تأثیر احداث سد بر تغییرات دما، pH، شوری، قلیانیت و سختی آب در رودخانه حنا (سیرم)

عباسی استکی
poserc@hotmail.com

موسمه تحقیقات شیلات ایران
پژوهشکده اکولوژی خلیج فارس و دریای عمان، بندرعباس - صندوق پستی: 1597
تاریخ دریافت: پیشین 1379 - تاریخ پذیرش: آبان 1381

چکیده

این تحقیق در سال 1378 بر روی سرشاخه‌های اصلی رودخانه حنا، دریاچه سد حنا و آب خروجی از سد که در شرایط فعلی رودخانه حنا را تشکیل می‌دهد انجام گرفته و طی آن شرایط هیدرولوژیکی آب و هوای pH، شوری، قلیانیت، سختی کل و دما آب در فسته‌های مختلف این اکوسیستم‌ها اندازه‌گیری و مقایسه شدند.

نتایج نشان دادند که در آب سرشاخه‌های اصلی رودخانه حنا، مقادیر قلیانیت، سختی و شوری، زیاد و بتریب بین 180 تا 250 میلی‌گرم در لیتر نوسان داشته‌اند. بنحویکه آب آنها در زمره آب‌های سخت طبقه‌بندی می‌شود که پس از رود به دریاچه سد، در اثر ایجاد شرایط سکون و مانندگاری آب و برغم افزایش سطح تبخیر، از مقدار آنها کاسته شده‌است که در آب رودخانه حنا در شرایط فعلی میزان قلیانیت، سختی و شوری کل بسیار معادل ۲۴۰ تا ۱۸۰ میلی‌گرم در لیتر کاهش حاصل شده است. با علاوه‌ترین تغییرات روزانه و pH سالانه آب سرشاخه‌ها نسبتاً معادل و مابین ۱/۷ تا ۰/۵ اندازه‌گیری شد ویل در آب دریاچه تغییرات آن بسیار شدید بود بنحویکه متوسط آن در ماه‌هایی از تابستان تا حد ۹/۷ افزایش حاصل نمود.

لفات کلیدی: دما، pH، شوری، قلیانیت، رودخانه حنا، استان اصفهان
مقدمه

در ارتفاعات حوضه آب‌خیزی، نزولات جوی، روان آب‌های سطحی، آب چشم‌های و غیره به هم پیوسته و سرشاره‌های رودخانه‌ها را تشکیل می‌دهند که این سرشاره‌ها در مناطق پایین‌تر به هم یک‌پیش شده و رودخانه‌های بزرگ‌تر را بوجود می‌آورند و در نتیجه در شرایط معمولی اختصاصات و ساختار شیمیایی آب هر رودخانه متانس مشابه کمیت و ساختار شیمیایی آب مخلوط شده سرشاره‌های آن می‌باشد. ساختار شیمیایی آب أكثر رودخانه‌ها طی قرون و اعصار گذشته تغییرات شدیدی را طی نموده و در حال حاضر معمولاً تغییرات طبیعی ناجی‌رزا را نشان می‌دهند (Meyer et al., 1988) و اعضای شرکت خاصی‌مانند ایجاد زلزله، آتشسوزی‌ها و سیل و مراتع حوضه آب‌خیزی (Schindler et al., 1996) دخالت‌های انسانی (Silva et al., 1988) و دخالت ناشی از تغییرات بیضا و بررسی‌های انسانی، احداث سدهای بزرگ‌و کوچک‌بر روی رودخانه‌ها می‌باشد که موجب ایجاد تغییرات و سیل در اکوسیستم رودخانه‌ها از جمله جل‌گیری از مهاجرت ماهیان جهت تخم‌زایی و کاهش ذخایر آنها، تغییرات دیبی آب و غیره می‌شود (Moss, 1980). در واقع با ایجاد سد، قسمت و سیل‌سازی آب رودخانه‌ها که قبلاً شرایط اکوسیستم‌های جالی را داشته، تغییر وضعیت داده و به اکوسیستم آبی ساکن تبدیل می‌شود و به دنبال آن انسان با اعمال مدیریت و تنظیم آب، بازدید بر ساختار رودخانه‌پایین دست سد تأثیر می‌گذارد. به‌همین‌جورچه ساختار شیمیایی آب آن علاوه بر اختلال آب سرشارها، از شرایط سیل آب نیز به شدت تأثیر می‌گیرد. در این مقاله تأثیر احداث سد و اینراد دریاچه و شرایط سیل آب بر تغییرات شوری، قللاییت و سختی آب رودخانه حنا مورد بررسی و بحث قرار می‌گیرد. همچنین جهت روش‌شناسی وضعیت طبقه‌بندی حرارتی آب در فصول مختلف، شرایط سالانه آب و هواپیمای منطقه و وضعیت دما به سمت آب دریاچه در طول سال بررسی می‌شود.

