هم آوری و تغذیه ماهی گتان (Barbus xanthonopterus)
در رودخانه‌های کرخه و هورالعظیم

غلامرضا اسکندری (1)، حاجت صنفخانی (2)، سیمین دمغان (3) و فوزیه اسماعیلی (4)

G_eskandary@yahoo.com

موسمه تحقیقات شیلات ایران
بخش آزیپوری، مرکز تحقیقات آزیپوری جنوب کشور، اهواز
تاریخ کیهان‌شناسی: ۱۳۸۵-۱۳۸۶
تاریخ دریافت: آذر ۱۳۸۱
تاریخ پذیرش: اسفند ۱۳۸۱

چکیده
در این بررسی ۳۹۳ عدد ماهی گتان توسط تور گوشه‌گیر ثابت، متحرک، چتری و ف الله (چنگک) یا پتو نگاه در طول یک‌سال (از مهر ماه ۱۳۷۵ تا شهریور ماه ۱۳۷۶) از سد انحرافی حمیدیه تا هورالعظیم جمع‌آوری گردید. نوعی بستر رودخانه گلی - رسی و در بعضی نقاط شنی بود و ۱۷ نوع یا مهور کناری از شرک رده چتری در آن شناسایی گردید. که بیشترین تنوع و تراکم را حشرات بخود اختصاص می‌دادند. حداکثر و حداقل مهاوری مطلق برتیب ۲۷/۲۴۲۲±۵٪ و ۲۷/۲۴۲۹±۵٪ عدد تخم و هماوری نسبی ۱/۵۰±۳/۲۲ و ۰/۵۹±۸/۸۸ درجه از یک گرم و بند محاسبه گردید. مهاوری مطلق و نسبی بیشترین هم‌ستگی را برتیب با دور عروض ترنین قسمت بند و طول چنگالی داشتند. تغییرات شدت تغذیه در ماه‌های مختلف از روند منظم پرخوردار نبود و میزان خالی بودن رودخانه در کرخه بیشتر از هورالعظیم می‌باشد، که نشان دهنده تغذیه بیشتر در هورالعظیم نسبت به کرخه است. غذای اصلی ماهی گتان از ییخ مهور (حشرات) و گیاه‌ان می‌باشد. با توجه به شاخص نسبی روده و محتویات آن، گونه‌ای هیچ‌چیزخوار محسوب می‌شود.

لغات کلیدی: هماوری، تغذیه، ماهی گتان، کرخه، هورالعظیم، ایران
مقدمه

نوعی از بادی شیرین در استان خوزستان شرایط زیست را برای گونه‌های مختلفی از ماهیان (Cyprinidae) که جنس غالب از خانواده کیور ماهیان Barbus، از جمله جنس‌های Barbus xantheropterus می‌باشد که در رودخانه‌های دجله، فرات، کارون و کرمخ پراکنده‌اند. تاکنون، گزارش‌های وسیعی از توزیع و گونه‌های ماهیان در رودخانه‌های کشور انجام نشده است. رودخانه‌های کرخه از جمله رودخانه‌هایی است که در آن آب جریان دارد و قابلیت در درست‌سوزاندن منابع غذایی دارای نوسانات فصلی می‌باشد. هنگامی بارندگی رودخانه شدتی سیلابی و پرا آب می‌گردد و دما در زمستان به دمای معادلی می‌رسد و در فصل‌های درآمیز آب می‌رسد و در سرتخد کاهش می‌یابد و دما به بیشترین میزان خود می‌رسد. در رودخانه کرخه فراوانی ماهیان گردنگی است و شرایط محیطی فوق‌العاده عواملی باعث ایجاد گونه‌هایی و نسل‌داری است.

اصغری و تغذیه ماهی کجین در...

