چکیده

وریگ‌های تولید مثل ماهی کویر (Argyrops spinifer) در خلیج فارس (Arabian Gulf) به صورت ماهانه (0.5-50% عدد) مورد بررسی قرار گرفت. نمونه‌برداری در آب‌های بوشهر و بویشه تور ترال توسط صیدان انجام گرفت. طول کل نرها در دامنه 21-24 سانتی‌متر (میانگین ± انحراف معیار (5/6±3/4) و ماده در دامنه 13-16 سانتی‌متر (7/3±4/5) بود. وزن کل نرها (7/7±6/4) و ماده (7/7±6/4) گرم بود. طول کل (Lm0) و سن (Am0) در اولین بلع جنسی در نرها بین ترتیب 1/3 سانتی‌متر و 5 سال و در مادها بین 1/3 و 3 سانتی‌متر و ۶ سال بود که نشان دهنده صید این ماهی با انتظار کمتر از انتظار متوسط بلع است. نسبت جنسی در بین کل نمونه‌ها صید شده از 4/25(ماده بود که با نسبت مورد انتظار اختلاف معنی‌داری را نشان داد (0.01<پی). طول کل در انتهای بلع در مادها 23/8 سانتی‌متر بود. کمیتی و بیشتری و میانگین هم آوری محلی (انحراف معیار) بین 0/84 و 0/777 رابطه بین هماوری مطلق و طول کل ماهی به صورت (F = 54417L−92699 (r = 0.77) (F = 1165W+41959 (r = 0.81) بود. بررسی قطر تخمک نشان داد که سطح گردنه قطر ۶۵-۸۰ میکرون در تخم‌زایی وجود دارد. این ماهی دارای تخم‌زایی از دسته‌های گوناگونی از تخمک در حال مختلف رشد گرفت در هر زمان از آن قابل مشاهده است و دوره تخم‌زایی طول‌انداز. با توجه به شاخص گنایدی (GS1)، قطر تخمک، توزیع ماهی را می‌تواند در مراحل مختلف رشدی گردد. یک طولانی‌تر نهاد که به این ماهی تخم‌زایی چندباره (Multiple spawner) و هم‌زمان به بیماری‌های اختلالی (Asynchronous) (است. با توجه به نتایج این مطالعه می‌رود که این ماهی دارای استراتژی پروتوگینی (Prtogyny) یا شاخص (Rudimentary hermaphroditism) است. بنابراین بیانی کلیدی: Argyrops spinifer; تولید مثل، شانک‌های ماهیان.
مقدمه

فعالیت تولید‌گریست ویژگی نواست: اختلاف معنی‌داری را با نسبت 11.1 نشان داد (p<0.05). اما، در ماه‌های دیگر، این نسبت اختلاف معنی‌داری نداشت که نشان می‌داد که‌چنان معنی‌داری در بعضی ماه‌های مختلف حفره بدن را اشغال کرده بودند. گناده‌های نر و ماده شکل مشابه داشتند؛ در نتیجه تعیین جنسیت در این مراحل بسیار سخت بود.

در سطح 23/8 سانتی‌متر قطر کل بسته Lm04 آماد 2 (شکل 1) تغییرات ماهی‌ها شاخص گنده در نیم در نتیجه و توزیع قرارگیری‌های رشدی‌گی قنادی را در 93 درصد حرکت 7 سانتی‌متر بیشترین مقدار را بدست آورد. و شش/سیب نسبت و سنین مختلف در مرحله 47 در شکل 1666 (شکل 1666) دامنه طول کل بود:

\[L = 5000 - 41595 \]

از نمونه‌ها مقاطع عرضی به صورت 2 میکرون ثبات می‌شد. مقاطع تهیه شده بر سطح حمام بافت اپ (اب و 202/7) درو در سنین مختلف ماهی مورد بررسی و عکسبرداری شد. به صورت میکرو‌تراش (CU45050 Micro Tec D) عکس‌برداری شد و به صورت کمک به دست آورد این نسبت اختلاف معنی‌داری (آزمون ANOVA) برای مقایسه داد. به علاوه، عبور داده شدن

\[\text{رباتی و در کل (200/7) کلاً} \]

شیخ و شلمی‌ها در آذر ماه بیشترین مقدار را بدست آمد. رابطه تخمک در اردیبهشت ماه به دلیل این که تعداد در حال اصلی به‌طور تجاری در این مراحل قابل‌توجه بود. قابل اندازه‌گیری بود.