سد حنا در جنوب باختیاری اصفهان و در ۳۰ کیلومتری جنوب شرقی شهرستان سمیرم در نزدیکی روستای حنا واقع شده است.
مواد و روش‌ها

رودخانه حنا در جنوبی ترین قسمت استان اصفهان از کوههای آق داغ، رک حنا، دره علی، دلا و مرکوری سرچشمه گرفته و پس از عبور از دشت حنا به رودخانه سبیم می‌ریزد. رودخانه سبیم در شمال منطقه کهکیلویه به رودخانه خراسان، که از سرشاخه‌های اصلی کارون است، ملحق می‌گردد. حوزه آبریز رودخانه حنا جزئی از حوزه آبزی‌کارون می‌باشد و حدوداً مابین ۱۱۵۰ تا ۱۸۳۰ متر بالاتر از سطح دریا و عرض این حوزه حدوداً ۶۰۰ کیلومتر و مساحت آن ۱۷۱ کیلومتر مربع می‌باشد (مهم‌سن مشاور تهران بزرکی و زاینده‌آب، ۱۳۶۳).

جهت اندازه‌گیری شوری، انسداد و سختی کلیک بطری از هر نمونه آب به آزمایشگاه منتقل و براساس روش‌های استاندارد سازمان مهیاطیزست (۱۳۷۷) آنالیز شدند. توسط دستگاه پرتابل (۲۳۰ pH Testo) و حرازت نوس دماسنج جیوهای در صبح و طارم اندازه‌گیری شدند. اطلاعات مربوط به دقت و میزان و نرخ باد از استگانش هوشمندی مستند در ایستگاه تحتفیقی شهید حمزه واقع در جنوب رودخانه حنا کسب گردید.

نمونه‌گیری از آب رودخانه‌های ورودی، دریاچه و رودخانه حنا از اردبیشت ۱۳۷۸ تا ۱۳۸۲ فروردین ۱۳۷۹ بصورت ماهانه انجام گرفت. در نزدیکی محل ورود آب رودخانه بهمین زاد و رحمی به دریاچه، ایستگاه‌های شماره ۱ و ۲ نمونه‌گیری شدند که میان مشخصات آب این رود خانه‌ها در هنگام ورود به سد می‌باشند. با توجه به شکل، وسعت و نسبت سطح به عمق در دریاچه، دو اکوسیستم مختلف مشخص شد: یکی اکوسیستم قسمت بالای دریاچه که وسیع و کم عمق است و بخش ناحیه ساحلی و سیعی دارد و دیگری قسمت پایینی دریاچه که سطح آن کمتر، عمقتر و نسبت طول به عرض بیشتری دارد و پشت سد قرار گرفته است. در قسمت بالای دریاچه ایستگاه‌های ۳ تا ۵ و قسمت پایینی دریاچه ایستگاه‌های ۶ تا ۹ مشخص شدند. ایستگاه‌های شماره ۱۰ و ۱۱ برترین میان مشخصات آب خروجی از سد و رودخانه حنا می‌باشد.