آقایان و اسکندری مکان دار

روی این گونه در آبهای عراق توسط Jerzy & Ali, 1982; Jiriann, 1974; Qasim & Niazi, 1975; Ali & Ali, 1986 انجام شده است. در استان خوزستان با اینکه گونه‌های آب شیرین نقش مهمی در تأمین قسمتی از پروتئین مورد نیاز را به‌همه‌دارند ولی تاکنون مطالعات اندکی را آنها صورت گرفته است. با توجه به مشکلات موجود در کشور در ارتباط با افزایش روزافزون مصرف مواد پروتئینی، مطالعه گونه‌های مهم در منطقه بهبود بذرتی آوردن اطلاعات پایه‌ای و فرضی بزرگ‌تر می‌رسد. این مطالعه در راستای بررسی برخی محتوای مخصوصی از جمله هم آوری و تغذیه به عمل آمده است.
مواد و روش‌ها

این بررسی در غرب خوزستان در محدوده جغرافیایی ۴۲°۰۶′،۰۸°۰۶′ غربی، و ۳۷°،۰۲′ شمالی انجام گردید. بخش مورد مطالعه در واقع انتهای تبریز قسمت رودخانه کرخه می‌باشد که دارای انشعابات متعددی است. در رودخانه کرخه از پشت سد حمیدیه تا رفع (شاخص اصلی کرخه که از شهرهای حمیدیه، سوسنگرد و رفع عبور می‌کند)، چهار استگاه (۱، ۲، ۶ و ۷) در نظر گرفته شد. این شاخص در اغلب فصول سال دارای آب بیشتری نسبت به شاخص‌های دیگر می‌باشد. در شاخص کرخه نور که توسط سد تنظیمی کرخه در منطقه حمیدیه از شاخص اصلی جدا شده و از شهرهای حمیدیه و چهل‌بیک بهره‌برداری می‌شود یک استگاه (۵) و بر روی نهر سابلی نیز که در نزدیکی بستان از کرخه جدا می‌شود یک استگاه (۳) در نظر گرفته شد (شکل ۱).

شکل ۱: منطقه مورد مطالعه (سد حمیدیه تا هورالعظیم)
۳۹۳ عدد ماهی گطان در طول یک سال برسی بطور ماهانه (از مهر ۱۳۷۵ تا شهریور ۱۳۷۶) با اعتراض گروه تحت‌پناهی به منطقه مورد مطالعه (۵ ایل ۷ روز در ماه) از صبادان محلی خصوصاً در مناطق حمیدیه، سوسنگرد، نیسان، رفع و هواروظیم جمع آوری گردد (ماهیان توسط تور گوشکیر متحرک، ثابت، چتری با چشم‌های ۲۰، ۵۰، ۶۰، ۸۰، ۱۰۰ و ۱۲۰ میلی‌متر و فاصله صید شدن). نمونه‌ها در یکدیگری حاوی خریده به قرارداده شد و به آزمایشگاه منتقل گردید. در ماه‌های اسفند و فروردین بدلیل شرایط حاکم به منطقه و مسائل امتناع نمونه‌گیری در دور انجام نشد.

نمونه‌گیری رسوبات بستر و بی‌مهرگان کنیزی در ۶ استگنا بطور فصلی به‌وسیله بستوزگیر (گرای) با سطح دهانه ۵۰۰ سانتی‌متر مربع انجام گردد. جهت شستشو، چیدمانی و جمع آوری موجودات کنیزی در محیط از الکتریک ۲۵۰ میکرون استفاده شد و جهت تثبیت نمونه‌ها به انسداد حجم رسوبات، الکتریک ۲۰ درصد اضافه شد. نمونه‌ها در آزمایشگاه با رنگ‌گال رنگ آمیزی و به کمک استریبو میکرو‌سکوب شمارش و شناسایی (در صورت امکان در حضور جنس) انجام گردید. جهت تعیین تراکم موجودات کنیزی (تعداد در واحد سطح) از فرمول زیر استفاده شد (Clieser et al., 1987):

\[N = \frac{M}{AC} \]

- \(N \) تعداد موجودات در متر مربع
- \(M \) تعداد موجودات در شمارش شده
- \(A \) سطح دهانه بستوزگیر (سانتی‌متر مربع)
- \(C \) تعداد نحوه برداری در هر استگنا