هم‌آوری مطلق و نسبت دلمک 27 نمونه ماهی مابه بالغ (شمول 4 رنگ‌زنبوری جنگلی) با دسته طول کل 131/0 (21-17/5) 5960 و متوسط حداکثر طول 1300/2760 سانتی‌متر و وزن کل به صورت 615/3417 عکس‌برداری شدند و برش بر روی دامنه مورد بررسی و عکسبرداری قرار گرفت.

نتایج

از 39 عدد ماهی نهایی شده، 39 عدد ماهی دامنه طولی (TL) 12/5/64/5 (سانتی‌متر) (24/220) و 238 عدد نر با دامنه طولی (23/10-61/5) 15/3/61/5 سانتی‌متر (21/047) بودند. وزن ماهی‌ها (61/65-32/5) 50 گرم (37/700-22/339) و وزن لازم 24/50-12/099 گرم (37/700-22/339) بودند. رابطه طول- وزن برای کل ماهی‌های مورد مطالعه به صورت

\[W = 0.054 L^{2.682} \]

(جدول 1) نسبین مختلف مختلط نمونه‌برداری (جدول 1) سینین مختلف (جدول 2) و رنگ‌ها مایل به سیاه در کل، نسبت جنسی انر: 1:15/6 در این مراحل بدست آمد که اختلاف معنی‌دار با نسبت مورد انتظار نشان داد (p<0.01). نسبت جنسی طی ماه‌های

گرم شامل خرداد تنها، مرداد و شهریور که هیچ‌گونه
جدول 1: نسبت جنسی ماهی‌های کوپر و ماهی‌های مختلف در خلیف فارس.

<table>
<thead>
<tr>
<th>Asymp. Sig.</th>
<th>χ²</th>
<th>ماهه نر ماهی نسبت جنسی (M/F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>خرداد 89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>تیر 1274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>شهروز 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>مهر 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>آذر 1568</td>
</tr>
<tr>
<td></td>
<td></td>
<td>دی 1787</td>
</tr>
<tr>
<td></td>
<td></td>
<td>بهمن 2174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>آذر 1568 (مجرد)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>دی 1787 (مجرد)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>بهمن 2174 (مجرد)</td>
</tr>
</tbody>
</table>

جدول 2: مقایسه نسبت جنسی در سنین مختلف ماهی‌های کوپر و کوپر (Argyrops spinifer).

<table>
<thead>
<tr>
<th>Asymp. Sig.</th>
<th>χ²</th>
<th>سن تعداد نسبت جنسی (M/F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>خرداد 89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>تیر 1274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>شهروز 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>مهر 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>آذر 1568</td>
</tr>
<tr>
<td></td>
<td></td>
<td>دی 1787</td>
</tr>
<tr>
<td></td>
<td></td>
<td>بهمن 2174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>آذر 1568 (مجرد)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>دی 1787 (مجرد)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>بهمن 2174 (مجرد)</td>
</tr>
</tbody>
</table>

جدول 4: تغییرات ماهانه قطر تخمک ماهی کوپر در آب‌های بوشهر.

<table>
<thead>
<tr>
<th>Asymp. Sig.</th>
<th>χ²</th>
<th>سن تعداد نسبت جنسی (M/F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>خرداد 89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>تیر 1274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>شهروز 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>مهر 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>آذر 1568</td>
</tr>
<tr>
<td></td>
<td></td>
<td>دی 1787</td>
</tr>
<tr>
<td></td>
<td></td>
<td>بهمن 2174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>آذر 1568 (مجرد)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>دی 1787 (مجرد)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>بهمن 2174 (مجرد)</td>
</tr>
</tbody>
</table>

جنس همکاران بیولوژی تولید می‌شود (Argyrops spinifer) در خلیف فارس.
شکل ۳: درصد قرارنیان مرحله ی بلوز در جنس نر ماهی کوپر، به تفکیک ماه در آب‌های بوشهر (۹۰-۱۳۸۹). Figure 3: Percentage of frequency of maturation stages in male Kingsoldier Bream in different months in Bushehr coastal waters (2010-2011).

