تأثیر احداث سدبر تغییرات، دما، pH، شوری، قلیاییت و سختی آب در رودخانه حنا (سیمر)

عباسی استکی
poserc@hotmail.com

موسسه تحقیقات شیلات ایران
پژوهشکده اکولوژی خلیج فارس و دریای عمان، بندرعباس
صندوق پستی: ۱۵۹۷
تاریخ دریافت: بیستم ۱۳۷۹
تاریخ پذیرش: ابان ۱۳۸۱
چکیده
این تحقیق در سال ۱۳۷۸ بر روی سرشاخه‌های اصلی رودخانه حنا، دریاچه سد حنا و آب خروجی از سد که در شرایط فعلی رودخانه حنا را تشکیل می‌دهد انجام گرفته و طی آن شرایط هیدرولوژیک، آب و هوا، pH، شوری، قلیاییت، سختی کل و دمای آب در قسمتهای مختلف این اکوسیستم، اندکی گیری و مقایسه شدند.
نتایج نشان داد که در آب سرشاخه‌های اصلی رودخانه حنا، مقدار قلیاییت، سختی و شوری، زیاد و بترپی بین ۱۵۲ تا ۲۵۱، ۲۰۰ تا ۴۷۱ میلی‌گرم در لیتر نوسان داشته. بنحویکه آب آنها در زمره آب‌های سخت طبیعی می‌شود که پس از رود به دریاچه سد، در اثر ایجاد شرایط سکون و مانندگاری آب و برغم انفیلای سطح تبخیر، از مقدار آنها کاسته شده تا حدی که در آب رودخانه حنا در شرایط فعلی میزان قلیاییت، سختی و شوری کل بیشتر از سرشاخه‌های آن بوده و بترپی تا حدود ۱۴۰۲۲ تا ۲۲۲۲۸ تا ۲۴۵ و ۵۳۱ تا ۵۷ میلی‌گرم در لیتر کاهش حاصل نموده است. با عکس تغییرات روزانه و pH سالانه آب سرشاخه‌ها نسبتاً معادل و مابین ۶/۵ تا ۶/۵ اندکی گیری شد و در آب دریاچه تغییرات آن برگ می‌شود و pH متوسط آن در ماه‌هایی از تابستان تا حدود ۷/۹ افزایش حاصل نمود.

لینک کلیدی: دما، pH، شوری، قلیاییت، رودخانه حنا، استان اصفهان
مقدمه
در ارتفاعات حوضه آبخیز، نژولات جوی، روان آب‌های سطحی، آب چشمه‌ها و غیره به هم پیوسته و سرشاره‌های رودخانه‌ها را تشکیل می‌دهند که این سرشاره‌ها در مناطق پایین‌تر با هم یکی شده و رودخانه‌های بزرگتری با وجود می‌آورند و در نتیجه در شرایط معمولی اختصاصات و ساختار شیمیایی آب هر رودخانه متناسب با کاهش و ساختار شیمیایی آب مخلوط شده سرشاره‌های آن می‌باشد. ساختار شیمیایی آب اکثر رودخانه‌ها طی قرون و اعصار گذشته تغییرات شدیدی را طی نموده و در حال حاضر معمولاً تغییرات طبیعی ناچیزی را نشان می‌دهند (Meyer et al., 1988) و (Schindler et al., 1996) ولی تحت شرایط ناخشاد مانند ایجاد زلزله، آتش‌سوزی، کیفیت و سطح و مراحل حوضه آبخیز (Silva et al., 1988) داخلت انسانی، ساختار شیمیایی آب رودخانه‌ها یافتند. از جمله تأثیر و دخالت فعالیت‌های انسانی، احداث سد به گونه های انسانی (می‌گردد. از جمله تأثیر و دخالت فعالیت‌های انسانی، احداث سد به گونه های انسانی (Moss, 1980) در واقع با ایجاد سد، قسمت و سهیع از آب رودخانه که قبل شرایط اکوسیستم‌های جاری را داشته، تغییر وضعیت داده و به اکوسیستم آبی ساکن بدلیل می‌شود و به دنبال آن انسان با اعمال مدیریت و تنظیم آب، به ساختار رودخانه پایین دست سد تأثیر می‌گذارد. به‌نحوی که ساختار شیمیایی آب آن علاوه بر اختلاف آب سرشاره‌های بزرگتر شرایط ساکن آب تأثیر می‌گردد. در این مقاله تأثیر احداث سد و ایجاد دریاچه و شرایط ساکن آب بر تغییرات pH شیمیایی آب و سختی آب رودخانه‌ها مورد بررسی و بحث قرار می‌گیرد. همچنین جهت روش‌شناسی و وضعیت طبیعی بندی حوزه آب در فصول مختلف، شرایط سالانه آب و هوایی منطقه و وضعیت دمای سطون آب دریاچه در طول سال بررسی می‌شود.

