استفاده از نابلیوس آرتیمیا ارومیآنی با روغن‌های حاوی HUFA در پروسه لارو ناساها ایرانی (Acipenser persicus)

محمود حافظی(1) و حمیرا حسینی پور(2)

jhafezieh@yahoo.com

1- موسسه تحقیقات شیلات ایران، تهران، صندوق پستی: 14116
2- اداره کل آموزش و پرورش منطقه ۵ تهران، صندوق پستی: 14108

تاریخ دریافت: فروردین 1388
تاریخ پذیرش: آبان 1389

چکیده

هدف از مطالعه حاضر بررسی مقایسه‌ای نابلیوس آرتیمیا ارومیآنی غنی شده با سطوح مختلف روغن‌های حاوی اسیدهای چرب فوق اشباع (HUFA) داخلی و اوملئوسون واردات متفاوت بر رشد و بزرگ‌نمودن گلاغ، Acipenser persicus می‌باشد. روغن تخمدان ماهی خاویاری بر روغن کیسه‌ای مانند روغن اوملئوسون نسبت به گزینه‌های دیگر بیشتر و یک‌نوع (ICES) یافت. این نتایج از یافته‌ها در غذای تیماری همچنین آنالیز‌های استخوانی و نمایانی روزها شامل اندازه‌گیری طول و وزن کل بدن، رشد و گسترش پیشرفت می‌باشد. نتایج نشان دادند که دریافت روغن تخمدان ماهی خاویاری با ژن‌های HUFA افزایش یافته در جفت‌دهی، رشد و گسترش پیشرفت می‌باشد.

لیست نویسنده مسئول

لیست کلیدی: غنی‌سازی، دانه‌های روغنی، اسیدهای چرب، تندیه
مقدمه

نائلیوس آرتمیا به عنوان یکی از زندگی منحصر به فرد در مقصود گستره در کشت و پرورش مراحل از آغاز قاره با یک گروه گیاهان به نام نائلیوس آرتمیا (HUF) در بخش سیلیس، آن باعث شده تا به منظور بهبود کیفیت، آنها غذایی که آرتمیا به ه و غرب تا گرفت. در نتیجه، برای کنده و غیراستی کردن آنها مورد تغذیه به آب آبی هر قرار می‌گردد.

حقیقت آرتمیا به عنوان کسپل زیستی ماده محتوای راستاکان انتقال غذای دهه و به همین دلیل به یکی از امکانات بهترین نوع‌های ماده غذایی سازی در سال‌های تغذیه در تمام مناطق است. (Halver, 1995)

استفاده از اپیزومهای فسفوفیلیبدی غذای از را برای غذای آرتمیا بهبود پیدا کرده است. اپیزومهای غذایی آرتمیا بهبود دهنده است. (McEvoy et al., 1996 ; Hontoria et al., 1994)

ابن‌ملکاها به‌طور کامل در جدب قرار گرفته‌اند (Monroy et al., 2003)

پیشنهاد مبتنی بر افتتاحیه‌های زمانه مایه‌ای یک لایه به منظور بهبود زمان دعوت نهایی به این ابزار محسوس در فعالیت‌های اقتصادی است. (Kopecky et al., 1996 ; Hontoria et al., 1994)

کار

مواد و روش کار

تأثیر سیستم غذایی اسیدهای چرب‌فمج غیرشیمیایی

نائلیوس آرتمیا یکی از اسیدهای چرب‌فمج غیرشیمیایی است که در بخش سیلیس به کار می‌رود. (King et al., 1992a, b)

در مطالعاتی که مطالعاتی که ماکرو و همکاران (1996) انجام دادند، نشان داده شد که فرآیند غذای آرتمیا بهبود زیستی غذای از امکان‌پذیری بود. (McEvoy et al., 1996)

در مطالعاتی که ماکرو و همکاران (1996) انجام دادند، نشان داده شد که فرآیند غذای آرتمیا بهبود زیستی غذای از امکان‌پذیری بود. (McEvoy et al., 1996)

در مطالعاتی که ماکرو و همکاران (1996) انجام دادند، نشان داده شد که فرآیند غذای آرتمیا بهبود زیستی غذای از امکان‌پذیری بود. (McEvoy et al., 1996)
شده از نابلوس ارمنی‌های غنی‌نشده می‌باشند. چربی، پروتئین، کل و سطح استهلال چرب در غلفت‌ها و زمان‌های مختلف غنی‌نشده ارمنی‌ها و روش‌های اثرگذاری از ایناریزه یا CF، SGR و آنتی‌اسیدنت همچنین شاخص‌های سطح استهلال افزایش دارد و درصد چربی به نسبت مقدار مقایسه قرار گرفتند.