برای آنالیز دانه‌بندی رسوبات بستر، پس از خشک نمونه رسواب در آرون با استفاده از الکتریک ۲۳۶، ۱۰۰ و ۲۵۰ میکرون چیدمانی شدند و نتایج به صورت دو رصدی از وزن کل رسوبات خشک شده در آرون بیان گردد (Van Dolah et al., 1991) در رسوبات نیز با سوختن قسمت مشخصی از هر نمونه (که قبلا در آرون در حرارت ۸۰ درجه سانتی‌گراد خشک شده است) در کوره (در حرارت ۵۵۰ درجه سانتی‌گراد)
با استفاده از رابطه زیر محاسبه گردیده:

\[\text{TOM} = \frac{A \cdot B}{A - C} \times 100 \]

- وزن رسوبات خشک و بوته چینی پس از آون، A
- وزن رسوبات خشک و بوته چینی پس از کوره، C
- وزن بوته چینی

برای تخمین هم آوری، ماهیان بالغ (مراحل 3 و 5) و تخم‌ریزی نکرده در طول ها و وزنهای مختلف، با دقت انتخاب شدند. تخم‌خانه ماهیان در درون محلول گیبسون (1978) تثبیت شد. هر چند روز یکبار بوسه همیزه‌انه‌ها هم‌زمان هم‌زمان‌های تخم‌خانه‌ها از بافت تخم‌خانه جدای شوند.

برای تعیین هم آوری مطلق، وزن ورنخ استفاده شد. بین صورت‌های ابتدایی را از آن جدا کرده و به‌طوری‌ای با آب شستشو داده و درون ظرفی در محیط آزمایشگاه گذاشته‌ها تا خشک شود. بعد از خشک شدن تخم‌خانه‌ها، وزن کرده و سه زیر نمونه 5/0 گرمی از آن برداشتند و در پرتیسی خاکی آب ریخته و بوسه استرومیک و سکوب شمارش کرده و به روش زیر، هم آوری مطلق و نسبی برای هر سه زیر نمونه محاسبه شد (1978، Bagenal):

\[F = \frac{nG}{g} \]

- هم آوری مطلق F
- وزن نمونه (گرم) G
- تعداد تخم‌خانه در نمونه n
- وزن نمونه (گرم) g

\[R = \frac{F}{TW} \]

- هم آوری نسبی R
- هم آوری مطلق F
- وزن گل (گرم) TW

همچنین بین هم آوری و تعدادی از پارامترهای مورفومتریک، رابطه همبستگی برقرار گردید که پارامترهای آن براساس رابطه زیر محاسبه گردید:

\[\log y = \log a + b \log x \]

پس از انتقال ماهیان به آزمایشگاه، محیوت‌های روده با استفاده از روش حجمی - امتیازی
(Biswa, 1993; Lagler, 1956) مورد بررسی قرار گرفت، (Volumetric of point method) بدین منظور ابتدا قبل از تخلیه محتویات روده، درصدی از فضای روده که توسط محتویات غذایی اشغال می‌شود را با بعنوان شاخص پر بودن (Fullness) به درصد بیان نموده (جهت تعمین شدت تغذیه) (Nair, 1980) و سپس محتویات را با یکدیگر تغذیه ماتریس از روش جابجایی محلول (Displacement method) آب ریخته و حجم کل با استفاده از روش جابجایی محلول گردید (Biswa, 1993). در مطالعه میکروسکوپی، نمونه بداخل ظروف شیشه‌ای تخلیه شده، پس از یک باننیک کلی روز محتویات، انواع مواد غذایی مختلف از یک باننیک بپین ترین گروه ردیبندی شناسایی و از یکدیگر جدا می‌گردد. در مرحله بعد به هر یک از این انواع مواد غذایی نسبت به توده اصلی محتویات غذایی، درصدی اختصاص داده و حجم هر یک نیز بصورت درصدی از کل نمونه محاسبه گردید (Lagler, 1956).