سند حتا در جنوب باختیاری اصفهان و در ۳۰ کیلومتری جنوب شرقی شهرستان سمندر در نزدیکی روستای حتا واقع شده است.
مواد و روش‌ها

رودخته حنا در جنوبی ترین قسمت استان اصفهان از کوه‌های آق داغ، رک حنا، دره علی، دلا و مواردی سرچشمه گرفته و پس از عبور از دشت حنا به رودخته سرمیر می‌ریزد. رودخته سرمیر در شمال منطقه کهکیلویه به رودخته خراسان، که از سرشاخه‌های اصلی کارون است، ملحق می‌گردد. حوزه آبیزی رودخته حنا جزئی از حوزه آبزی کارون می‌باشد و حدوداً مابین ۵۱ - ۱۱ طول شرقی و ۳۱ - ۲۸ عرض شمالی در مجاورت ضلع جنوب غربی حوزه مرکزی قرار دارد. طول و عرض این حوزه حدوداً ۴۰ و ۱۸ کیلومتر و مساحت آن ۱۷۱۵ کیلومتر مربع می‌باشد (مهندسان مشاور تهران برقی و زاینده‌آب، ۱۳۶۴).

جهت اندامزه گیری شوری، فلایات کل و سختی کل یک بی‌تری از هر نمونه آب به‌طور متوسط دستگاه پرتابل (۲۳۰ pH Testo) و حرات توسط دماسنج جبودای در صبح و عصر اندازه گیری شدند. اطلاعات مربوط به سرعت و میزان وزن‌باد از استگاه هوای‌سنجی مستند در استگاه تحتفظاتی شهر حزیowi واقع در جنوب روستای حاناکسب گردید.

نمونه‌گیری از آب رودخته‌های ورودی، دریاچه و رودخته حنا از اردبیشت ۱۳۷۸ تا ۱۳۷۹ بصورت ماهانه انجام گرفت. در نزدیکی محل ورود آب رودخته بهمن زاد و رحمی به دریاچه، استگاه‌های شماره ۱ و ۲ تعبیه شدند که میبین مشخصات آب این رودخته‌ها در هنگام ورود به سد می‌باشند. با توجه به شکل و سطح و نسبت سطح به عمق در دریاچه، دو اکوستیم مختلف مشخص شد: یکی اکوستیم قسمت بالای دریاچه که وضعیت عمیق است و بخش تحت تأثیر عوامل محیطی قرار داشته و ناحیه ساحلی وسیعی دارد و دیگری قسمت پایینی دریاچه که سطح آن کمتر، عمیقتر و نسبت طول به عرض زیادی دارد و پشت سد قرار گرفته است. در قسمت بالای دریاچه استگاه‌های ۱ و ۵ قسمت پایینی دریاچه استگاه‌های ۶ تا ۹ مشخص شدند. استگاه‌های شماره ۱۰ و ۱۱ برترین بین مشخصات آب خروجی از سد و رودخته حنا می‌باشد.