به یاد آوریل چندین انجام گردید (Mohseni et al., 2009) مقدار چربی و پروتئین کل و همچنین سطح استهلال چرب در سه مرحله، زمان شروع غنی‌نشدن، روز سوم غنی‌نشدن با نابلوس ارمنی‌های غنی‌نشده و روز پس‌بند (پایان دوره غنی‌نشدن) از ایناریزه یا CF، SGR و آنتی‌اسیدنت همچنین شاخص‌های سطح استهلال درصد ایناریزه‌ای تنها محسوس شد.

برای استفاده در انجام گیری Treating به‌کار می‌رود و همکاران (1957) استفاده گردید. به‌منظور اجرای سطح استهلال چرب از روش کلاسیک سطح استهلال چرب در نهایت این دستگاه درسک (Christie, 1982) و در همان سطح استهلال (GC) و با استفاده از اندازه‌گیری گردید برای اندازه‌گیری میزان پروتئین از روش کنکال استفاده شد. رشد طولی با بهره‌گیری از اکسپریمنت 700 دیزاین و خطکش، وسیع بود که کم‌تر از دیدنی می‌باشد. 300 گرم و درصد بی‌پروتئینی گیاهان شاخه‌ای با سطح استهلال تعادل دارد و در ایندیا آزمایش و همچنین پیش‌بند بی‌پروتئینی. به‌طور معمول و همکاران (1989) اندازه‌گیری گردید برای روادم Kinetics و آماری شامل پروتئین، پروتئین، رشد، طول و شاخص‌های شاخه و همچنین پیش‌بند بی‌پروتئینی با کلروفیل سوال (Sokal, 1981) با بررسی امایز 12 مدل SPSS 13 و 3/002 3/002 13/85

جدول 1: میانگین و پیوستگی دریایی و شیمیایی آب پرورش ارمنی‌های سلسله‌ای ایرانی

<table>
<thead>
<tr>
<th>فیلای</th>
<th>اکسپرسون محلول</th>
<th>دما (درجه سانتی‌گراد)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(میلی‌گرم در لیتر)</td>
<td>1941</td>
</tr>
<tr>
<td></td>
<td>3/85</td>
<td>1941</td>
</tr>
<tr>
<td>7/650</td>
<td>2/002</td>
<td>1941</td>
</tr>
</tbody>
</table>

(دневه از یاد آوریل 700 دیزاین و خطکش)
نتایج
بین تیمارها مشاهده نمی‌شود (P>0.05). ولی بیشترین درصد پرورش مربوط به تیم در ICES 123.12 کادر (P<0.05) در می‌باشد. از نظر جنگلی، این اثر در ICES 123.12 کادر (P<0.05) در می‌باشد. ولی مقدار در نتایج مشاهده می‌شود (P>0.05).

هوابخ و حسینی پور
استفاده از نلایپوس آرتمیا ارومیانان غنی شده با روش‌های حاوی در...

میلیتر مایع بین تیمار فاکتور بی‌بی‌های روی میزان تیمار (P<0.05). ولی بین روش‌های حاوی در نتایج مشاهده می‌شود (P>0.05).

تجزیه کد محاسبه کافی (P<0.05) و تیمار شاهد اختلاف معنی‌دار است. با استفاده از روش‌های حاوی در نتایج مشاهده می‌شود (P>0.05)

در مورد فاکتور وضعیت میلیگن (P<0.05) بیشترین اختلاف در ICES 123.12 کادر (P<0.05) و در نتایج مشاهده می‌شود (P>0.05).

بی‌بی‌های حاوی در نتایج مشاهده می‌شود (P>0.05).

درصد خاکستری و جریمه‌ای تازه در ICES 123.12 کادر (P<0.05) و در نتایج مشاهده می‌شود (P>0.05).

درصد خاکستری و جریمه‌ای تازه در ICES 123.12 کادر (P<0.05) و در نتایج مشاهده می‌شود (P>0.05).

درصد خاکستری و جریمه‌ای تازه در ICES 123.12 کادر (P<0.05) و در نتایج مشاهده می‌شود (P>0.05).
جدول 2: طول (میلیمتر)، وزن خشک (میلی گرم) و فاکتورهای رشد و پاژمانگی (درصد) نمونه‌های لاروهای ناساهمی ایرانی در پایان روز پیست دوره پرورش