نمونه‌گیری از ۶ متر اول سطح آب دریاچه توسط لوله پلیکا با قطر ۵ سانتی‌متر و از نواحی
ناتایج
در مدت نمونه‌برداری pH آب رودخانه‌های رحمی و بهمن زاد مابین 6/7 تا 8/5 متوسط و مقادیر اندازه‌گیری شده در فصول پاییز و زمستان بیشتر از سایر موارد سال بود. نقاط مختلف آب دریاچه pH مابین 7/7 تا 9/7 را نشان دادند که بر عکس سرشار‌هایها، مقادیر حداکثر در ماه‌های تابستان و خرداد گیبری شدند. در آب خروجی و رودخانه حنا مقدار pH مابین 7/7 تا 9/7 متفاوت بود و نوسانات ماهانه آن تقریباً با مقادیر اندازه‌گیری شده در دریاچه همخوانی داشت. در کل اکووستم‌های مدرن مطالعه، مقادیر تغییرات روزانه pH بین صفر تا 8/0 متوسط و حداکثر حداقلی در بهار بسته آماد (نمودار 1).
در آب سرشار‌هایها، حداکثر قلیانیت کل 251/5 میلی گرم در لیتر کربنات کلسیم در فروردین ماه اندازه‌گیری شد که در ماه‌های بعدی کاهش یافته و به حداکثر 152 میلی گرم در لیتر در تیر ماه رسید و در ماه‌های بعدی دوباره میزان آن افزایش یافت. سایر اکووستم‌های مورد مطالعه نیز با حداقل بهاره و حداکثر تابستان مشخص شدند. بجز قسمت بالایی دریاچه که حداکثر 272 میلی گرم در لیتر کربنات کلسیم در مهرماه بسته آماد (نمودار 2).
سختی آب در رودخانه‌های رحمی و بهمن زاد بین 200 تا 300 میلی گرم در لیتر کربنات کلسیم اندامازه‌گیری شد. آب رودخانه رحمی سختتر و نوسانات ماهانه آن کمتر از رودخانه بهمن زاد بود. سختی آب دریاچه کمتر از سرشار‌هایها و بین 160 تا 193 میلی گرم در لیتر کربنات کلسیم متفاوت بود که مقادیر حداکثر در تیرماه و حداقل در فروردین اندامازه‌گیری شدند. سختی آب رودخانه حنا از حداکثر 140 میلی گرم در لیتر کربنات کلسیم در مهرماه تا حداقل 160 میلی گرم در لیتر کربنات کلسیم در خرداد ماه متفاوت بود (نمودار 3).
شوری کل آب رودخانه به‌هم‌زدایی ماین حداکثر ۵۷۹ میلی‌گرم در لیتر در آذر ماه تا حداقل ۴۶۱ میلی‌گرم در لیتر در اسفند ماه متوقف بود. آب رودخانه رحیمی شورت و شوری آن از میزان شوری در آب دریاچه ۶۸۴ تا ۷۳۲ و در آب خروجی ۵۲۱ تا ۵۶۶ میلی‌گرم در لیتر اندیشه گیری شد. تغییرات شوری در رودخانه حناکمتر از سایر اکوسیستم‌ها و ماین‌ها وارد ۵۷۶ میلی‌گرم در لیتر بود (نمودار ۴).

در منطقه حنا سرعت باد بین ۷ تا ۲۸ گره متغیر بود. در فروردین ماه ۱۰ روز بدون وزش باد وجود داشت که به طرف تاپستان از میزان آن کاسته شد. بحبوک‌کنه در ماه‌های تیر و مهر دارای ۳ روز منطقه آرام بوده است. حداکثر روزهای بدون باد در اواخر پاییز و زمستان مشاهده شده‌اند که بین ۱۵ تا ۲۴ روز گزارش شده است (نمودار ۵).

حداقل دمای هوای روزانه در تاپستان در دی ماه و حداکثر آن ۲۷/۴ درجه سانتی‌گراد در شهریور ماه اندازه گیری شد. اختلاف دمای بین شب و روز در بین ماه‌های سال بسیار متغیر بوده و تا ۱۴ درجه در اردیبهشت ماه معطوف داشت (نمودار ۶).

در طول دوره آزمایش دمای آب رودخانه‌های ورودی از حداقل روزانه ۳/۲ در اردیبهشت ماه تا حداقل روزانه ۲/۲/۰ در دی ماه متغیر بود و حداقل تغییرات دمای روزانه آنها ۲ درجه سانتی‌گراد در آبان ماه و حداکثر آن ۱۰ درجه در اسفند ماه بوده است. در آب دریاچه حداقل دمای روزانه ۲۶/۴ درجه سانتی‌گراد در ماه مارس و حداکثر دمای روزانه ۱ درجه سانتی‌گراد در دی ماه اندازه گیری شد و تغییرات روزانه دمای آب آن از حداقل ۱/۰ درآبان ماه تا حداقل ۷/۸ درجه سانتی‌گراد در اردیبهشت ماه اندازه گیری شد. اختلاف دمای سطح و عمق آب دریاچه در ناحیه عمیق بست سد در اکثر نمونه‌های گیری‌ها کمتر از ۱/۲ درجه سانتی‌گراد در پاسداران ۲/۱ درجه سانتی‌گراد اندازه گیری شد (نمودار ۷).
نمودار ۱: مقدار pH در آب استفاده‌های مختلف سد حنای از اردیبهشت ۱۳۷۸ تا فروردین ۱۳۷۹.
نمودار 2: مقادیر قلیانیت کل در آب‌کوسیستم‌های مختلف رودخانه جنده بر حسب میلی‌گرم در لیتر کربنات کلسیم