شکل ۴: درصد قرارنیان مرحله ی بلوز در جنس ماده ماهی کوپر در آب‌های بوشهر (۱۳۹۰-۱۳۸۹). Figure 4: Percentage of frequency of maturation stages in female Kingsoldier Bream in different months in Bushehr coastal waters (2010-2011).

شکل ۵: ارتباط بین هم آوری مطلق و وزن کل ماهی کوپر در آب‌های بوشهر (۹۰-۱۳۸۹). Figure 5: Fecundity-weight relationship in Kingsoldier Bream in Bushehr coastal waters (2010-2011).

شکل ۶: ارتباط بین هم آوری مطلق و طول کل ماهی کوپر در آب‌های بوشهر (۹۰-۱۳۸۹). Figure 6: Fecundity-length relationship in Kingsoldier Bream in Bushehr coastal waters (2010-2011).

شکل ۷: ارتباط بین هم آوری مطلق و سن ماهی کوپر در آب‌های بوشهر (۹۰-۱۳۸۹). Figure 7: Fecundity-age relationship in Kingsoldier Bream in Bushehr coastal waters (2010-2011).

مرحله II (مرحله نابالغ در حال رسیدگی یا ترمیم پس از تخم‌ریزی (Maturing virgin or recovered spent تخم‌زایی یا نابالغی‌ی جنسی از نظر حجمی بزرگتر شده بودند. تخمدان صورتی رنگ، نیمه شفاف و تخم‌ها قابل رؤیت در زیر لوب بودند. در ماهیانی که یکبار تخم‌ریزی کرده بودند، این مرحله دوره استراحت یا پاساژی تخمدان، نامیده می‌شود که تخمدان حالی گوشدایش داشت، بیضه‌ها سفید خامه‌ای و در بعضی نقاط صورتی رنگ و اندرکی نشکل و نازک بودند.

مرحله III (در حال رسیدگی) (Ripening): اندازه‌ی جنسی حجم بیشتری از محوطه‌ی بدنی را اشغال می‌کند و تخم‌ها بزرگ و به آسانی قابل رؤیت با چشم غیرمسلح 95
مرحله IV (رئیس)؛ تقریباً تمام حجم محوطه بدنی بوسیله اندام‌های جنسی اشغال شده بود. تخمدان‌ها بزرگ و متوسط و محتوی تخم‌های نمی‌شافگان و بزرگ بودند که راحتی می‌شود تخم‌پذیری‌ها را از هم جدا نمود. بیشتر متمایل به سفید-خاکی ای رنگ و ترم بودند.

(ال) تخمدان جنسی چربی‌کره شده و دارای دیوارهای شل بودند. تخمدان‌ها قرمز رنگ بوده و حجم آنها کاهش یافته بود و تعداد کمی تخم باهنا شده در آن مشاهده می‌شود. بیش‌ها سخت و جلوه‌کیه شده بودند و دیگر سفید رنگ نبودند.

مراحل میکروسکوپی رشدی جنسی ماهی کویر

مرحله I (نابالغ)؛ در این مرحله مجموعه‌ای از اووگونیاها کوچک به‌صورت خوشه‌هایی از اووکنية و با ارتباط با غشاء املاکاً تخم‌های بودند. اووستیت در این مرحله نابالغ بوده و در لایه‌های تخم‌پذیری تخم به اشکال کروی، بیضوی یا پنجضلعی مشاهده می‌شود. هسته‌ها بزرگ و خشک بیشتری از اووستیت را در گردن‌شان به دیده بودند. اطراف این هسته بزرگ رنگ قرمز کمی از سیتوپلاسم احاطه می‌نمود (شکل 9a). در بخش از این مرحله بُره‌های مایع بیشتری به همین دنیا تنوع گرفتند.