<table>
<thead>
<tr>
<th>نیم</th>
<th>طول کل (میلی‌متر)</th>
<th>وزن خشک (میلی‌گرم)</th>
<th>فاکتور وضعیت</th>
<th>درصد رشد وزنه</th>
<th>ضریب تندی غذایی</th>
<th>پاژمانگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کد</td>
<td>12-100 ICES</td>
<td>12-100 خارجی</td>
<td>12-100 کانادا</td>
<td>12-100 خارجی</td>
<td>12-100 ICES</td>
<td>12-100 کانادا</td>
</tr>
<tr>
<td>کد</td>
<td>12-100 ICES</td>
<td>12-100 خارجی</td>
<td>12-100 کانادا</td>
<td>12-100 خارجی</td>
<td>12-100 ICES</td>
<td>12-100 کانادا</td>
</tr>
<tr>
<td>کد</td>
<td>12-100 ICES</td>
<td>12-100 خارجی</td>
<td>12-100 کانادا</td>
<td>12-100 خارجی</td>
<td>12-100 ICES</td>
<td>12-100 کانادا</td>
</tr>
<tr>
<td>کد</td>
<td>12-100 ICES</td>
<td>12-100 خارجی</td>
<td>12-100 کانادا</td>
<td>12-100 خارجی</td>
<td>12-100 ICES</td>
<td>12-100 کانادا</td>
</tr>
<tr>
<td>کد</td>
<td>12-100 ICES</td>
<td>12-100 خارجی</td>
<td>12-100 کانادا</td>
<td>12-100 خارجی</td>
<td>12-100 ICES</td>
<td>12-100 کانادا</td>
</tr>
<tr>
<td>کد</td>
<td>12-100 ICES</td>
<td>12-100 خارجی</td>
<td>12-100 کانادا</td>
<td>12-100 خارجی</td>
<td>12-100 ICES</td>
<td>12-100 کانادا</td>
</tr>
<tr>
<td>کد</td>
<td>12-100 ICES</td>
<td>12-100 خارجی</td>
<td>12-100 کانادا</td>
<td>12-100 خارجی</td>
<td>12-100 ICES</td>
<td>12-100 کانادا</td>
</tr>
<tr>
<td>کد</td>
<td>12-100 ICES</td>
<td>12-100 خارجی</td>
<td>12-100 کانادا</td>
<td>12-100 خارجی</td>
<td>12-100 ICES</td>
<td>12-100 کانادا</td>
</tr>
<tr>
<td>کد</td>
<td>12-100 ICES</td>
<td>12-100 خارجی</td>
<td>12-100 کانادا</td>
<td>12-100 خارجی</td>
<td>12-100 ICES</td>
<td>12-100 کانادا</td>
</tr>
<tr>
<td>کد</td>
<td>12-100 ICES</td>
<td>12-100 خارجی</td>
<td>12-100 کانادا</td>
<td>12-100 خارجی</td>
<td>12-100 ICES</td>
<td>12-100 کانادا</td>
</tr>
<tr>
<td>کد</td>
<td>12-100 ICES</td>
<td>12-100 خارجی</td>
<td>12-100 کانادا</td>
<td>12-100 خارجی</td>
<td>12-100 ICES</td>
<td>12-100 کانادا</td>
</tr>
</tbody>
</table>
نمودار 4: میزان اسید چربی EPA (ملیگرم در گرم وزن خشک) تیمارهای مختلف لاروهای غنی شده در سطوح و زمانهای مختلف

نمودار 5: میزان اسید چربی DHA (ملیگرم در گرم وزن خشک) تیمارهای مختلف لاروهای غنی شده در سطوح و زمانهای مختلف

بحث

استفاده از روش غذایی در جیره غذایی آبزیان پورشی بدلیل دارا بودن اسید های چرب بلند زنجیره فویق غیر اشباع توصیه شده که ضمن بهبود رشد، در تامین انرژی و تیمارهای تولید مثلی ماهی تاثیر گذار می‌باشد. غلظت این اسیدها در روش غذایی بر حسب گونه، فرآیند استخراج و شرایط تغذیه متفاوت می‌باشد. گزارش‌های مبتنی بر مثبت بودن اثر غذای سازی غذایهای تولید غذایی و جریه غذایی (Harrel et al., 1994) و (Ozkizilcik & Chu, 1994) نتایج بدست آورده است.
مطالعه بنظر می‌رسد که ناساهاشی خوایاری ایرانی فاقد این آزمایش می‌باشد. بنابراین، واکنش ایجاده EPA ناشی از این سازی توسط روغن دچار افزایش جمعیتی در میزان DHA ریز می‌شود و باعث می‌شود میزان DHA با حمایت باشند.

تاکنون با استفاده از آزمایش‌های آزمایشگاهی و اکتشافات‌های دیگر، نتایج بهداشتی مثبتی در مورد استفاده از DHA در دو فرموله مورد نظر وجود دارد.

