تأثیر استفاده از ملاس و شیره ضایعات خرما بر بار باکتریایی آب، شاخص های رشد و بافت روده میگوی سفید غربی (Litopenaeus vannamei) در محیط بایوفلاک

اکبر عباسزاده¹، وحید یاوری²، سید جواد حسینی³، محمود نفیسی بهابادی⁴

*Abas1351@gmail.com

چکیده
هدف این تحقیق بررسی تأثیر بایوفلاک (با میکروکنترلرهای ضایعات خرما و ملاس) بر کارایی رشد، باکتریایی آب و بافت روده میگوی وانامی (Litopenaeus vannamei) با استفاده از سطوح مختلف پروتئینی بود. چهار تیمار بایوفلاک مشتمل بر بایوفلاک خرما+چربی با پروتئین 25% (P25)، بایوفلاک ملاس+چربی با پروتئین 25% (M25)، بایوفلاک خرما+چربی با پروتئین 15% (P15) و بایوفلاک ملاس+چربی با پروتئین 15% (M15) با 3 تکرار ویژه (ważه‌ای 88% پروتئین) و 2 تکرار ویژه (وزن به دست آمده، ضریب تبدیل غذایی، نرخ رشد و بازماندنی) در میکروکنترلرهای تیمار P25 و M25 رشد ویژه در تیمار P25 و M25، کمترین آن در تیمار میکروکنترلرهای تیمار P15 و M15 رشد ویژه در تیمار P15 و M15 و کمترین آن در تیمار میکروکنترلرهای تیمار P15 و M15. نتایج حاکی از افزایش تعداد باکتری‌های موثر در طول پژوهش بود که در میکروکنترلرهای بایوفلاک از شاهد بیشتر بودند. بیشترین کمترین تعداد قارچ‌ها، ویرای و باسلامیه بیشتر در تیمار P25 و شاهد مشاهده گردید. طول سولوهای یک تیار در بافت روده در همه تیمارهای بایوفلاک نسبت به شاهد افزایش یافته اما این اختلاف فقط در اولین بند شکمی معنی‌دار بود. نتایج حاکی از افزایش شاخص های رشد و ایمنی باشد.

کلمات کلیدی: میگوی وانامی، بافت روده، بایوفلاک، شاخص ضایعات خرما، باکتریایی

* نویسنده مسئول

33
بیان‌ها و مقدمه

کشور مطالعه روی سیستم جدید بایوفالکا و معرفی آن به صورت میکوگی کشور می‌تواند به هدف تعیین بهترین تکثیری برای ارزیابی در زمینه صرف‌جویی در مصرف آب و زمین، استفاده از پروتئین کمتر در خوراک، تولید محصولات ارگانیک، ترویج سیستم‌های زراعی با محیط زیستی آرام و در نهایت پرورش درگذشته میگو را به سمت باکتریای این تکنولوژی زیست‌نیرویی و در تحقیق حاضر تأثیر سیستم‌های مختلف پروتئین سازی با محیط زیستی مختلف در محیط پرورش، عملکرد رشد و توقف‌سازی رشد در میکوگی سفید غربی، مورد بررسی قرار گرفت و برای متمایز در کروپیش‌های صورت نیاز سیستم بایوفالکا استفاده گردید.

درخت خرما با نام علمی Phoenix dactylifera درخت نسل انتی‌است و شیره آن از انواعی از Teak، ویروس‌های ضرری و مواد مغذی، چربی، پروتئین، رنگ‌دهی‌ها، کارته‌نشین‌ها، استرول‌ها و پروپاسیون است که در ارائه فعالیت‌های ضد استرس، حرکت رشد، امکان بهبود نسبت میکروکوبی‌ها و آنتی‌وریا (Hoseinfar et al., 2015, Vayatil et al., 2012, Farris et al., 2012) ضر قبیل و ضد خطراتی می‌باشد (Ismail & Radzi, 2013).

مواد و روش‌ها

این مطالعه در سال 1394 در دانشکده کشاورزی دانشگاه فارس بوشهر در مدت 5 ماه و با زیری نوری 12 ساعت رضوی (600 لیکت) و درجه حرارت 27 درجه سانتی‌گراد، کش میکوگی سفید غربی و میکوگی سفید غربی استفاده شده که به عنوان ورود سیستم بایوفالکا در زمینه‌های مختلف استفاده گردید. کاهش انرژیِ فرآیندهای غیر بومی و تابعیت ویژگی‌های محیطی کشور سیستم بایوفالکا استفاده گردید.

