امکان سنگی پرورش ماهی در قفس بر اساس پارامترهای فیزیکوشیمیایی موثر بر کیفیت آب و روند سطح تروفیکی در اعماق کمتر از 15 متر مناطق ساحلی گهرباران در جنوب شری نزدیک خزر
حسن نصراله زاده ساروی 1
فریبا واحذی 1
عذاله نصراله تبار 1
آسیه مخلوق 1
محمدرضا علی افرایی 1
نیما پورنگ 2

چکیده
هدف از این پژوهش امکان سنگی پرورش ماهی در قفس بر اساس پارامترهای فیزیکوشیمیایی موثر بر کیفیت آب و روند سطح تروفیکی (مقیاس و غیرمقیاسی) در اعماق کمتر از 15 متر مناطق ساحلی گهرباران در جنوب شری نزدیک خزر است. مجموعاً 154 نمونه در هشت استانگاه در اعماق 5، 10 و 15 متر طی 12 ماه در سالهای 1392 و 1393 جمع آوری شدند. نتایج این تحقیق نشان داد که تغییرات دمای آب، تغییرات pH، اکسیژن محلول، BOD5، فلورنتیت نام应急预案 لاحظ محصول به ترتیب 29/990-0/00177-0/00061-0/00079-0/00037-0/00012-0/00005-0/00007 و 12-15/000-0/0015 و 51-61/000-0/0005 میلی گرم بر لیتر می‌باشد. همچنین محدوده غلظت نانومیکر آمونیاک، بیون تربیت و بیون فسفات به ترتیب 0/27-42/30/000-0/00077-0/00000-0/00077 و 85/176-76/500-0/00000 میلی گرم بر لیتر ثابت گردید. تغییرات سطح تروفیکی مفید و غیرمفیدی به ترتیب برای 0/536-0/422/536-0/422 و 0/51-0/51 درصد محسوس گردید. با توجه به اینکه دامی استاندارد، در این تحقیق دمای مناسب برای پرورش گونه‌های آزادمانیها از ماه مهر شروع و در ماه فوروردیان به پایان می‌رسد. محدوده تغییرات استاندارد (PH 7/3 تا 8/0 0/422/536-0/422 و اکسیژن محلول (بیش از 5 میلی گرم بر لیتر) برای پرورش ماهی در قفس منطقه با تأثیر این تحقیق به بهبود کمک می‌آید. در این تحقیق بهترین محدوده محسوب نمی‌گردد.