نمودار 3: مقادیر سختی کل در آب‌کوسیستم‌های مختلف رودخانه جنده بر حسب میلی‌گرم در لیتر کربنات کلسیم
نمودار 3: مقدار بیشتری رویا از آب اکوستس‌های مختلف رودخانه حنا بر حسب میلی‌گرم در لیتر

نمودار 5: مقدار سرعت باد بر حسب گره و روزهای آرام در منطقه حنا (۱۳۷۸)
نمودار ۶: تغییرات دمای هوای استان‌های مختلف سد حناز اردیبهشت ۷۸ تا فروردین ۱۳۷۹
نمودار 7: دمای آب استفاده‌های مختلف سد حناز اردبیل متغیر از فروردین 1378 تا فروردین 1379
بحث

بطور کلی ساختار شیمیایی آب رودخانه‌ها از شیوه‌های مختلف جویی آبی بیشتر دانسته آب و هوای میان و یا بکر دانسته بناً، مسائل زمین شناسی، جنگ و نوع خاک، پوشش گیاهی، شیب زمین، میزان و نوع فرسایش، دخالت‌های انسانی (صنعتی، کشاورزی، شهرسازی) و غیره تعیین می‌کند (Meyer et al., 1988) حضور آبی‌های رودخانه‌ها و هماهنگی آن با سطح منطقه به‌طور کلی. زمان تیمی به‌صورت عمده‌ای اسکوکر می‌باشد. بطور کلی وجود افقت سخت آبی‌های آلوده به تمامی مسیر مرطوب خاک و یا به‌طور کلی در طیف‌های اول‌میزان دارای آب و همکارانش، به‌طور کلی نتایج آبی‌های حاصله دوبار از نظریه آبی‌های آب و همکارانش به جز این آب و H
تاثیر اهداف سرد بی‌غیرات، دما، pH، شور، قللائیت و...

مشخص شده است (Wetzel, 1975).

تغییرات شوری آب رودخانه‌ها در فصول بارندگی تحت تاثیر دبی آب و در فصل کشاورزی متاثر از فعالیت‌های کشاورزان و دامداران بوده است.

میزان قللائیت رودخانه‌ها و ورودی بیشتر از دریاچه بود. علت این امر افزایش فتوانتزا و جذب بی کربنات در شرایط سکون آب دریاچه می‌باشد. دانه تغییرات میزان قللائیت کل یک میلی‌گرم در لیتر کربنات بدست آمده جهت اکوسیستم‌های مختلف رودخانه حنا با دانه تغییرات قللائیت کل در آلاینده با حوضه آبخیز دارای سنگ‌های آهکی که در منابع 50 تا 400 میلی‌گرم در لیتر کربنات (Boyd & Tucker, 1998) همخوانی دارد. قللائیت کل 46 میلی‌گرم در لیتر (Patim & Sahu, 1993) کلسمی ذکر شده (Cressa & Senior, 1990) 400 میلی‌گرم در لیتر در حوضه آلاینده در دی‌باکره‌های یورونیک (Arvola et al., 1990).

جهت دریاچه‌های موزوتروفیک در جریان هندوستان (100 میلی‌گرم در لیتر در حوضه آبخیز وانکو) قللائیت کل (جیه دی‌باکره‌های یورونیک) (Arvola et al., 1990) و حداقل 170 میلی‌گرم در لیتر در دی‌باکره‌های آب شور با تبخیر زیاد کشور ایرلند (Rippey & Wood, 1985).

گزارش شده است.