نمونه‌گیری از ۶ متر اول سطح آب دریاچه توسط لوله پلیکا با قطر ۵ سانتی‌متر و از نواحی
عمیق تر بطوری رویتر اندازه گرفت وی چون وزش باد در تابستان شدید بود و امکان نمونه گیری توسط بطوری رویتر از اعماق وجود نداشت و کلیه باران‌های اندوزه گیری شده در اولین نمونه گیری تابستان در آب خروجی و اعماق آب دریاچه برابر بود. بنابراین مشخصات آب خروجی بعنوان مشخصات عمیق آب در نظر گرفته شد.

نتایج

در مدت نمونه برداری pH آب رودخانه‌های رحیمی و بهمن زاد ماینی ۶/۸ تا ۷/۷ متوسط و مقادیر اندازه‌گیری شده در فصول پاییز و زمستان بیشتر از سایر مواقع سال بود. نقاط مختلف آب دریاچه pH ماینی ۷/۶ تا ۹/۷ را نشان دادند که بر عکس سررخاه‌ها، مقادیر حداقل در ماههای تابستان اندوزه گیری شدند. در آب خروجی و رودخانه حنا مقادیر pH بین ۷/۷ تا ۷/۳ متوسط و مزارع و نوسانات ماهانه آن تنریبا با مقادیر اندوزه گیری شده در دریاچه هموخوایی داشت. در کل اکوسیستم‌های مورد مطالعه، مقادیر تغییرات روزانه pH بین صفر تا ۷/۸ متوسط بود و حداکثر متأخر در بهار بست پایین آمد (نمودار ۱).

در آب سررخاه‌ها، حداقل قلیانیت کل ۲۵/۱ تا ۲۵/۵ میلی گرم در لیتر کربنات کلسیم در فروردین ماه اندازه‌گیری شد که در ماههای بعدی کاهش یافت و به حداکثر ۱۵۲ میلی گرم در لیتر در تیر ماه رسید و در ماههای بعدی دوباره میزان آن افزایش یافت. سایر اکوسیستم‌های مورد مطالعه نیز با حداکثر بهاره و حداکثر تابستان مشخص شدند. بجز قسمت بالایی دریاچه که حداکثر ۲۷۲ میلی گرم در لیتر کربنات کلسیم در مهار ماه بست پایین آمد (نمودار ۲).

سختی آب در رودخانه‌های رحیمی و بهمن زاد بین ۲۰۰ تا ۳۰۰ میلی گرم در لیتر کربنات کلسیم اندازه‌گیری شد. آب رودخانه رحیمی سختتر و نوسانات ماهانه آن کمتر از رودخانه بهمن زاد بود. سختی آب دریاچه کمتر از سررخاه‌ها و بین ۱۸۰ تا ۱۹۳ میلی گرم در لیتر کربنات کلسیم متغیر بود که مقادیر حداقل در تیرماه و حداکثر در استفاده‌های اندازه‌گیری شدند. سختی آب رودخانه حنا از حداقل ۱۶۰ میلی گرم در لیتر کربنات کلسیم در مهرماه بیشتر بود (نمودار ۳).
شوري کل آب رودخانه بهمین زاد مابین حد اکثر ۵۴۹ میلی‌گرم در لیتر در آذر ماه تا حداقل ۱۵۱ میلی‌گرم در لیتر در ماه مه‌ماه. آب رودخانه رحمی شورت و شوری آن از میزان شوری در آب دریاچه ۷۵۳ قلو در آب خروجی ۵۶۶ قلو در لیتر اندمازه گیری شد. تغییرات شوری در رودخانه حناکمرت از سایر اکوسیستم‌ها و مابین ۱۳۱ تا ۵۷ میلی‌گرم در لیتر بست آمد (نمونه ۴).