شاخص‌های زیر نیز در این بررسی محاسبه گردید.

\[CV = \frac{E_s}{T_s} \]

\[F_p = \frac{N_{sj}}{N_s} \]

\[F_p = \frac{N_{sj}}{N_s} \]

\[F_p < 0.5\% \] یا نشان می‌دهد (Euzen, 1987).

\[i = \frac{V_i O_i}{\sum V_i O_i} \]

یک مشابه می‌شود.

\[\text{Prepondrante} \]

(Shaizx پریندرازنس)
نتایج

در رودخانه کوکو تا هورالعظیم، ۱۷ نوع بیمه‌کنی شناسایی گردیده که در شش گروه جانوری جای گرفته‌اند. بیشترین تراکم و نوع متعلق به رده حشرات (۴۴:۵۷ درصد) بوده و بیشترین تراکم جانوری در آذر ماه ۸۸/۲۶ درصد و در اسفند ماه ۸۸/۵۷ درصد مشاهده شد. لارو دوبالان و کرم‌های کم تار نسبتاً در تمامی فصول سال بیشترین تراکم را داشته و نمونه‌ها نیز کمترین تراکم را به خود اختصاص می‌دهند (جدول ۱). شاخص نیسان (ایستگاه ۳) همواره در کلیه فصول سال کمترین (۵۷ درصد در متر مربع) و منطقه رفیع (ایستگاه ۶) که نزدیک به هورالعظیم می‌باشد بیشترین (۱۸۵ عدد در متر مربع) تراکم موجودات کنفی را به خود اختصاص دادند. رابطه همبستگی بین لارو دوبالان و کرم‌های کم تار با میزان مواد آلی و اندازه ذرات بستر (۱۲۵ و کوچکتر ۳۲ میکرون) برقرار گردید که با نتوهی به ضرایب همبستگی بدست آمده، ارتباط مثبت بین حضور دوبالان با درصد میزان رسوب ۱۲۵ میکرون (۳۸/۶٪) و ارتباط معکوس با میزان مواد آلی (۶۴/۰٪) و درصد رسوب کوچکریز (۱۳ میکرون (۵۹/۷٪) دیده شد. همچنین ارتباط مثبت بین حضور کرم‌های کم تار با اندازه رسوب کوچکریز از ۱۲ میکرون (۴۶/۸٪) و میزان TOM (۳۸/۰٪) و ارتباط منفی با درصد رسوب ۱۲۵ میکرون (۴/۵٪) مشاهده گردید.
جدول 1: انواع و تراکم (تعداد در متر مربع) جانوران کنیزی در جنوب رودخانه کرخه (۱۳۷۶-۱۳۷۵)

<table>
<thead>
<tr>
<th>جنس</th>
<th>راسته</th>
<th>خانواده</th>
<th>گروه جانوری</th>
<th>فاصله</th>
<th>پایه‌رستگر</th>
<th>غربال</th>
<th>کثرت</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromonomas</td>
<td>Diptera</td>
<td></td>
<td></td>
<td>510</td>
<td>62</td>
<td>100</td>
<td>56</td>
<td>256</td>
</tr>
<tr>
<td>Fosspomia</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>150</td>
</tr>
<tr>
<td>Caemidiae</td>
<td>Ephemeroptera</td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Hydrosycychidae</td>
<td>Trichoptera</td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Ashnae</td>
<td>Coleoptera</td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Gomphidae</td>
<td>Odonata</td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Lumbriicidae</td>
<td>Lumbriicidae</td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Tubifex</td>
<td>Tubificidae</td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Melanidiae</td>
<td>Archiacepoda</td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Lymnidae</td>
<td>Gastropoda</td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Unioinidiae</td>
<td>Lamelibranchia</td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Corbiculidae</td>
<td>Bivalvia</td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Isopoda</td>
<td>Crustacea</td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Ostracoda</td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Daphnidae</td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Nematoda</td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>50</td>
<td>100</td>
<td>56</td>
<td>50</td>
</tr>
</tbody>
</table>
| اسکندری و همکاران

هم آوری برای ۳۶ عدد ماهی گطان تخمین زده شد. بیشترین میزان هم آوری مطلق ۵۵۶/۷۲۶ ±۵۲/۹ و کمترین آن ۱۳۵/۹۲ ±۶۵/۸ میلی متر محاسبه شد. بیشترین هماوری نسبی ۱/۹۵ ±۵۳/۹۸ و کمترین آن ۱۸/۸۸ ±۶۵/۸ میلی متر تعیین گردید.