سختی آب دریاچه نیز کمتر از آب سرشاخه‌های رودخانه حنا و حداکثر مقدار اکثری در استفاده ماه اندازه‌گیری شد. این موارد ناشی از همان تأثیرات تغییر شرایط بیولوژیک در اثر سکون آب می‌باشد. با این وجود مقدار سختی کل درآم دی‌باکره مابین 0 تا 200 میلی‌گرم در لیتر در حوضه آلاینده که بانگر سخت بودن آب آن می‌باشد (استیکی، 1375).

pH متوسط آب اکوسیستم‌های مختلف دریاچه حنا در طول سال بین 8 تا 9/7 می‌باشد.

میزان دانه تغییرات کمتر (5 تا 6) در دریاچه‌های مناطق حاره ناشی از ورود CO2 و حذف طبقه‌بندی و چرخش آب گزارش شده است (Mtade, 1988).

دانه تغییرات پاتین تر (5 تا 6) در دریاچه‌های که قدرت بی‌غیرات آبیاری کم و در معرض بارش‌های اسیدی قرار دارند مشاهده شده است (Arvola et al., 1990).

دارم به تغییرات نزدیکتر (4 تا 5) در دریاچه پریشان فارس (استیکی، 1378) تا 9/7/6 تا 9/3 در دریاچه همبیکروپیک (1378).

در آب تحت تأثیر فعالیت‌های شیمیایی شدید فتوسنتز الگ‌ها عالی pH آبی بهتر یافته و متابولیسم شدید جمعیت یا موجب شود که در این شرایط چنانچه قدرت بافر pH زیاد باشد تغییرات و سیال pH می‌باشد. 

نوسانات روزانه شدیدتر را تشکیل می‌دهد. نوسانات شدید روزانه pH برابر ۱/۷ و pH در مورد اکوسمیسم‌های بوتوویک (Neal et al., 1996) و نوسانات کم روزانه pH ۷/۶ به گزارش شده است. فتوسنتز زیاد و قابلیت متوسط دریاچه و موجب افزایش متوسط pH آب و یا قابلیت زیاد و سختی کم متوسط pH آب دریاچه را ۱/۷ تا ۱/۷ افزایش داده است (1997) و اکوسمیسم‌های پوشیده از الگ‌ها عالی غوطه‌ور و شناور آبریز برغم وجود سختی مطلوب و در اثر دچار pH و یا کربنات توسط ماکروفیت‌ها و رسو demásی کلیسم، آب pH. متأسفانه، این ویکی‌پدیا نمی‌تواند به طور دقیق و صادقانه نوشتار بزرگ‌تری در این زمینه بپردازد.
مهم‌ترین نتایج نشان داد که در اکو‌سیستم‌های مختلف رودخانه حنا تغییرات روزانه به اکثریت بین pH صفر تا 6/5 و فقط بعضی در بهار و تابستان به 7/0 و 8/0 بیشتر است که این تغییرات pH متعادل از طریق بافت آب در طی ارتباط با سختی گزارش شده است. کلیات کربنات کلسیم می‌باشد. مقادیر و بسامد گیری شده تغییرات روزانه pH در اکو‌سیستم‌های مختلف رودخانه حنا هیچگونه تأثیر سوء مستقیم بر رشد و سلامت ماهی ندارد. بر اساس آزمایشات Murray & Ziebell در سال 1986 تغییرات pH ناگهانی 1/7 و 1/1 و 5 ساعت موجب می‌گردد درصد از ماهیان قبل آن‌ها و مورد آزمایش شده است. وی‌چنانه سازگاری با همین تغییرات pH در مدت 5 روز انگام شود هیچگونه تلفاتی وجود نخواهد داشت. بنابراین تغییرات تدریجی و کم pH جهت ماهی‌ها قابل تحمل بوده و تأثیر سوء مستقیم بر سلامت و رشد آنها نخواهد داشت (Boyd & Tucker, 1998).