در منطقه حنا سرعت باد بین ۷ تا ۲۸ کیلومتر در ساعت بود. در فروردین ماه ۱ روز بدون وزش باد وجود داشت که به طرف تای ومن از میزان آن کاسته شد. بین نهاییان در ماه‌های تیر و مهر مورد فقط سه روز نوین منطقه آرام بوده است. حداکثر روزهای بدون باد در اواخر پاییز و زمستان مشاهده شده‌اند ۱۵ تا ۲۴ روز گزارش شده است (نمونه ۵).

حداقل دمای هوای روزهای ۱۷ درجه سانتی‌گراد در دی ماه و حداکثر آن ۲۷/۵ درجه سانتی‌گراد در شهریور ماه اندمازه گیری شد. اختلاف دمای شبانه‌روزی هوا در بین ماه‌های سال بسیار متفاوت و از غیرمعنی‌دار در تیر ماه تا ۵/۱ درجه در اردیبهشت ماه اختلاف داشت (نمونه ۶).

در طول دوره آزمایش دمای آب رودخانه‌های ورودی از حد اکثر روزهای ۳۱/۱ در اردیبهشت ماه تا حداقل روزهای ۲/۰ در دی ماه متغیر است و حداقل تغییرات دمای روزهای آنها ۲ درجه سانتی‌گراد در آبان ماه و حداکثر آن ۷/۰ درجه در اسفند ماه بست آمد. در آب دریاچه حداکثر دمای روزهای ۲۶/۰ درجه سانتی‌گراد در مارد ماه و حداقل دمای روزهای ۱ درجه سانتی‌گراد در دی ماه اندمازه گیری شد و تغییرات روزهای دمای آب آن از حداقل ۱/۰ در آبان ماه تا حداقل ۷/۸ درجه سانتی‌گراد در اردیبهشت ماه اندمازه گیری شد. اختلاف دمای سطح و عمق آب دریاچه در ناحیه عمیق پشت سد در اکثر نمونه‌های گیری‌ها کمتر از ۲/۱ درجه سانتی‌گراد و در نسبت ۲/۳ درجه سانتی‌گراد اندمازه گیری شد (نمونه ۷).
نمودار 1: مقادیر pH در آب استفاده‌ای مختلف سد حنا از اردبیشت 1378 تا نوروز 1379
نمودار ۲: مقادیر شیلات آب در آب‌کوسیستم‌های مختلف رودخانه حنا بر حسب میلی‌گرم در لیتر کربنات کلسیم.

نمودار ۳: مقادیر سختی آب در آب‌کوسیستم‌های مختلف رودخانه حنا بر حسب میلی‌گرم در لیتر کربنات کلسیم.
نمودار ۴: مقدار ی شوری کل در آب اکوسیستم‌های مختلف رودخانه حنا بر حسب میلی‌گرم در لیتر

نمودار ۵: مقدار سرعت باد بر حسب گره و روزهای آرام در منطقه حنا (۱۳۷۸)
نمودار ۶: تغییرات دما بر اساس مجموعه‌های مختلف سد‌های اردیبهشت ۷۸ تا فروردین ۱۳۷۹
نمودار 7: دما ی آب استفاده‌های مختلف سد حنا از اردیبهشت 1378 تا فروردین 1379
بحث