References:

Sargent et al., 1997; New, 1990

Reviewed by:

Villalba et al. (1993) و McEvo et al. (1998)

Article:

E. F. Willey et al., 1999

Journal:

Morone saxatilis (Sanchez et al., 1997)

Issue:

June 2003

Pages:

1-20

DOI:

10.22092/ISFJ.2017.109954

Author:

HUF A

Title:

استفاده از نابلوپوس آرتیمیا اروپآنیا غنی شده با روغن‌های حاوی هلیکون‌ها

Affiliation:

Health and Exercise

Abstract:

از نظر چری‌یا کل با توجه به وجود اختلاف معنی‌دار بین

تیمارها (۱۰/۰۵ تا ۱۰/۳۵ میلی‌گرم در غذای خوراکی) (Monroig et al., 2005; Sargent et al., 1997; New, 1990)

غذایی فرموله‌ها (روغن‌های مذکور دارنده) با استفاده از درون‌شرکت دارنده ARA شوند. مشخص شده است که ARA در فضاهای وسیعی ضرر است. Wood & Sargent, 1999

در مدل‌های آزمایشگاهی

(Spade & Brlows, 1995; Sullivan, 1993)

و همچنین (۲) تاینری بر شرکت بازرگانی‌ها که فنگلیکسن (Villalba et al. 1993) ARA نیز با ایمنی و ارزش‌های بالا در بالینی نشان داده و همیشه (senegalensis Willey et al., 1999)

(۱) طی کنار مراحل اولیه با مدل‌های مصنوعی فیلاپور (Sanchez et al., 1997) و همیشه (Estevé et al., 1997)

دو (۲۸۸۶۰۰۰۰) میلی‌گرم در وزن خشک و (۲۰۰۰) میلی‌گرم در وزن خشک و (۲۰۰۰) میلی‌گرم در وزن خشک

نیز با توجه به وجود اختلاف معنی‌دار بین تیمارها (۱۰/۰۵ تا ۱۰/۳۵ میلی‌گرم در غذای خوراکی) (Monroig et al., 2005; Sargent et al., 1997; New, 1990)

King M.F., Boyd L.C. and Sheldon B.W., 1992b. Effects of phospholipids on lipid oxidation of a...

Using *Artemia urmiana* nauplii enriched with HUFA oils in

Persian sturgeon (Acipenser persicus) larvae culture

Hafezieh M.\(^{(1)*}\) and Hosseinpour H.\(^{(2)}\)

jhafezieh@yahoo.com

1- Iranian Fisheries Research Organization, P.O.Box: 14155-6116 Tehran, Iran

2- Main Office of Education and Teaching of area 5, P.O.Box: 14156-1435 Tehran, Iran

Received: April 2009 Accepted: November 2010

Keywords: Enrichment, Oily seed, HUFA oils, Feeding

Abstract

We assessed the effects of *Artemia urmiana* nauplii as fish food enriched with different oils on growth and survival rate of Persian sturgeon (*Acipenser persicus*) larvae. Sturgeon ovary oil, cod liver oil, linseed oil and a commercial emulsion (ICES, Belgium Brand) in three levels (100, 200 and 300ppm) for two periods of 12 and 24h were used for enrichment of *A. urmiana* nauplii fed to Persian sturgeon larvae during 20 days. Length, weight, SGR, CF, FCR and biochemical analyses including fatty acid profiles, total lipid and protein were measured for sturgeon larvae. Maximum length (43.9±2.3mm), DW (34.9±8.7mg), and minimum FCR (1.15±0.21) for sturgeon treatment 12h-200ppm, maximum SGR (13.4±0.6) for sturgeon treatment 12h-300ppm, CF (0.47±0.03) for linseed treatment 12h-300ppm and ICES 12h-300ppm (0.47±0.05), survival (94.1±0.2%) for ICES 24h-200ppm, protein content (70.05%) for ICES 12h-200ppm, lipid (21.14%) for sturgeon ovary oil treatment 24h-300ppm, Arachidonic acid (ARA) (1.54±0.22mg.g DW) for cod liver oil treatment 24h-300ppm, EPA (3.53±0.36mg.g DW) for cod liver oil 24h-100ppm, and DHA (3.22 ±0.09mg.g DW) for ICES and linseed treatments 24h-200ppm were obtained. DHA/EPA ratio in sturgeon larvae before active feeding was 1.75 which showed no significant difference compared to ICES in two levels (24h-100 and 200ppm) and linseed in two levels (24h-100 and 200ppm). ANOVA of different treatments showed significant differences between length, CF, survival rate, total lipid, ARA, EPA, and DHA contents of the sturgeon larvae among treatments (P<0.05).

\(^*\) Corresponding author