کلمات کلیدی: پارامترهای فیزیکوشیمیایی، سطح تروفیکی، پرورش ماهی در قفس، دریای خزر، گهرباران
مقدمه
در پایش و انتخاب مکان (امکان سنگی) پورش ماهی در فضه، در نظر گرفتن کیفیت آب پایه و پارامترهای زیستی Perez et al., 2003؛ باعث اهمیت می‌باشد (Beveridge, 2004). پارامترهای مربوط به کیفیت آب به‌طور خاص، PH، ترکیبات آبی، اکسیژن محلول و غیره با سیستم ملکه و رشد گونه های پورش در فضا باشند (Lawson, 1995) مطرح می‌شود که در صورت تعیین مکان مناسب برای استقرار پورش، آب پورش دریاپی با حذای اثرات نامتوبونات کیفیت آب هماره خواهد بود. به‌طوریکه دریاپید و همکاران (1996) عنوان نمودند که جامعیت مکان‌های مناسب برای استقرار فستان پورش ماهیان در دریای خزر به‌طور معمول در تسویه آبی پورش مرتفع در سرمایه‌گذاری دارد. همچنین قربانچی بندی و همکاران (1395) گزارش کردند با درنظر گرفتن تطبیقات بزرگ‌ی تکه‌گاه کنترل و با توجه به پرداخت هر پورش ماهی در فضا در سواحل جنوبی دریای خزر از طریق ذرات اکسیژن، پیشنهاد می‌گردید که استقرار فستان پورش ماهی در محدوده میان دریای خزر از ۲۰ متر انجام شود تا حذای اثرات نامتوبونات بر محیط دریایی بگذرد. در زمینه BEA (Thai Tawaporn) و همکاران (2003) طی بررسی Perez et al., 2004 اعلام نمودند که در هر منطقه اهمیت نوع پارامترهای محیطی برای پرورش ماهی در فضا متفاوت می‌باشد. در تحقیق حاصل پارامترهای کیفیت آب پورش ماهی در فضا دریاپید که در کشورهای مختلف (استرالیا، هند، مالزی، فیلیپین، نیوزلند، هونگ‌کنگ و ...) مورد استفاده قرار می‌گیرد، تأکید داشتند (FAO/WHO, 2006) در نظر گرفتن شرایط (Beveridge و همکاران, 1997) اظهار نمودند که در محل فعالیت پورش ماهی در فضا، فاقد و رود مواد غذایی (نوتریفیکاسیون) رخ می‌دهد که در صورت داشت، به‌طور ارشد گرفته‌گرای (تغذیه‌گرای-نوتریفیکاسیون) ختم می‌گردد.
پارامترهای محیطی و مواد غذایی آب نمونه برداری، pH با دستگاه پرتابل (320)، دما بوسیله EC ترمومتر گردان، اکسیژن (روش وینکلر)، عمق شفافیت (SDD) بوسیله شی سی دیسک انداره گری شد. نمونه‌های آب در ظروف بلاستیکی یک لیتری تحت شرایط استاندارد با آرامشگاه منتفی شدند. مواد غذایی نیتروژن (تیترت با روش ستون کاهشی و آمونیوم با روش کمیکس آب رنگ فاناتا) و فسفر (فسفر دیا روش هضم بوسیله پرسولفات و فسفات با روش مولبیدانات) و BOD5 روش وینکلر، قلبیتی کل (تیرباسیون)، مواد جامد متعلق به روش ون سنجی و کلروفیل-آ به روش استخراج با استنون با توجه به روشهای استاندارد (et al., 1988; APHA, 2005)

شاخش تروفیکی مقياسی (UNTRIX) و غیر (TRIX)

UNTRIX=\log(\text{Chl-a} \times \text{DO\%O}=100-\text{DO})/m

TRIX=(\log(\text{Chl-a} \times \text{DO\%O}=100-\text{DO}))

در این مطالعه اجرا چنین ده‌اهن آب عبارت‌الاز: پارامترهای شاخص تولیدات در اکوسیستم آبی که شامل کلوتکول‌آ (Chl-a mg/m^3) و انحراف از درصد شیب‌پذیری (aD\%O=100-DO\%) نمونه‌بندی شده، تا تا پارامترهای مواد غذایی که شامل نیتروژن معدنی (μg/l) و فسفر کل (μg/l) در سه حوزه جنوبی (TRIX_{CS}) و برای حوزه جنوبی (TRIX) نسیمیان (2013) طی نمونه‌بندی نمونه‌بندی نمونه‌بندی نمونه‌بندی نمونه‌بندی و فیزیولوژیکی (UNTRIX) که توسط Vollenweider et al., 1998 (UNTRIX=\log(\text{Chl-a} \times \text{DO\%O}=100-\text{DO})) بشکل ذیل می‌باشد:

\text{UNTRIX}=(\log(\text{Chl-a} \times \text{DO\%O}=100-\text{DO}))

\text{UNTRIX}=\log(\text{Chl-a} \times \text{DO\%O}=100-\text{DO})/m

\text{TRIX}=(\log(\text{Chl-a} \times \text{DO\%O}=100-\text{DO}))/m

\text{UNTRIX}=\log(\text{Chl-a} \times \text{DO\%O}=100-\text{DO})/m

\text{TRIX}=(\log(\text{Chl-a} \times \text{DO\%O}=100-\text{DO}))/m
پترینیکاسیون و به‌طور میانگین UNTRIX بیانگر اکسیستم پزیری در بخش‌های بزرگ آزمایش‌گاهی است (MEF، 2007).

نتایج

تغییرات دمای آب (°C)، شفافیت (متر)، pH، اکسیژن محلول، BOD5، بیانگر اکسیستم پزیری در بخش‌های بزرگ آزمایش‌گاهی است (MEF، 2007).