پژوهشی ساختار شیمیایی آب رودخانه‌ها از مشخصات مختلف حوضه آبخیز مانند آب و هوای میزان و پراکندگی بارندگی، مسائل زمین شناسی، جنس و نوع خاک، بوشگاه، شیب زمین، میزان و نوع فرسایش، دما و بهداشت انسانی (صنعتی، کشاورزی، شهرنشینی) و غیره تبعیت می‌کند (Meyer et al., 1988). حوضه آبخیز رودخانه‌ها خان اصولاً منطقه کوهستانی است که جنس بسته‌کوه و تهیه‌های آن از سگهای آهکی، کنگلی مری و ماری تشکیل شده و دشت‌های با شیب ملایم نیز قسمت وسیعی از سطح منطقه را پوشانده‌اند. نزولات جوی در این حوضه عمداً به صورت بر فر بوده و مقدار کمتری نیز بصورت بارندگی می‌باشد. بطور کلی وجود افق سخت آهکی و یا لایه سنگی در طبقات خاک، لیا غیر قابل نفوذ را وجود آب و در نتیجه آب‌های حاصله از ذوب برف‌ها و یا باران نسرعت به جریان در آمده و با توجه به شرایط توربوجری‌های موجود تخریب خاکها را فراهم می‌آورند (اسکندری، 1977). بعلاوه در حوضه آبخیز، 38675 هکتار اراضی شحم خورده و دیم (شاهرماری و همکاران، 1437) و حدود 9000 هکتار اراضی آب وجود دارد (مهندسین مشاور تهران برقی و زاینده‌آب، 1366) که با توجه به شیب زمین‌های اطراف مسیر سرشاره‌های اصلی (رودخانه‌های بهمن زاد و رحمی) آب این رودخانه‌ها به شیب ایستا بر می‌آید که به عبور از نزولات و بادل شیب زیاد (نسبت به اراضی معمولی کشاورزی) در انتهای آن تجمع کرده و سپس سرعت نموده و به رودخانه باز رگدانده می‌شود. این عمل نیز موجب استنشای مواد معدنی و انحلال آنها در آب رودخانه‌های بهمن زاد و رحمی می‌گردد.

مجمعه موارد و عوامل فوق الذکر سبب قلایش بودن pH، قلاییت بالا و خشکی زیاد آب رودخانه‌های رحمی و بهمن زاد شده‌اند، بطوریکه بر اساس تخمین‌های موجود در منابع (استکلی، 1375) آب این رودخانه‌ها در زمره آب‌های سخت محسوب می‌گردد. سخنی زیاد نیز در آب‌های رودخانه‌های سیاه‌نری و هزارک در معرض آلودگی‌های کشاورزی و صنعتی قرار دارند که است (روشن طبیعی، 1376 و 1377). شوری آب سرشاره‌های رودخانه‌های حنا نیز نسبتاً زیاد بود خصوصاً در رودخانه رحمی که در اکثر مواقع حدود 1 گرم در لیتر
تاثیر احتمال سد بر تغییرات، دما، pH، شوری، قللایت و...

اسکنی

اندازه گیری شد. در میانس جهانی متوسط شوری آب رودخانه‌ها ۱۲۰ میلی‌گرم در لیتر مشخص شده است (Wetzel, 1975).

تغییرات شوری آب رودخانه‌ها در فصول بارندگی تحت تأثیر دبی آب و در فصل کشاورزی متأثر از فعالیت‌های کشاورزان و دامداران بوده است.

میزان قللایت رودخانه‌های ورودی بیشتر از دریاچه بود. علت این امر افزایش فتوستزر و جذب بی‌پرندگان در شرایط سکون آب دریاچه می‌باشد. دامنه تغییرات میزان قللایت کل بدست آمده جهت اکوسیستم‌های مختلف رودخانه حنا با دامنه تغییرات قللایت کل در آب‌های با حوضه آبخیز دارای سنته‌های آهکی که در مابین ۵۰ تا ۴۰۰ میلی‌گرم در لیتر کربنات کلسیم ذکر شده (Boyd & Tucker, 1998), همخوانی دارد. قللایت کل ۴۰ میلی‌گرم در لیتر جهت دریاچه‌های مزوتوروفیک در کشور هندوستان (1993), قللایت کل ۱۰۰ میلی‌گرم در لیتر در کشور ونزوئلا جهت دریاچه‌های بزرگتر (Cressa & Senior). Arvola et al., 1990) حداکثر ۱۱ میلی‌گرم در لیتر جهت دریاچه‌های اسپانیای کشور فنلاند (Arvola et al., 1990) و حداقل ۳۱۷۰ میلی‌گرم در لیتر در دریاچه‌های آب شور با تبخیر زیاد کشور ایرلند (Rippey & Wood, 1985) گزارش شده است.