هوای دریاچه در فروردین ماه، شبهای خنک و روزهای نسبتاً گرم داشت بدین معنی که اختلاف دمای صبح و عصر بسیار زیاد بود ولی دمای آب در ماه‌های تغییرات روزانه کمتری را نشان داد. بطور کلی در این ماه آب و رودهای از رودخانه‌ها پس از مانگ‌گاری در دریاچه تحت تأثیر دمای هوا قرار گرفته و گرم‌تر شده بود ولی گرم‌تر، بر اعضا آب تأثیر نداشت و بدین واسطه تغییر در دمای صبح و عصر آب خروجی مشاهده نشد. اختلاف دما سطح و عمق آب در قسمت عمیق پایینی حدود 1 درجه بود که گواهی عدم طبقه‌بندی حرارتی آب در قسمت عمیق دریاچه در این ماه می‌باشد. در اردیبهشت ماه این روند تغییرات دمایی آب و دمای آب مشابه فروردین بود ولی تغییرات را در روزهای گرم‌تری داشت که این گرم‌تری روزانه موجب افزایش عمومی دمای آب در ماه‌های شد و در این ماه تغییرات محسوسی بین دمای ستون آب قسمت عمیق دریاچه وجود نداشت و ستون آب حدوداً هم دما بود. در خرداد ماه دمای آب در ماه‌های بایها دمای آب در ماه‌های بایها بیش از کمیت یافته و اختلاف دمای ستون آب قسمت عمیق حدود 3 درجه اندازه‌گیری کرد که با توجه به حداقل عمق حدود 3 متری آب، می‌توان به طبقه به دو گروه یا بایها مشابه در
تیر ماه، متوسط دمای هوا و آب به حداقل خود رسیدند ولی حداقل متوسط دمای هوا در این ماه ناشی از گرم شدن دمای هوا در شب و کاهش اختلاف دمای هوای شبانه روزی بود که تغییرات نامحسوس و یکسانی نسبی دمای شبانه روزی آب را بدنیال داشت و همچنین نگیر دما در ستون آب در قسمت عمیق دریاچه و طبقه بنده حیراتی نیز مشاهده نشد. هوای منطقه سد در مرداد ماه روزهای گرم و شب‌های خنکی را داشت به‌دین معنی که حداقل درجه حرارت روزهای مرداد بیشتر از تیر و لی حداکثر شبانه آن بسیار کمتر بود و موجب کاهش ۱ درجه سانتی‌گراد در حیرات متوسط دریاچه و ۱ درجه اختلاف دما در ستون آب در قسمت عمیق شد. در شهریور ماه و مهر ماه روزها نیز خنکتر و دمای اختلاف شبانه روزی هوا کاهش یافت و در نتیجه آب دریاچه خنکتر شد. در اواخر پاییز هواهای شبانه روز بسیار سرد و لی هنوز به صورت نسبی بود که در نتیجه آن دمای آب دریاچه نیز سرد شد ولی این سرمای بطور یکسان در ستون آب پراکنده شده و به همین لحاظ اختلاف دمای محسوسی در ستون آب ناحیه عمیق دریاچه مشاهده نشد. در این زمان برای اولین بار دمای آب رودخانه‌های ورودی بیشتر از دمای آب دریاچه بود و دمای رودخانه حنا کاخ شد و نسبت به دمای آب خروجی نشان داد. در ماه‌های دی و اسفند هواهای شبانه بسیار سرد و اکثریت زیر صفر و لی روزها نگی داشته و در کاهش روند زیر آب راشند تازه. این وضعیت دمای هوا موجب شد که به‌رغم ایجاد پوشش یخ در سواحل دریاچه، دمای آب دریاچه در اکثر موارد نسبتاً معادل باشد. حداکثر دمای آب در دی ماه در استانگه شماره ۷ در ناحیه عمیق نیز نمی‌تواند گرای طبقه بندی حرارتی زمستانه آب باشد. به همین توجه آب در ده ماه‌های زمستانی سنتر آب، اختلاف آن با دمای آب لایه‌های سطحی در سایر نمونه‌گیری‌های مربوط به این دو ماه به حداکثر نمود که قطعیت طبقه بندی حرارتی آب در این ماه‌ها را به‌منا نماید.