شکل 2: تغییرات دمای آب (°C)، شفافیت (متر)، pH، اکسیژن محلول (میلی گرم بر لیتر) در ماه‌های مختلف در جنوب شرقی دریای خزر-منطقه گهرپاران (سال 1392-1393)
شکل ۳: تغییرات BOD۵، TA و TSS در منطقه کهیرباران (سال ۱۳۹۲-۱۳۹۳)

Figure 3: Change in BOD5 (mg/l), TA and TSS (mg/l) during different months in the southeast of Caspian Sea-Goharbaran region (2013-2014)

شکل ۴: تغییرات غلظت ماد مغذی (میلی گرم بر لیتر) و آمونیاک (میلی گرم بر لیتر) در منطقه کهیرباران (سال ۱۳۹۲-۱۳۹۳)

Figure 4: Change in nutrient concentrations during different months in the southeast of Caspian Sea-Goharbaran region (2013-2014)
تغییرات سطح تروفیکی مقدای و غیرمقدایی (UNTRIX, TRIXcs) در جنوب شرقی دریای خزر- منطقه گهرپاران در شش ماه داده شد. نتایج نشان داد که سطح تروفیکی در ماههای مختلف متغیر بهبود بطوریکه در ماههای اردیبهشت و شهریور کمتر از ۸، اما

بنابراین، از عمق شفافیت کاسته شده است. نتایج نیز نشان داد که محدوده تغییرات و ابستمی فقط در عمق ۱۵ متر و بخشی ماههای (خرداد، تیر و بهمن) وجود داشت است.

(شکل ۳) که با استاندارد فوق منطقه می‌باشد.

در میان دریاهای جهان، دریای خزر باای دارد که این بدلیل نوع ترکیبات شیمیایی و رودخانه‌ای به دنبال از طریق رودخانه‌ها و نیز بستر دریا می‌باشد (Kosarev & Yablonskaya, 1994). نتایج تحقیق حاضر این ادعا را تایید می‌کند. بطوریکه میانگین سالانه‌ی pH در حوزه جنوبی دریای خزر در نوامبر و فوریه مختلف بیش از ۸.۵/۸ بوده است. (Matsuura, 1۰۵ گزارش کرد که محدوده تغییرات استاندارد pH برای پروش ماهی آزاد در قفس برابر ۷/۸۵ تا ۸/۷۵ می‌باشد. این تا توجه به نتایج.

محدوده تغییرات pH در این منطقه از دریای خزر منطقه با استاندارد فوق می‌باشد (شکل ۲) که با محدوده

بحث

در اولین بررسی پروش ماهی در قفس با گوده قزل آرگین کم در جنوب دریای خزر (منطقه دور از ساحل کشور ترکمنستان) در سال ۱۹۸۷، مشخص شد که برای این گونه عامل دومه همکاری می‌باشد (Bugrov, 1۰۹۲). نتایج تحقیق حاضر نشان داد که در نور سالی جنوب شرقی دریای خزر- منطقه گهرپاران دیما مناسب برای پروش گونه‌های ازدندانه‌ی از ماه مهر شروع به و در ماه فوریه می‌باشد. در نتایج این دو تحقیق (شکل ۲) برای پروش کیور ماهیان (۱۸-۲۰ درجه سانتی گراد) طی اردیبهشت تا ماه آبان مناسب می‌باشد.

(۳) گزارش کرد که این اهمیت شفافیت اب برای پروش ماهی در قفس کمتر از ۵ متر می‌باشد. منطقه مورد مطالعه به توجه به نزدیکی به بندر امیرآباد و وجود رودخانه‌های گهرپاران تحت تاثیر مواد معلق قرار دارد.
مجله علمی شیلات ایران
سال بیست و هشتم/شماره ۶

انتشارات کشورهای مختلف (۹۰۰-۹۰۰۴) نیز منطق بوده است. اکسیژن محلول از عوامل مهمی در آب دریا است و پراکنش افکن و عمودی آن موانعِی را با انسنسر، دمای آب، فلوئسنس و فرآیندهای بیولوژیک و دیپمارک آب برقرار می‌نماید (Chester, 1990). (۳۲) بروورد نشان داد که محدوده‌های اکسیژن پراش موازی آزاد در قفس بیش از ۵ میلی‌گرم بر لیتر است. همانگونه که نتایج در شکل ۲ نشان می‌دهد میانگین، حداقل و حداکثر غلظت اکسیژن محلول در حذای مناسب استاندارد فوق و محدوده استاندارد کشورهای مختلف (۰-۷-۰۰۶) بوده است.