هم آوری مطلق بیشترین رابطه لگاریتمی خطي معنی‌دار با عرض بلندی دور دنده بیشترین رابطه را با شاخص رسیدگی جنسی (GSI) (۳۸/۸۸) (girth) و کمترین رابطه را با عرض تغییر قسمت دور بدن بیشترین رابطه را با شاخص رسیدگی جنسی (GSI) (۳۸/۸۸) (girth) و کمترین رابطه را با عرض تغییر قسمت دور بدن.
نمودار ۲: معادله و پراکنش رابطه همواری مطلق با: الف – GSI ـ ب – GIRTH
همجنبی روابط هم آوری مطلق با طول کل (TL) و وزن کل (TW) نیز به قرار زیر محاسبه شدند:

\[
\log F = 2/238198 + 1/53923 \log TL, r = 2/83, p = 0/007
\]
\[
\log F = 7/39526 + 6/62, \log TW, r = 3/48, p = 0/001,
\]
\[
, p = 0/12 (FL) (GSI) 66, 2-0 = t, 06 = r, \text{و کمترین رابطه رابا شاخ صریح گسترش جنسی} (GSI)
\]
\[
, p = 0/076, 06 = t, 06 = r, \text{دارد (نموندای 3 الی و بی، همکنی رابطه هم آوری نسبی با طول کل و وزن کل به قرار زیر تعیین گردد:}
\]
\[
\log R = 1/42116 - 1/6338 \log TL, r = -0/2968, t = -2/52, p = 0/01\]
\[
\log R = 7/42116 - 1/6338 \log TL, r = -0/2968, t = -2/52, p = 0/015,
\]

دستگاه گوارش در 393 عدد ماهی گطان مورد بررسی قرار گرفت که 62 درصد از آنها حالت و 64 درصد محتوی غذا بودند. شاخص تهی بودن برای مردان پدیده گرفته کرده و بر (انشعابات آن) و هورالعظیم بترتیب 67/56 درصد و 37/56 درصد محاسبه گردید که این امر نشان دهنده پرخور بودن ماهی در منطقه هور می‌باشد (جدول 2).
نمودار 3: معادله و پراکنش رابطه همایوی نسبی با الف: الف - پ - GSI - FL

LOGGSI vs. LOGF (Casewise MD deletion)
LOGF = 12.735 \cdot .1137 \cdot LOGGSI
Correlation: r = .1486

Regression 95% confid.

LOGGSI vs. LOGR (Casewise MD deletion)
LOGR = 4.1638 \cdot .0515 \cdot LOGGSI
Correlation: r = .0739

Regression 95% confid.
جدول ۲: درصد شدت تغذیه در ماهی گتان (۱۳۷۶-۵۷)