سختی آب دریاچه نیز کمتر از آب سرشاخه‌های رودخانه حنا و حداکثر مقداری اکثر در اسفند ماه اندازه گیری شد. این موارد ناشی از همان تأثیرات تغییر شرایط بیولوژیک در اثر سکون آب می‌باشد. با این وجود منفی‌گر سختی کل درآب دریاچه‌های مابین ۲۰۰ تا ۳۰۰ میلی‌گرم در لیتر اندازه گیری شده که منفی‌گر سخت بودن آب آن می‌باشد (استکی، ۱۳۷۶).

الکسیس آب با pH متوسط آب اکوسیستم‌های مختلف دریاچه حنا در طول سال بین ۷ تا ۹/۷ متنگیر بود. pH متوسط در منابع دامنه تغییرات کمتر (۶/۵ تا ۶/۷) در دریاچه‌های مناطق حاره ناشی از ورود CO2 و حذف طبیعی و چیرخ آب گزارش شده است (Mtrade, 1988). دامنه تغییرات پایینتر (۵/۵ تا ۶/۵) در دریاچه‌هایی که گردت با فر حوضه آبخیز آنهاکم و در معرض باران‌های اسیدی قرار دارند مشاهده شده است (Arvola et al., 1990). دامنه تغییرات نزدیکتر (۶/۷ تا ۹) در دریاچه پریشان فارس (استکی، ۱۳۷۸), ۷/۵ تا ۹/۳ در دریاچه همبیتروفیک
آلوده به فاضلاب شهری در اتیروش (Mayer et al., 1997) و (Mayer et al., 1997) گزارش شده است. نژدیک‌ترین دامنه تغییرات (Weim et al., 1997) تا 90 در دریانچه‌ها، آب پوشیده از مکروفیت (Pokorny et al., 1984) و دامنه تغییرات (Groth et al., 1997) تا 90 در دریاچه‌های مکروفیت (Maberly, 1996) اندیشگر گیره شده است. در منابع تغییرات دامنه pH در آب‌های طبیعی را به شکل کلاسیک ۵/۶ ذکر و آنرا ناشی از تأثیرات متقابل شدت فتوستزو و فراز از مقدار فوق الذکر بوده و تغییرات فصلی نیز داشته باشند. در آب دریاچه سد صنعا از ابتدای فصل بهار تا اواسط تابستان، pH آب افزایش یافته و سپس به طرف آخر زمستان کاهش حاصل نموده. pH همچنین آب رودخانه‌های ورودی و رودخانه‌های حنا همواره کمتر از آب دریاچه اندیشگر گیره ـ شد. این تغییرات ناشی از شرایط سكوت و مانندگاری آب خصوصاً در اثر تأثیر متقابل افزایش میکروفلای تیلونزیک (نفوستزو و تنفس) و عوامل شیمیایی سبب آب تغییر می‌باشد (Brigault et al., 1998). بزرگ pH آب تحت تأثیر میکروفلای شدید فتوستزو گیاهان عالی آبی باشد. (Barko & James, 1994) می‌باشد. این است در دریاچه‌ها در اثر ورود مواد مغذی و یا سایر شرایط مناسب جمعیت مکروفیتی و یا فیتویلانکتونی در دشت توسه‌ی یافته و متابولیسم شدید جمعیت یا موجب شونده که در این شرایط چنانچه قدرت بافر pH آب زیاد باشد تغییرات وسیع pH مشاهده نشده و چنانچه قدرت بافر آب کم باشد (Maberly, 1997). pH نوسانات روزانه شدید را نشان می‌دهد. نوسانات شدید روزانه pH برابر ۷/۱ (Maberly, 1997) در مورد اکوسیستم‌های بیوتروفیک (Neal et al., 1996) و نوسانات کم روزانه pH ۷/۳ (Yibbing & Fengshan, 1996) و با قیامتیت متوسط دریاچه موجب افزایش متوسط pH آن تا pH ۶/۹ شده است (Alcocer et al., 1997) خصوصاً در دریاچه‌ها و اکوسیستم‌های پوشیده از گیاهان عالی غوطه‌ور و شنای آبی برغم وجود سختی مطلوب و در اثر جذب CO2 و پی کربنات توسط مکروفیتی و رسوب کربنات کلسیم، pH آب
تأثیر احتمال سد بر تغییرات دما، pH، شوری، قلیانتی و...