مرحله II (جالب)؛ اندام‌های اووستیتی در این مرحله، به دلیل تجمیع زره و چربی افرازی یافته بوده، هسته در مرکز اووستیت دیده می‌شود. در این مرحله یک سابقه زنجیره‌ای تخم‌پذیری مشاهده شد. تعداد کمی تخم‌های سیاه شد و در این مرحله بیشتر بخش‌هایی شکل مستطیلی و گردن‌پذیری داشتند و رنگ‌پذیری با یکی داشتند، بطوری که زردرنگ قرمز دیده می‌شود. در این مرحله، اندام‌های اووستیتی در بالای زردپری بیشتر به شکل مستطیلی و گردن‌پذیری داشتند. در این مرحله، اندام‌های ارتجاعی دارای شکل مستطیلی و گردن‌پذیری بودند. در این مرحله، اندام‌های ارتجاعی دارای شکل مستطیلی و گردن‌پذیری بودند. در این مرحله، اندام‌های ارتجاعی دارای شکل مستطیلی و گردن‌پذیری بودند.

مرحله III (بالتا)؛ اندام‌های اووستیتی در این مرحله بزرگ و چربی افرازی یافته بوده. هسته در مرکز اووستیت دیده می‌شود و در این مرحله معکوس‌های زنجیره‌ای تخم‌پذیری مشاهده شد. هسته در این مرحله بزرگتر و چمن‌رنگ بودند که به همین دنیا تنوع گرفتند.

مرحله IV (رئیس)؛ تخم‌پذیری در این مرحله بیشتری از زردهای گیری بود. اما
اووستیه‌ها از مرحله پایین‌تر نیز در آن قابل مشاهده بود. تجمع گرانول‌های زرده با اندازه 20-10 میکرون که در مرحله قبل در حاشیه سیتوپلاسم اووستیه در حال بلوغ شروع شده بود، به سمت مرکز اووستیه گسترش یافته و در نهایت تمام سیتوپلاسم اووستیه‌ها با گرانول‌های زرده اتصال گزیده بود (شکل 8). همگنی و یکنواخت شدن گرانول‌های زرده در حاشیه اووستیت را در نهایت صفحات زرده (Yolk plates) در سیتوپلاسم نشان می‌دهد. این مرحله با شروع گردش هسته به سمت قطب حیوانی، قابل شناسایی بود (شکل 8). با ادامه رشد، لاشه‌های اووستیت کامل شده و زونا رادیاتا کاملاً قابل تشخیص بود (شکل 8). اندازه اووستیت‌ها در این مرحله به دلیل زرده‌سازی بیشتر، افزایش یافت. فضای سلولی در بین اووستیت‌ها افزایش یافت و اووستیتا از یکدیگر فاصله بیشتری داشتند (شکل 8). قطع اووستیت در این مرحله 200-400 میکرون و اندازه هنگام در حال مهارت 300 میکرون بود. ناحیه هنگامی که شده و در بعضی از اووستیت‌ها محو شده بود. ذرات چربی با یکدیگر آمینه شده و یک یا چند قطره بزرگ چربی با اندازه 60-30 میکرون را به وجود آورده بودند. در این مرحله اووستیت‌ها شروع به آبگیری می‌نمایند و قطر آنها افزایش می‌یابد و سلول‌های فولیکولی اطراف آن می‌رهیزند. این موارد در نمونه‌های تهیه شده، مشاهده نشد. با ادامه گردش اووستیت‌ها در حال رسیدگی، تخمک‌ها به داخل لومن تخمدان رها می‌شوند (شکل 8). مرحله V (تخلیه شده): پس از تخمک‌گذاری و رها شدن تخمک‌ها، یکنواختی از تخمک‌های فضاهای خالی بود. تخمک‌های مراحل یک و دو در حاشیه تخمک‌های مشاهده می‌شد. سیتوپلاسم این اووستیت‌ها سخت‌تر و زرد خود را از ناحیه درونی و به صورت یک توده قابل مشاهده در می‌آید. اووستیت‌های اترتیک جزوهای بوده و واکنش‌های زرده‌ای و ذرات چربی آنها با یکدیگر تداخل یافته و دوباره سلول‌های تخمک‌گذاری بود.
حمزه و همکاران