<table>
<thead>
<tr>
<th>کرخره</th>
<th>شدت تغذیه (درصد)</th>
<th>هورالعظیم</th>
<th>کالرها</th>
<th>ماده</th>
<th>نر</th>
<th>کالرها</th>
<th>ماده</th>
<th>نر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>خالی</td>
<td>۴۹/۵۰</td>
<td>۶۳/۵۰</td>
<td>۹۱/۶۰</td>
<td>۲۴/۵۰</td>
<td>۶۸/۵۰</td>
<td>۹۱/۶۰</td>
<td>۲۴/۵۰</td>
</tr>
<tr>
<td>خالی</td>
<td>۴/۷۰</td>
<td>۴/۱۷۰</td>
<td>۴/۷۰</td>
<td>۴/۱۷۰</td>
<td>۴/۷۰</td>
<td>۴/۱۷۰</td>
<td>۴/۱۷۰</td>
<td>۴/۱۷۰</td>
</tr>
<tr>
<td>شیب</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
<td>۱/۶۰</td>
</tr>
<tr>
<td>هورالعظیم</td>
<td>۱۲/۶۰</td>
<td>۱۲/۶۰</td>
<td>۱۲/۶۰</td>
<td>۱۲/۶۰</td>
<td>۱۲/۶۰</td>
<td>۱۲/۶۰</td>
<td>۱۲/۶۰</td>
<td>۱۲/۶۰</td>
</tr>
<tr>
<td>تعداد کل</td>
<td>۱۴۰</td>
<td>۱۴۰</td>
<td>۱۴۰</td>
<td>۱۴۰</td>
<td>۱۴۰</td>
<td>۱۴۰</td>
<td>۱۴۰</td>
<td>۱۴۰</td>
</tr>
</tbody>
</table>

درصد تغییرات شدت تغذیه بطور ماهانه برای نرها و ماده‌ها بطور جداگانه در کرخره و هورالعظیم محاسبه گردید (جدول ۳). درصد روهدیه خالی در کرخره بیش از هورالعظیم می‌باشد. شدت تغذیه در هورالعظیم از آبان تا بهمن نسبت به ماههای دیگر سال بیشتر بود. همچنین روهدیهای کاملاً پر فقط در نمونه‌های صید شده در منطقه هورالعظیم مشاهده گردید. کمترین درصد روهدیه خالی در کرخره در آذر (نر ۴۰ درصد و ماده ۵۰ درصد) مشاهده گردید و در هورالعظیم ماهیان نر در آذر (۲۲/۲۷/۲۲ درصد) و ماده در دی (۱۲/۵/۱۲ درصد) کمترین درصد روهدیه خالی را داشتند. تغییرات شدت تغذیه در دو منطقه روهدیه منظمی را نشان نداد (جدول ۳).
جدول ۳: تغییرات درصد شدت تغذیه در ماهی گطان (۶۷-۱۳۷۵) ألف - کرخه ب - هورالعظیم

<table>
<thead>
<tr>
<th>ماه</th>
<th>کمی</th>
<th>گرم</th>
<th>نر</th>
<th>ماده</th>
<th>گرم</th>
<th>نر</th>
<th>ماده</th>
<th>گرم</th>
<th>نر</th>
<th>ماده</th>
</tr>
</thead>
<tbody>
<tr>
<td>شهربور</td>
<td>۱۰۰</td>
<td>۳۸</td>
<td>۱۰۰</td>
<td>۱۴۰</td>
<td>۱۰۰</td>
<td>۱۴۰</td>
<td>۱۰۰</td>
<td>۱۴۰</td>
<td>۱۰۰</td>
<td>۱۴۰</td>
</tr>
<tr>
<td>محرم</td>
<td>۱۰۰</td>
<td>۳۴</td>
<td>۱۰۰</td>
<td>۱۳۰</td>
<td>۱۰۰</td>
<td>۱۳۰</td>
<td>۱۰۰</td>
<td>۱۳۰</td>
<td>۱۰۰</td>
<td>۱۳۰</td>
</tr>
<tr>
<td>بهمن</td>
<td>۱۰۰</td>
<td>۳۰</td>
<td>۱۰۰</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۱۲۰</td>
</tr>
<tr>
<td>دی</td>
<td>۱۰۰</td>
<td>۲۶</td>
<td>۱۰۰</td>
<td>۱۱۰</td>
<td>۱۰۰</td>
<td>۱۱۰</td>
<td>۱۰۰</td>
<td>۱۱۰</td>
<td>۱۰۰</td>
<td>۱۱۰</td>
</tr>
<tr>
<td>آذر</td>
<td>۱۰۰</td>
<td>۲۲</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>بهار</td>
<td>۱۰۰</td>
<td>۱۸</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>۱۰۰</td>
<td>۱۴</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>خرداد</td>
<td>۱۰۰</td>
<td>۱۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>شهریور</td>
<td>۱۰۰</td>
<td>۶</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>آبان</td>
<td>۱۰۰</td>
<td>۲</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>تیر</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>مرداد</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>فروردین</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>اسفند</td>
<td>۱۰۰</td>
<td>۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