استکی

معلوماً در نتایج اکوسیستم‌های مختلف رودخانه حنا تغییرات روزانه pH اکثراً بین صفر تا 4/0 و فقط بعضاً در بهار و تابستان به 7/0 و 8/0 بالغ شده است که این تغییرات ناشی از تغییرات pH متعادل کلریست کمی ناشده. مقادیر اندازه‌گیری کلریست تغییرات روزانه pH در اکوسیستم‌های مختلف رودخانه حنا هیچگونه تأثیر سوئه مستقیم بر رشد و سلامت ماهی ندارد. بر اساس نظریه ناگهانی در مدت 5 ساعت 1984 تغییرات pH در مدت 5 روز انجام شود هیچگونه تلفاتی وجود نخواهد داشت. بنابراین تغییرات تدریجی و کم pH جهت ماهی‌ها قابل تحلیل بوده و تأثیر سوئه مستقیم بر سلامت و رشد آنها نخواهد داشت (Boyd & Tucker, 1998).

۱۴
تیر ماه، متوسط دمای هوا و آب به حداکثر خود رسیده و یک تفاوت متوسط دمای هوا در این ماه ناشی از گرم شدن دمای هوا در شب و کاهش اختلاف دمای هوا یا شبانه‌روزی بود که تغییرات نامحسوس و یکسانی در دمای شبانه روزی آب را بدنیل داشت و همچنین تغییر دما در سه‌ما آب در قسمت عمق دریاچه و طبقه بندی حرارتی نیز مشاهده نشد. هوا در منطقه سد در مرداد ماه روزهای گرم و شب‌های خنکی را داشت؛ بنابراین، که حداکثر درجه حرارت روزانه مرداد بیشتر از تیر ولی حداقل شبانه آن بسیار کمتر بود و موجب کاهش ۱ درجه سانتی‌گراد در حرارت متوسط دریاچه و ۱ درجه اختلاف دما در سه‌ما آب در قسمت عمق شد. در شهریور ماه و مهر ماه روزها نیز خنکتر در دمای اختلاف شبانه‌روزی هوا کاهش یافت و در نتیجه آب دریاچه خنک‌تر شد. در اواخر پاییز، هواهای شبانه روز بسیار سرد و لی هنوز به صفر نرسیده و بود که در نتیجه آن دمای آب دریاچه از سرد شد ولی این سرمای بطور یکسان در سه‌ما آب پراکنده شده و به همین لحاظ اختلاف دمای محسوسی در سه‌ما آب ناحیه عمق دریاچه مشاهده نشد. ولی این زمان برای اولین بار دمای آب رودخانه‌های ورودی بیشتر از دمای آب دریاچه بود و دمای رودخانه در ابزاران سری والی روزها نیز افزایش داد. در ماه‌های دی و اسفند هواهای شبانه بسیار سرد و اکثری زیر صفر و لی روزها هوا نسبتاً گرم شده و حداکثر روزانه زیر صفر را نشان نداد. این وضعیت دمای هوا موجب شده که طبقای نسبتاً متعادل باشد. حداقل دمای آب در سه‌ما هم در ابزاران سری والی زیر صفر و در آلاینها دمای آب رودخانه‌های در اکثر موارد این دمای قابل توجه بود. به طور تجمع آب در دمای آب رودخانه‌های زیرین ناحیه سد، اختلاف آن با دمای آب وابه‌های سطحی در سایر نمونه‌گیری‌های مربوط به این دما و این دما به حیدر نیز که قطعیت طبقه بندی حرارتی آب در این ماه‌ها را به‌سالم می‌کرد.