به‌پایه تولید‌محور ماهی کوپر (Argyrops spinifer) در خلیج فارس

این اورسیت‌ها در هر مرحله‌ای از تکامل تخم‌داری می‌توانند در تخمدان حضور داشته باشند. مشخصه تخمدان، فولیکول‌های خالی و تعدادی از اورگونياست که ذخیره می‌شوند، فولیکول‌های بعد از تخم‌گذاری (POF) مشاهده نشده‌اند. از این مرحله تصویر مناسبی بدست نمی‌آید.

ب) بیضه

مرحله I (اسپرمانتوگونی): اسپرمانتوگونی اولیه بزرگتر و کم‌رنگ‌تر و اسپرمانتوگونی‌های ثانویه کوچک‌تر و تیره‌تر بودند. سلول‌های زایمان اولیه (PGC) با تقسیم میتوز، اسپرمانتوگونی‌های اولیه در ادامه اندماز آنها کاهش و در نهایت به اسپرمانتوگونی‌های ثانویه تبدیل می‌شوند. اسپرمانتوگونی‌ها بعد از مرحله تخم‌گذاری (POF) مشاهده نشده‌اند. از این مرحله تصویر مناسبی بدست نمی‌آید.

مرحله II (اسپرمانتوژنز): در این مرحله تمامی انواع سلول‌های اسپرم‌ساز قابل مشاهده بود. با تقسیم میتوز اسپرمانتوگونی‌های ثانویه اسپرمانتوژنزی اولیه ایجاد می‌شود. سلول‌های اسپرمانتوگونی به تعداد کمتر در لوله‌های بیضه وجود داشتند. تعداد اسپرمانتوژنزی اولیه و ثانویه افزایش یافت و در بعضی از لوله‌های بیضه نیز اسپرمانتوژنزی قابل مشاهده بود. اسپرمانتوژنزی‌های ثانویه از اسپرمانتوژنزی‌های اولیه کوچک و تیره‌تر بودند.

مرحله III (مرحله اسپرمیوزنز): در این مرحله تعداد اسپرمانتوژنزی‌ها و اسپرمانتوژنی‌های ثانویه بیشتر افزایش یافت و میزان اسپرمانتوژنزی‌های اولیه و ثانویه کاهش یافت.
بیحث و نتیجه‌گیری

بررسی روند تغییرات ماهیان GSI در G. spinifer در این تحقیق با استفاده از مدل GSI در آذر ماه به ماه انجام پذیرفته است. مدل GSI، یک گاهی از ابتدای تاریخ اکریولوژی نیز استفاده شده است. با استفاده از داده‌های جمع‌آوری شده در ماه‌های مختلف از سال‌های مختلف، مدل GSI پیشنهاد گردید که در بیشتر ماهی‌ها افزایش یا کاهش نسبی GSI در فصل‌های مختلف رخ داشته باشد.

از انتقالی که فاصله دو پیک مشاهده شده در این مطالعه، احتمالاً این این که ماهی‌ک‌ها در آذر ماه تخم‌گذاری و سپس خود را با بررسی‌های کند تا دوباره در اسفند و فروردین ماه‌های مختلف گذراند. بدین ترتیب، بیشترین تغییرات در فصل‌های مختلف باعث تغییرات ماهیان در این ریزه‌ی جغرافیایی بود. این ماهیان در فصل‌های مختلف اقلیمی و فتوپریود دارای اختلاف معنی‌داری در درصد GSI دارند. در مطالعه‌های آلپرونی (منطقه ماهیان) مشاهده شد که در فروردین تخم‌گذاری دمای آب به ماهینه معنی‌داری داشته و ماهیان در این ماه از دو ماه بهترین GSI را داشتند.

از سوی دیگر، مشاهدات در این مطالعه نشان داد که در فروردین، ریزه‌ی زمستانی در ماه مارس (آذر) به دلیل مشکلات نمونه‌برداری و تعداد کم نمونه‌های باقی مانده، باعث می‌شود که در این ماه GSI بیشترین مقدار را داشته باشد. کاهش شدید GSI در فصل‌های بررسی شده نشان می‌دهد که در این فصول ماهیان در حال تغییرات زمانی دما و فتوپریود در حال ماندگاری هستند.