آب، فیژیکال، سیستم‌های غیر بومی، محیطی (Avnimelech, 2009) و میکروگی‌های سیستم بایوفالکا استفاده گردید. نتایج نشان‌داد که سیستم بایوفالکا می‌تواند به شکل مؤثر و به‌طور مداوم در میکروگی‌ها با انرژی‌های غیر بومی و تابعیت ویژگی‌های محیطی کشور سیستم بایوفالکا استفاده گردید.
<table>
<thead>
<tr>
<th>میکروکورس</th>
<th>لو سلولار</th>
<th>لو سلولار</th>
<th>لو سلولار</th>
<th>لو سلولار</th>
<th>لو سلولار</th>
<th>لو سلولار</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیبیریت</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>لیموسین</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>کوکنل</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>سیلیزیم</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>سولفور</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>
عباس شاده و همکازان
تاثیر استفاده از ملاس و سیره ضایعات خرس‌ی بار باکتریایی آب، شاخص‌های ایند و...

آمده است. بیشترین افزایش وزن توده در تیمار P25 و کمترین آن در تیمار شاهد به دست آمده است و بقیه تیمارها نیز با تیمار شاهد اختلاف معنی‌داری داشتند (p<0.05). همچنین بیشترین نرخ رشد (گرم در هفته) و درصد بازاندگی در تیمار P25 و کمترین آنها در تیمار شاهد محسوس شد. کمترین ضریب تبدیل غذایی در تیمار P15 و بیشترین آن در تیمار شاهد سنجش گردید. P15 بیشترین مقادیر نسبت باه‌بروتین در تیمار P15 و کمترین آن در تیمار شاهد بود (p<0.05/0.05). P25 با همکاری بیمارهای پاپورالاک از اختلاف معنی‌داری داشت (5/00/0). تعداد كل بیمارهای پاپورالاک هشت‌فناوری (THB) و باسپلیوس و بارف-25 از تیمار P15 و تعداد آنها در تیمار P25 با همکاری بیمارهای پاپورالاک از اختلاف معنی‌داری داشت (1/00/0). تعداد كل بیمارهای پاپورالاک از اختلاف معنی‌داری داشت (5/00/0). P15 کمترین آنها در تیمار SHB بود (CFU. mL(1/00/0).) P25 بود که در تیمار P15 و کمترین آنها در تیمار SHB افزایش یافت.

نتایج
عملکرد فاکتورهای رشد در شکل 1 آمده است. بیشترین درصد شاخص وزن و نرخ رشد و کارایی تبدیل غذایی در تیمار P25 و کمترین آنها در تیمار P15 و کمترین آنها در تیمار M15 به دست انجام گردید. برای انجام آنالیزهای فوق از نرم‌افزار SPSS17 استفاده گردید.

Figure 1: Growth factor changes of experimental shrimps in different treatments.

میانگین تعداد قارچ‌ها از 4/03±/03 کلی در میله لیتر در تیمار شاهد به 8/10±/02 کلی در میله لیتر در تیمار P25 افزایش یافت. در هر سبد شکمی، طول سلول‌های اینتیل روله در تمام تیمارهای باپورالاک نسبت به گروه شاهد افزایش معنی‌داری پایت. که این افزایش طول در سبد اول شکمی در بین خود تیمارهای باپورالاک نیز معنی‌دار بود (p<0.05/0). تعداد ویروس‌ها در تیمارهای باپورالاک بطور معنی‌داری از شاهد بالاتر بود (p<0.05/0). بیشترین تعداد جنس‌های بیشترین تعداد به ترتیب P25 و باسپلیوس در تیمار P25 و کمترین آنها از M15 (p<0.05). P15 کلی در میله لیتر در تیمار P15 و کمترین آنها در تیمار SHB افزایش گردید. نتایج شبیه‌ای از باپورالاک تعداد کمتری‌ها در مورد قارچ‌ها نیز دیده شد. در طول این مطالعه،
Table 2: Bacterial and fungal changes in experimental treatments per colony forming unit.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Bacteria</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>P2</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>P15</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>P1</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

Figure 2: Epithelial cells growth in the first to third of abdominal sections of experimental shrimp in different treatments.

Figure 3: Bacterial and fungal changes in experimental treatments per colony forming unit.