در مورد علم طبقه بندی حرارتی آب دریاچه، سادگی، عمل‌های دیگری هم وجود دارد. همانگونه که گفته شد قسمت بالایی دریاچه دارای عمق کم و سطح و سطح و سطح است که ۱۰ و سه‌ما آب در قسمت عمق نسبتاً برآورده گردید. ورزش با این ایجاد آموزش با ارتفاع بکمتر در قسمت بالایی کم عمق و وسیع
می‌شود که ارث‌زی ناشی از آن تأثیر بنیان‌یافته بر ایجاد جریانات و امواج آب در لایه‌های زیرین قسمت عمیق داشته و بر ارث‌زی حرارتی لایه‌های مختلف سطح آب غلبه کرده و فرصت ایجاد طبقه بنی‌های حرارتی را نمی‌دهد. بنابراین سرعت باد (۲۸ تا ۲۸ گره) در اکثر روزهای فصول بهار، تابستان و پاییز در سطح آب در کله قسمت‌های دریاچه‌ها تحت تأثیر قرار داده و فرصت طبقه بنی‌های حرارتی را به آب درمانه کرده. بر اساس منابع موجود، سرعت باد ۱۰ گره توانسته است سطح آب دریاچه با عمق متوسط ۵/۱ متر را کاملاً مناطقی نموده و گل ولای موجود در سانتی‌متر اول سطح رسوپ را در سطح آب معلق کرده و موجب کاهش نفوذ نور شود. (Laenen & Letourneau, 1997) و لی در زمستان که تعداد روزهای آرام افزایش می‌یابد و خصوصاً در بینم ماه که اکثر روزها آرام است و بعلاوه سطح دریاچه‌ای بیش از پوشیده و امکان تأثیر باد و ایجاد تلالطم بسیار کم می‌باشد، احتمال طبقه بنی‌های حرارتی آب افزایش می‌یابد. در مطالعاتی که در مورد آب و هواهای این منطقه صورت گرفته زمستانهای آن بسیار سرد و آرام مشخص شده است (جهاد سازندگی استان اصفهان، ۱۳۶۷) بنابراین احتمال طبقه بنی‌های حرارتی آب در زمستان خصوصاً در بینم ماه دور از انظار نمی‌باشد.

منابع

استکی، ع.، ۱۳۷۸. عوامل شیمیایی تنش‌زا در سطح آب دریاچه بریشان (فارس). مجله علمی شیلات ایران، شماره ۲، سال هشت، صفحات ۱۵ تا ۳۰.

استکی، ع.، ۱۳۷۵. هیدروشیمی. مرکز تحقیقات منابع طبیعی و امور دام جهاد سازندگی استان اصفهان. بخش تحقیقات شیلات، ۱۰۸ صفحه.

اسکندز و دی.، ۱۳۷۷. گزارش خاکشناسی و ارزیابی اراضی کالون حنا. سازمان جهاد سازندگی اسفهان. ۹۹ صفحه.

جهاد سازندگی استان اصفهان، ۱۳۷۷. آب و هوا و اقلیم شهرستان سمیرم. کمیته کشاورزی، واحد مرتع، ۲ صفحه.

روش طبی، م.، ۱۳۶۶. هیدروپولیز و هیدروپولیز رودخانه سیاه‌رود. مجله علمی...


Cressa, C. and Senior, C.T. , 1990. Physico-chemical characteristics of the water of