مواد مطلق ناحیه TSS آب از گل و لای مواد حاصل از تجزیه گیاهان و جاوان، آب‌های صنفی، ضدلاف سبب یا پاس رأی می‌گیرد. (۳۳) افزایش کاهش نفود تور، کاهش تولیدات اولیه، کاهش اکسیژن محلول، جذب گرمای خورشید و افزایش دمای آب کاهش دید ماهی جهت دریافت غذا و تجمع در آبشش TSS ماهیان نمود (۳۴). حد مجاز برای پرورش ماهیان دربیایی در برخی کشورهای (استرالیا و نیوزیلند) کمتر از ۰/۱ میلی‌گرم بر لیتر عوامل گردنی. همانگونه که نتایج در نمودار ۲ نشان می‌دهند حداکثر غلظت مواد مطلق ناحیه ناحیه TSS کشورهای مختلف (۱۰۰) بوده است.

همان‌طوریکه نمودار ۴

اثبات‌کننده آزمایش مناسیب اکسیژن خواهی بیولوژیکی را برای حفاظت از آزمایشی کمتر از ۷ میلی‌گرم بر لیتر و برای کپیورهای کمتر از ۶ میلی‌گرم بر لیتر توصیه کرد. (Enderlein et al., ۱۹۹۶) (۳۵) در منطقه مورد مطالعه (۱۲) میلی‌گرم بر لیتر) در محلول آب‌های سالم چالی دارد و کمیت آب این منطقه برای کپیورهای مناسب‌تر بوده است (One-sample t test، p<۰/۰۵).
گرفته شد. نتایج این تحقیق نشان داد که غلظت بیشتر و
نیترات در مناطق مختلف بیشتر کمتر از حداکثر غلظت
مجزا بوده است. غلظت حد مجاز فسفات برابر ماهیان
20/0-20/0 میلی گرم بر لیتر در نظر گرفته شد. نتایج
نشان داد که غلظت فسفات در مناطق مختلف کمتر از
غلظت مجزا فوق بوده است. همچنین حداکثر مقادیر و
میانگین غلظت فسفات در ماهی‌های مختلف در محدوده
مجزا کشورهای اسرائیل و نیوزیلند (1/0-2/0 میلی گرم بر
لیتر) بوده است.

نتایج سطح تروفیکی مقایسه (UNTRIX) و
غیرمقایسه (TRIXcs) در منطقه مورد مطالعه نشان
داد (شکل 5) که سطح تروفیکی در ماهی‌های مختلف
متفاوت بوده و تری گرابین سطح تروفیکی در مراحل
موزورف اما حداکثر سطح تروفیکی موزورف در
ماهی‌های مختلف در نسلن غلظت است. براساس ازمن
امرا، رگاسیون گام بیگم، مشخص تروفیکی و
اجرا ۱۱ شاخه مشخص گردید که می‌توان کی لیلاً-۱۱
شاخص بیوماس و اشباعیت اکسیژن (شاخص
پیوسته) به همراه می‌توان از محدوده (شاخص
مواد معذ) برترنیات سطح تروفیکی این منطقه تأثیر
بطاشی داشته. این می‌توان سفرس و تغییرات سطح تروفیکی
گهبران نامه داشته است که بدین بیان کننده
این منطقه این بخش از خزر محدودیت فسفری ندارنده
است. نتایج سطح تروفیکی غیر مقایسه (UNTRIX)
نشان داد (شکل ۵) که در تمام ماهی‌ها (به غیر از
اردبیشت) منطقه مورد مطالعه دارای ریسک بالای
پیوسته بود. مطالعه نشان داد که براساس شاخص
ظرفی (UNTRIX) منطقه جنوبی (UNTRIX)
درای خزر داریس سطح تروفیکی مزووتروپ و بدون
ریسک-پیوسته به نیوزیلند بود که مشابه نتایج
تحقیق حاضر بود.

