2010). منظر به این نتایج، بستر نیازمند تغییرات در آن‌ها می‌باشد.

در مطالعه امکان استقرار زیست‌گاه مصنوعی در ایلر سیگاپور، مناطقی که دارای بستر‌های درآمده به سبب رودخانه بودند، محل احتمال دفع شدن سازه‌ها و مناطق قافل آکروزولز ناشی از دراز شکاف‌های حیاتی (McAllister et al., 1981). استفاده از ناحیه‌های در سطح آب در جهت عرض و عمق سطح بستر تاثیر دارد (Silver، 1992). همچنین، نتایج فیزیکی بستر و بارف روابط

از جمله عوامل مهم تعیین کننده است. از استقرار اکسیمیسم (Munsiri، 2009) و نوع موجودیات است که می‌تواند (Barber، 2010) در ملل‌سیستم از اثرات مختلف در تنش‌ها و ترکیبات آن، اندازه‌گیری شده‌اند. (Barber، 2010). منظر به این نتایج، بستر نیازمند تغییرات در آن‌ها می‌باشد.

در مطالعه امکان استقرار زیست‌گاه مصنوعی در ایلر سیگاپور، مناطقی که دارای بستر‌های درآمده به سبب رودخانه بودند، محل احتمال دفع شدن سازه‌ها و مناطق قافل آکروزولز ناشی از دراز شکاف‌های حیاتی (McAllister et al., 1981). استفاده از ناحیه‌های در سطح آب در جهت عرض و عمق سطح بستر تاثیر دارد (Silver، 1992). همچنین، نتایج فیزیکی بستر و بارف روابط

از جمله عوامل مهم تعیین کننده است. از استقرار اکسیمیسم (Munsiri، 2009) و نوع موجودیات است که می‌تواند (Barber، 2010) در ملل‌سیستم از اثرات مختلف در تنش‌ها و ترکیبات آن، اندازه‌گیری شده‌اند. (Barber، 2010). منظر به این نتایج، بستر نیازمند تغییرات در آن‌ها می‌باشد.

در مطالعه امکان استقرار زیست‌گاه مصنوعی در ایلر سیگاپور، مناطقی که دارای بستر‌های درآمده به سبب رودخانه بودند، محل احتمال دفع شدن سازه‌ها و مناطق قافل آکروزولز ناشی از دراز شکاف‌های حیاتی (McAllister et al., 1981). استفاده از ناحیه‌های در سطح آب در جهت عرض و عمق سطح بستر تاثیر دارد (Silver، 1992). همچنین، نتایج فیزیکی بستر و بارف روابط

از جمله عوامل مهم تعیین کننده است. از استقرار اکسیمیسم (Munsiri، 2009) و نوع موجودیات است که می‌تواند (Barber، 2010) در ملل‌سیستم از اثرات مختلف در تنش‌ها و ترکیبات آن، اندازه‌گیری شده‌اند. (Barber، 2010). منظر به این نتایج، بستر نیازمند تغییرات در آن‌ها می‌باشد.

در مطالعه امکان استقرار زیست‌گاه مصنوعی در ایلر سیگاپور، مناطقی که دارای بستر‌های درآمده به سبب رودخانه بودند، محل احتمال دفع شدن سازه‌ها و مناطق قافل آکروزولز ناشی از دراز شکاف‌های حیاتی (McAllister et al., 1981). استفاده از ناحیه‌های در سطح آب در جهت عرض و عمق سطح بستر تاثیر دارد (Silver، 1992). همچنین، نتایج فیزیکی بستر و بارف روابط

از جمله عوامل مهم تعیین کننده است. از استقرار اکسیمیسم (Munsiri، 2009) و نوع موجودیات است که می‌تواند (Barber، 2010) در ملل‌سیستم از اثرات مختلف در تنش‌ها و ترکیبات آن، اندازه‌گیری شده‌اند. (Barber، 2010). منظر به این نتایج، بستر نیازمند تغییرات در آن‌ها می‌باشد.

در مطالعه امکان استقرار زیست‌گاه مصنوعی در ایلر سیگاپور، مناطقی که دارای بستر‌های درآمده به سبب رودخانه بودند، محل احتمال دفع شدن سازه‌ها و مناطق قافل آکروزولز ناشی از دراز شکاف‌های حیاتی (McAllister et al., 1981). استفاده از ناحیه‌های در سطح آب در جهت عرض و عمق سطح بستر تاثیر دارد (Silv...
بهزادی و همکاران
بررسی دانه‌بندی و کریم آلی رسوبات بستر جهت استقرار زیستگاه‌های مصنوعی در

به اطلاعات موجود می‌توان گفت که برای اولیت ترانسکت‌های جهت استقرار سازه‌ها، با در نظر گرفتن توام شاخه‌های مرد پرمارس بر اساس دو (جدول 1) بیشتر است انتخاب مناطق مصنوعی در هر ترانسکت ازنون به بازگردانی هر منطقه و پرمارس شاخه‌های انتخاب شده در مقياس تحقیقاتی و سپس تضعیف رساند به دامنه مناسب هر شاخه و سپس تضعیف زیستگاه مصنوعی در مقياس انتخاب در هر ترانسکت می‌باشد.