در مطالعه‌های دیگر، ماهیان در فصل زمستان در نتایج مشاهده شد. این مشاهده نشان می‌دهد که در فصل زمستان، ماهیان در حال تغییر دما و فتوپریود هستند و ماهیان در این فصول اقلیمی و فتوپریود دارای اختلاف معنی‌داری در درصد GSI دارند.
نشن داد ماهیانی که گونه Protogynus hermaphroditus یا پروتوجنوس از روی نسب جنسی می‌توانند به سمت ماده در اندازه‌های کوچکتر، بایستگی نشان دهند (Sadovy, 1996). در این ماهی نسب جنسی می‌توانند به سمت ماده پیشرفت کنند. (Garratt و Buxton, 1990) نیز اعلام کردند که این گونه به دلیل این که گروه‌های طولی بزرگ تر در آن بیشتر شامل ماهیان نر هستند، می‌توانند باعث رشد غیرطبیعی در ماهیانی در جمعیت می‌شوند.

یکی از راه‌حل‌های جایگزین ماهی در دسترس این گونه است که این گونه می‌تواند به طول افزایش یابد و در ماهیانی دارای سابقه نر و ماده، نسب مشابه در جمعیت داشته باشد.

در مطالعه حاضر، در اثر تغییر جنسیت ماده، ماهیان با اندازه کوچک و بزرگ مشاهده شدند که از دو نوع جنسیت، اولیه و ثانویه خاص شدند.

در نظرسنجی پژوهش حاضر، ماهیان مشابه در این گونه D. argenteus بایستگی نشان دادند که در اندازه بزرگ نیز ماده وجود دارد.

در حال حاضر، در گونه Protogynus، جنسیت ماده باعث می‌شود که در اندازه بزرگ ماهی بیشتر ماده باقی بماند.

در تحقیق El-Sayed Abdel-Bary (2003) نیز نشان داد که در گونه Protogynus sargus sargus، اندازه متوسط ماهی بتواند در تمامی صدها کنار گذشته بتواند.

در حال حاضر، در گونه Protogynus، جنسیت ماده باعث می‌شود که در اندازه بزرگ ماهی بیشتر ماده باقی بماند.

در تحقیق El-Sayed Abdel-Bary (2003) نیز نشان داد که در گونه Protogynus sargus sargus، اندازه متوسط ماهی بتواند در تمامی صدها کنار گذشته بتواند.

در حال حاضر، در گونه Protogynus، جنسیت ماده باعث می‌شود که در اندازه بزرگ ماهی بیشتر ماده باقی بماند.

در تحقیق El-Sayed Abdel-Bary (2003) نیز نشان داد که در گونه Protogynus sargus sargus، اندازه متوسط ماهی بتواند در تمامی صدها کنار گذشته بتواند.

در حال حاضر، در گونه Protogynus، جنسیت ماده باعث می‌شود که در اندازه بزرگ ماهی بیشتر ماده باقی بماند.

در تحقیق El-Sayed Abdel-Bary (2003) نیز نشان داد که در گونه Protogynus sargus sargus، اندازه متوسط ماهی بتواند در تمامی صدها کنار گذشته بتواند.

در حال حاضر، در گونه Protogynus، جنسیت ماده باعث می‌شود که در اندازه بزرگ ماهی بیشتر ماده باقی بماند.

در تحقیق El-Sayed Abdel-Bary (2003) نیز نشان داد که در گونه Protogynus sargus sargus، اندازه متوسط ماهی بتواند در تمامی صدها کنار گذشته بتواند.

در حال حاضر، در گونه Protogynus، جنسیت ماده باعث می‌شود که در اندازه بزرگ ماهی بیشتر ماده باقی بماند.

در تحقیق El-Sayed Abdel-Bary (2003) نیز نشان داد که در گونه Protogynus sargus sargus، اندازه متوسط ماهی بتواند در تمامی صدها کنار گذشته بتواند.