ناوی

هامان سنگین پرورش ماهی در نفس بر اساس پارامترهای فیزیکی شیمیایی موثر بود...
دریای خزر بعنوان استقرار فقس‌های پرورش ماهی در شیلات ایران
مجله علوم شیلات ایران، 6 (5): 229-232.

دریای خزر، گ. ش. ف.، ف. س. و. ف. پ.، م. م. ت. ع. و. ک. م. گ.، 1396. جانداری مکان‌های مناسب برای استقرار یافتن پرورش ماهیان در دریای خزر. مجله علمی شیلات ایران، 26 (2): 159-169.

نصرازد زاده ساروی، ح.، م. ر. و. ف. و. پ.، 1391. بررسی روند پتریفیکاسیون آب‌های منطقه جنوب شرق دریای خزر (مادیدان-خوران). بر اساس پارامترهای محیطی و زیستی با کارگیری شاخص‌های مختلف بک و چند پارامتری (به منظور استقرار احتمالی پرورش ماهی در فقس)، پژوهشگاه اکولوژی دریای خزر. موسسه تحقیقات علوم شیلاتی کشور. صفحه 139.

Boyd, C. E., 1990. Water quality in ponds for aquaculture. Agriculture Experiment Station, Auburn University, Alabama, USA. 482P.

EEA (European Environmental Agency), 1999. Nutrients in European ecosystems. Environmental Assessment Report no. 4. Office for official publications of the European Communities, Europe. 76P.

Prefectural Government, Fisheries Development Division, Japan. 44P. (In Japanese)

MEF, 2007. The notification to identify the closed bay and gulf qualified sensitive where fish farms are not suitable to be established in the seas. Turkish Official Gazette No. 26413, Turkey. 74P.

Nasrollahzadeh, H.S., Din, Z.B. and Makhlough, A., 2013. The water chemistry and phytoplankton community of the Caspian Sea. Lambert Academic Publishing (LAP), Hamburg, Germany. 185P.

Refa., 2002. Main frame study for sea cage culture development in Iran. Executive Report to the Iran Fisheries Organization, Iran. 26P.

DOI: 10.1002/sd.379.

Vollenweider, R.A. and Kerekes, J., 1982.

Feasibility study of cage fish farming based on physico-chemical parameters effective on water quality and eutrophication trend at less than 15 meter depth in southeast region of the Caspian Sea (Goharbaran region)

Nasrollahzadeh Saravi H.1*; Vahedi F.1; Nasrollahtabar A.1; Makhlough A.1; Afraei M.1; Pourang N.2

*hnsaravi@gmail.com

1- Caspian Sea Ecology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Sari, Iran
2-Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran

Abstract
The aim of this project was to study the feasibility of cage fish farming based on the evaluation of physico-chemical parameters effective on water quality and the trophic status (scaled and unscaled) at various depths of water and different months in the southeast of the Caspian Sea (Goharbaran region). The total numbers of 154 samples were collected at eight stations from three depths (5, 10 and 15 m) during 12 months. Results showed that the amounts of water temperature, transparency, pH, dissolved oxygen, BOD5, total alkalinity and TSS ranged from 9.00 to 29.00˚C, 0.50 to 12.00 m, 8.05 to 8.74, 5.76 to 12.85, 21 to 195 and 0.00 to 0.12 mg/l, respectively. In addition, the values of NH4+, NH3, NO2-, NO3- and PO4-3 ranged from 0.007 to 0.051, 0.001 to 0.010, 0.002 to 0.015, 0.043 to 0.477 and 0.014 to 0.077 mg/l, respectively. Scaled and unscaled trophic index were 3.42-5.52 and 2.61-5.85, respectively. Therefore, the proper temperatures for cultivation of salmonids species in this area were begun in October and ended in March. In the current study, results of pH and dissolved oxygen were consistent with the standard range of pH (7.80-8.50) and dissolved oxygen (>5 mg/l) for cage fish farming. Although, Goharbaran region were appropriate for cage fish farming in terms of nutrients, but this region was evaluated as mesotrophic (5.97±0.73) with high risk of eutrophication (>4).

Keywords: Physico-chemical parameters, Trophic Status, Cage fish farming, Caspian Sea, Goharbaran

*Corresponding author