جدول 1: اولیت ترانسکت‌ها جهت انتخاب مناطق بهبهان استقرار سازه‌ها بررسی استحکام بستر، تولید و کریم آلی

<table>
<thead>
<tr>
<th>بات بستر</th>
<th>اولیت بستر</th>
<th>اولیت بستر</th>
<th>ترانسکت</th>
<th>O.C. (میزان استحکام)</th>
</tr>
</thead>
</table>
| سیلت- رس- لومی | میان | خوب | خوب | 1
| (Sandy-clay-loam) | میان | خوب | میان | 2
| ماسای لومی | میان | خوب | میان | 3
| (Sandy loam) | میان | خوب | میان | 4
| ماسای لومی | خوب | میان | میان | 5
| (Loam) | خوب | میان | میان | 6
| ماسای لومی | خوب | میان | میان | 7
| (Loam) | خوب | میان | میان | 8
| ماسای لومی | خوب | میان | میان | 9
| (Silt loam) | خوب | میان | میان | 10

تشکر و قدردانی
از همکاران محترم بهش پیروزی و آزه‌یایی ذکریم بهره‌گیری از نظریه، بازگردانی این پژوهش‌ها و استگاه تحقیقاتی این منطقه نود لکه‌گیم در تولید منابع ایمن و بهره‌ور زیستگاه‌ها، شکنای، ش. اورهیمی. م.؛ میرا شیخ، م.؛ سراجی، ف. و آقاجری، ش. 1388. بررسی اثرات تغییرات دمای در خلیج فارس (استان هرمزگان) موسه شخصیت تحقیقات شیلات ایران. پژوهش‌های کلیولوژی خلیج فارس و دریای عمان. ۱۲۰ صفحه

متابع
آکبرزاده، غ. ع. ، 1383. گزارش نهایی پژوهش بررسی اثرات

Study of grain size and organic carbon of sediments for artificial reef installation in coastal waters of Hormuzgan Province

Behzadi S.*, Akbarzadeh Gh.A.; Salarpour A. and Darvishi M.

S_behzady@yahoo.com
Persian Gulf and Oman Sea Ecology Research Center, P.O.Box: 1597 Bandar Abbas, Iran
Received: March 2009 Accepted: September 2010

Keywords: Artificial Reef, Ecosystem, Costal waters, Persian Gulf

Abstract

Central and western coastal waters of the Persian Gulf along Hormuzgan province were investigated for site selection of artificial reefs installation. The grain size and organic carbon content of sediments were studied seasonally in the year 2007. For sampling, we stratified the area between the south of Qeshm Island to Hendorabi Island to 10 transects, and partitioned each to 3 sub-transects (Coastal line to 10, 10–20 and 20–30m deep), using a random design. The maximum and minimum amount of silt were recorded in transects of Bandar Haseineh and Bandar Chiroveh (45.39% and 38.79%), for sand transects of Bandar Masen and Bandar Haseineh showed the maximum and minimum (63.95% and 38.79%) and for clay transects of Bahman Jetty and Bandar Masen (23.47% and 9.02%) were recorded and the highest and lowest respectively. Also, the maximum and minimum amount of carbon organic content was determined in Bandar Kong transect (1.62%) and Hengum Island transect (0.63%), respectively. The results of one-way analysis of variance showed a significant difference in organic carbon content of sediments from transects of Hengum Island, Bandar Masen and Bandar Gourzeh in comparison with other transects (P<0.05), (95% confidence interval). However, the difference was not significant for grain size and organic carbon of bottom sediments in all stations (P>0.05). Also, we found a significant correlation between silt (r = 0.52), sand (r = -0.63) and clay (r = 0.67) with organic carbon (P<0.01). Finally, the best transects for artificial reefs installation were defined based on bottom hardness (Hengum Island, Bandar Masen, Bandar Selakh and Bandar Chiroveh), productivity (Hengum Island, Bandar Masen, Bandar Selakh, Bandar Bostaneh, Bandar Haseineh, Bandar Charak and Bandar Gourzeh) and organic carbon (Bahman Jetty, Bandar Selakh, Bandar Kong, Bandar Bostaneh, Bandar Haseineh and Bandar Charak).

* Corresponding author