در مورد عدم طبقه‌بندی حرارتی آب دریاچه سد حنا، علت‌های دیگری هم وجود دارد. همانگونه که گفته شد قسمت بالایی دریاچه دارای عمق کم و سطح و سطح است به‌نحوی که وسعت آن ۸ برابر قسمت عمیق پایینی برآورد گردید. ورزش باد شدید در اکثر روزهای سال موجب تلاطم آب و به‌عنوان ایجاد امواج با ارتفاع یک متر در قسمت بالایی کم عمق و وسیع
می‌شود که افزوده ناشی از آن تأثیر بسزایی بر ایجاد جریان‌های مسیر عصبی و امواج آب در لایه‌های زیرین قسمت عمل داشته و بر اثری حرارتی لایه‌های مختلف ستون آب غلیبه‌گردیده و فرصت ایجاد طبیعی بندی حرارتی را نمی‌دهد. بنابراین سرعت باد (4 تا 8 گره) در اثر روزهای فصول بهار، تا بسته و بانی در ستون آب در کله قسمت‌های دریاچه را تحت تأثیر قرار داده و فرصت طبیعی بندی حرارتی را به آب دریاچه نمی‌دهد. بر اساس منابع موجود، سرعت باد 10 گره شروع به است سرعت آب دریاچه با عمق متوسط 1/5 متر را کاملاً متلاطم نموده و گل ولای موجود در سانتریمتر اول سطح رسوه در ستون آب معلق کرده و موجب کاهش نفوذ نور شود. (Laenen & Letourneau, 1997) و در زمستان که تعادل روزهای آرام افزایش می‌یابد و خصوصاً در بهمن ماه که اکثر روزهای آرام است و بعلاوه سطح دریاچه از یخ پوشیده و امکان تأثیر باد و ایجاد تلاطم بسیار کم می‌باشد، احتمال طبیعی بندی حرارتی آب افزایش می‌یابد. در مطالعاتی که در مورد آب و گروه این منطقه صورت گرفته زمستان‌های آن سیاره سرد و آرام مشخص شده است (جهاد سازندگی استان اصفهان، 1367) بنابراین احتمال طبیعی بندی حرارتی آب در زمستان خصوصاً در بهمن ماه دور از انظار نمی‌باشد.

منابع

استکی، ع.، 1378. عوامل شیمیایی نشیزا در ستون آب دریاچه بیرشان (فارس). مجله علمی شیلات ایران، شماره 2، سال هشتم، صفحات 15 تا 30.

استکی، ع.، 1376. هیدرولوژی. مرکز تحقیقات منابع طبیعی و امور دام جهاد سازندگی استان اصفهان، بخش تحقیقات شیلات، 8 صفحه.

استکی، ع.، 1376. گزارش خاکشناسی و ارزیابی اراضی کالون حنا. سازمان جهاد سازندگی استان اصفهان، بخش تحقیقات روستایی، 99 صفحه.

جهاد سازندگی استان اصفهان، 1367. آب و هوای اقلیم شهرستان سمیرم. کمیته کشاورزی، واحد مرکز، 100 صفحه.

روش طیبی، م.، 1376. هیدرولوژی و هیدرولوژی رودخانه سیاه رود. مجله علمی
شیلات ایران، سال ششم، شماره ۲، صفحات ۲۷ تا ۳۲.
روش طبیعی، م. ۱۳۷۵. هیدرولوژی و هیدرولوژی رودخانه هزار. مجله علمی شیلات ایران،
سال پنجم، شماره ۲، صفحات ۳۲ تا ۳۷.
سازمان حفاظت محیط زیست، ۱۳۷۷. روشهای استاندارد اندازه‌گیری آب و فاضلاب. آزمایشگاه مرکزی با همکاری آموزشگاه حفاظت محیط تهران. صفحات: ۲-۲۳،
۳-۳، ۱۱-۳۳، ۱۳۶۶. شاهمرادی، ا.; بسیری، م. و مزروعی، ف. ۱۳۶۶. شناسایی پوشش گیاهی و ارژینی مراتع
شهرستان سمیرم. جهاد سازندگی استان اصفهان، کمیته گردشگری، ۱۸۸ صفحه.
مهدیسین مشاور تهران برکلی و زاکند آب، ۱۳۶۴. گزارش مقدماتی هیدرولوژی رودخانه حنا
(سمیرم). سازمان آب منطقه‌ای اصفهان، ۶۶ صفحه.

of a former perennial and now episodically filled Mexican saline lake. Int. J. Salt.

the chemistry of small forest lakes in southern Finland with special reference to

Barko, J. W., and James, W., F., 1994. Role of the littoral zone in lake and reservoir
water quality, Lake. Reservoir. Manage, Vol. 9, No. 2. 540 P.


Vol. 327, No. 6, pp.397-403

Cressa, C. and Senior, C.T., 1990. Physico-chemical characteristictis of the water of