در حال حاضر، در گونه Protogynus، جنسیت ماده باعث می‌شود که در اندازه بزرگ ماهی بیشتر ماده باقی بماند.

در تحقیق El-Sayed Abdel-Bary (2003) نیز نشان داد که در گونه Protogynus sargus sargus، اندازه متوسط ماهی بتواند در تمامی صدها کنار گذشته بتواند.

در حال حاضر، در گونه Protogynus، جنسیت ماده باعث می‌شود که در اندازه بزرگ ماهی بیشتر ماده باقی بماند.

در تحقیق El-Sayed Abdel-Bary (2003) نیز نشان داد که در گونه Protogynus sargus sargus، اندازه متوسط ماهی بتواند در تمامی صدها کنار گذشته بتواند.

در حال حاضر، در گونه Protogynus، جنسیت ماده باعث می‌شود که در اندازه بزرگ ماهی بیشتر ماده باقی بماند.

در تحقیق El-Sayed Abdel-Bary (2003) نیز نشان داد که در گونه Protogynus sargus sargus، اندازه متوسط ماهی بتواند در تمامی صدها کنار گذشته بتواند.
حمزه و همکاران

بهولژی تولیدمثل ماهی کوپر (Argyrops spinifer) در خلیج فارس

حمزه و همکاران

به‌پیشنهاد ماهی کورپ (Argyrops spinifer) در خلیج فارس

Wootton, R.J., 1992. Fish ecology. Chapman and Hall. 185P.
Reproductive Biology of Kingsoldier Bream \textit{(Argyrops spinifer)} in the Persian Gulf

Hamzeh S.1; Keivany Y.1*; Mahboobi Soofiani N.1; Aein Jamshid Kh.2

*Email: keivany@cc.iut.ac.ir

1- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
2- Iranian Shrimp Institute, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEEO), Bushehr, Iran

Abstract
The reproductive characteristics of 639 specimens of kingsoldier bream, \textit{Argyrops spinifer}, a commercial species of Sparidae family in the Persian Gulf were investigated by monthly sampling during June 2010 to May 2011. Samples were caught by local fisherman using trawl net in waters of Bushehr province. Each month, a total of 50-60 specimens of fish were examined, on average. Total length ranged from 15-61 (24±6.6) cm in males and 13-64 (24.0±7.9) cm in females and total weight ranged 77-3450 (323.6±319) g and 52-4162 (370±465) g in males and females, respectively. Total length (L\textsubscript{50}) and age (A\textsubscript{50}) at first maturity were estimated as 30 cm and 5 years for males and 31 cm and 6 years for females, this indicate that \textit{A. spinifer} is exploited below the mean size at sexual maturity. The overall sex ratio was 1.25F:1M and were significantly different from the expected ratio (p<0.05). The highest value of condition factor was observed in January for females and in February for males. The minimum, maximum and average absolute fecundity were 79000, 2375000 and 683000±528000, respectively for females 17-47 cm total length and weighing 117-1666 g. The relationship between absolute fecundity and fish total length was represented by the following linear equation: F= 54417L–92699 (r= 0.77), and a linear equation: F= 1165W+41595 (r= 0.81) was found between absolute fecundity and fish weight. The analysis of ova diameter for the species revealed that there are three egg batches in ripe ovary of \textit{A. spinifer} and swing diameter of eggs in the ovaries of these fish throughout the year, was between 25-800 microns. Regarding gonado-somatic index (GSI) values, oocyte diameter, histological studies and abundance of different stages of maturity at different month, it seems that spawning of \textit{A. spinifer} occurs from December to April. Indeed, gonad maturation started from December and spawning completed in March and April. Long spawning season suggests that \textit{A. spinifer} is a multiple spawner with an asynchronous ovary. This finding could be confirmed by oocyte diameter and histological studies, too. The results of the present study presume state of both protogyny and rudimentary hermaphroditism in \textit{A. spinifer}.

Keywords: Kingsoldier bream, \textit{Argyrops spinifer}, Sparidae, Persian Gulf, Reproductive characteristics

*Corresponding author