Table 3: Bacterial and fungal changes in experimental treatments per colony forming unit.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Bacteria</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>P2</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>P15</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>P1</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

Figure 4: Epithelial cells growth in the first to third of abdominal sections of experimental shrimp in different treatments.

Figure 5: Bacterial and fungal changes in experimental treatments per colony forming unit.

Table 4: Bacterial and fungal changes in experimental treatments per colony forming unit.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Bacteria</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>P2</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>P15</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>P1</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

Figure 6: Epithelial cells growth in the first to third of abdominal sections of experimental shrimp in different treatments.

Figure 7: Bacterial and fungal changes in experimental treatments per colony forming unit.

Table 5: Bacterial and fungal changes in experimental treatments per colony forming unit.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Bacteria</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>P2</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>P15</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>P1</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

Figure 8: Epithelial cells growth in the first to third of abdominal sections of experimental shrimp in different treatments.

Figure 9: Bacterial and fungal changes in experimental treatments per colony forming unit.
عباس شاده و همکاران

تأثیر استفاده از ملأس و شیره ضایعات خرس بر بار باکتریایی آب، شاخص های رشد و...

ویرپویا را (4×10⁴ کلی در ملیلی لیتر و تعداد باپلوسیس را (4×10⁵ کلی در ملیلی لیتر از انتهای دوره ذکر به نموده‌اند. این اختلافات جزیی می‌تواند به فاکتورهای زیست‌وسایی آب، گونه‌پروری و نوع ماده پنداشته شود (Avnimelech, 2009). تعداد باکتری‌ها و فرآیندهای در باپلوسیس شیره خرارا بیشتر از تیمار ملأس بود. این اختلافات احتمالاً می‌تواند به این دلیل باشد که شیره خرارا منعیتی از ویتامین‌ها، مواد معدنی و دیگر مواد ضروری برای رشد باکتری‌ها است (Vayalil, 2012) و از این رو بر ملام پرتره، همچنین کروبی‌های این شیره خرارا بیشتر از قنددهای سادهای چون گلکور و فلوکور ترکیه شامل به این تعداد باکتری‌ها است (Hoseinifar et al., 2015). علاوه بر این اختلاف معنی‌داری در تعداد باکتری‌ها بنگاه چربی با پروتئین 15 و 25 درصد در تیمارهای باپلوسیس دیده شد که این اختلاف به پروتئین محیط یک نظر می‌ماند و مخلوط مقادیر (پروتئین) مواد نیاز و دسترسی بیشتر به ارز و ماده کردنی در تیمارهای P₂₅ و M₂₅ مربوط می‌باشد.

در میوهای با استفاده از پروپیونیک باپلوسیس گرماش شده (Rengpipat et al., 1998).

Aguilera-Rivera et al. (2014) در یافتن که باکتری‌های منفی چون برخی گونه‌های ویرپویا با چکیده‌شدن در هوش‌سازی سبب افزایش شده و از طغیان باکتری‌های بیماری‌زای فرآیند طبی انجام‌بسته گرماش چون جلوگیری می‌کند اکرانی افزایش معنی‌دار در تعداد کل باکتری‌های هتروفور در باپلوسیس می‌کند که از نیاز باکتری‌ها به کربن می‌باشد. برخی از مطالعات پیشین نشان داده است که تعداد باکتری‌های هتروفور با افزایش نسبت کربن به نیتروژن در میونیت (Photobacterium damselae) افزایش می‌یابد (Fouz et al., 2000). افزایش یک‌تراز از نیاز باکتری‌ها به کربن می‌باشد. برخی از مطالعات پیشین نشان داده است که تعداد باکتری‌های تیمارهای P₂₅ و M₂₅ بیشتر از P₁₀ و M₁₀ است (Burford et al., 2003; Avnimelech, 2009). در این آزمایش به میزان 4×10⁴ کلی در ملیلی لیتر این رضی چون باکتری‌های نسبت کربن به نیتروژن در میونیت (Photobacterium damselae) افزایش می‌یابد (Fouz et al., 2000). در این مقایسه، اکرا (2015) که به استفاده از میوهای بیماری‌زای فرآیند (AxioVision Rel. 4.8) برخی از محققین) در آن آزمایش گه‌آهیسی و همکاران (2016) در پژوهشی که به استفاده از نرم‌افزار 4.8 و همکاران (2016) تعداد اکرا (2015) که به استفاده از میوهای بیماری‌زای فرآیند (AxioVision Rel. 4.8) برخی از محققین) در آن آزمایش گه‌آهیسی و همکاران (2016) تعداد گه‌آهیسی و همکاران (2016) تعداد گه‌آهیسی و همکاران (2016) تعداد

Figure 3: Cross sectional view of the intestinal tissue of experimental shrimp.
مجله علمی شیلات ایران

منابع

آیین جمشیدی، خ. و حق شناس، خ.، 1396. ارزیابی ریسک زیست محیطی فعالیت مراکز تولید میگوی عاری از بیماری خاس مجله علمی شیلات ایران، 32(4): 3-27.

فارابی، س. م. و متینفر، ع. صالحی، ع. و شریفی‌نژاد، م.، 1366. بررسی تراکم خبرمی‌های میگو پاسفید، Litopenaeus vannamei. مجله علمی شیلات ایران، 32(4): 53-65.

تطبیق

از نظریه که باکتری‌های موجود در بیوفوکلاک می‌تواند از جنس‌هایی چون باسیلس شکل‌شده که از جزای اصلی پروپتین‌های نمی‌باشد، بنظر می‌رسد که آنها را با هم مقاپس نمود. تاثیرات مثبت ناشی از باکتری‌های پروپتینک بر بیماری افزایش یافته و بهبود فاکتورهای رشد، افزایش مقاومت به بیماری‌ها و بهبود ضریب نیتریکایی بنابراین رابطه این برخی مقابله علی تاثیر تأثیر مثبت باکتری‌های پروپتینک را بر فاکتورهای رشد ایزبان و میگو، سهولت و افزایش جذب مواد غذایی از روده نموده (Sha et al., 2016).

منابع:

Rengpipat, S., Phianphak, W., Piyatiratitivorakul, S. and Menasveta,
DOI: 10.1016/S0044-8486(98)00305-6.

Effects of molasses and spoilage date palm extract on bacterial load of water, growth performance and intestine of Pacific white shrimp (*Litopenaeus vannamei*) in the biofloc technology

Abbaszadeh A.¹,²*; Yavari V.¹; Hoseini S.J.³; Nafisi Bahabadi M.³

¹Abas1351@gmail.com

1-Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.

2-Department of Fisheries, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, Iran.

3-Persian Gulf Research Center, University of Persian Gulf, Bushehr, Iran.

Abstract

The aim of this study was to evaluate the effects of biofloc (with addition of spoilage date palm extract (SDE) and molasses as sugar sources) on bacterial load of water, growth performance of *Litopenaeus vannamei* using diets containing different protein levels. Four biofloc treatments were designated including the biofloc treatment with SDE + a diet containing 25% protein (P₂₅), biofloc treatment with molasses + a diet containing 25% protein (M₂₅), biofloc treatment with SDE + a diet containing 15% protein (P₁₅), biofloc treatment with molasses + a diet containing 15% protein (M₁₅) and the control treatment with a diet containing 38% protein (Control). All treatments were conducted in triplicates. A 35-day study was conducted on 35 juvenile shrimp (with average weight of 5.37 ± 0.33 g) which randomly stocked in fifteen tanks (each 300 L) at a stocking density of 175 shrimp m⁻³. The highest amounts of growth parameters (weight gain, Feed Conversion Ratio (FCR), growth rate and survival) were observed in P₂₅ treatment and the lowest amounts of growth parameters were observed in the control (p<0.05). Moreover, the highest percentages of body weight index, feed efficiency and specific growth rate were observed in P₂₅ and the lowest percentages of those were observed in M₁₅ treatment (p<0.05). Results showed that the number of total heterotrophic bacteria was increased during the study and the numbers of total heterotrophic bacteria in all biofloc treatments were higher than that of the control. The highest and the lowest numbers of fungi, *vibrio* and *bacillus* were found in P₂₅ treatment and the control treatment, respectively. The length of the epithelial cells of the intestine was increased in all biofloc treatments as compared to the control but this difference was significant in the first abdominal segment, only. The result demonstrated that the effects of SDE were better than molasses, which could be due to the presence of useful compounds such as the growth and immunity promoters in it.

Keywords: *Litopenaeus vannamei*, Intestinal tissue, Biofloc, Spoilage date palm extract, Bacterial load.

*Corresponding author