جهت تعیین عادت غذايي ماهي گطان، شاخص نسبي روده (RLG) نيز محاسبه گردید و بین آن با طول کل رگسیون خطي برقرار گردید (نمودار 3الف و ب). شاخص نسبی روده در کرخه برای نرها و ماده‌ها بترتیب ۳۶/۲/۱۸±۰/۲ و ۳۸/۲/۱۸±۰/۲ در هورالعظیم بسته آمد و معادله خط رگسیون در کل بصورت زیر محاسبه گردید:

$$RLG = 2/0436 + 0/0003 TL_r \quad RLG = 2/1363 + 0/0009 TL_m$$
نمودار ۲: معادله و پراکنش رابطه طول نسبی روده (TL) با طول کل (RLG) در ماهی گل‌تان (TL vs. RLG (Case wise MD deletion))

\[
\text{RLG}_M = 2.0489 + 0.00028 \times \text{TL}_M
\]

 Кореляشن: \(r = 0.2264 \)

نمودار ۳: معادله و پراکنش رابطه طول نسبی روده (RLG) با طول کل (TL) در ماهی گل‌تان (TL vs. RLG (Case wise MD deletion))

\[
\text{RLG}_F = 2.1361 + 0.00029 \times \text{TL}_F
\]

 Кореляشن: \(r = 0.2457 \)
در محتویات روده ماهی گُطان طیف وسیعی از مواد جانواری و گیاهی از جمله الیاف گیاهان آبزی و بذرهای گیاهان، انواع حشرات آبزی بالغ و نابالغ از قبیل قاب بالان و همچنین موجودات و مواد غذایی وابسته به بستر که شامل دوکنه‌ای‌ها، شکم‌پایان، استراکودها، جلبک‌های کنزی و میگو‌های بالغ آب شیرین نافذ گردید (جدول ۴).

در منطقه هورالعظیم حشرات (۷۸ درصد = \(F_p \)) و سپس گیاهان (۶۷ درصد = \(F_p \)) غذای اصلی و میگو، شکم‌پایان، استراکودها و دیگری‌ها غذای فرعی (بتریب ۹/۱۲، ۵/۲۵، ۶/۱۹ درصد = \(F_p \)) و مایعی غذای ناصحیبی‌ها به‌طور کل در این بین حشرات (بتریب ۳۱/۷۲ درصد = \(F_p \)) و بافت گیاهی (۶۳/۲۷ درصد = \(F_p \)) بتریب از اهمیت غذایی بیشتری برخوردار بودند (جدول ۴). در کرکه بتریب بافت گیاهی و حشرات، غذای اصلی (۵/۱۵ درصد = \(F_p \)) و شکم‌پایان، میگویی آب شیرین و استراکودها غذای فرعی (۶/۱۱ درصد = \(F_p \)) محصول می‌شوند که از میان آن‌ها حشرات و بافت گیاهی (۳۵/۷۲ درصد = \(F_p \)) از اهمیت غذایی بیشتری برخوردار می‌باشند (جدول ۴).

جدول ۴: شاخص پرورندن مواد غذایی در ماهی گطان (۱۳۷۵-۷۴)

<table>
<thead>
<tr>
<th>کرکه</th>
<th>هورالعظیم</th>
<th>آیتم غذایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>رتبه</td>
<td>درصد و توزیع درصد حجمی</td>
<td>رتبه</td>
</tr>
<tr>
<td>(F_p)</td>
<td>(F_p)</td>
<td>میکو</td>
</tr>
<tr>
<td>۶/۱۵</td>
<td>۷۷/۴۰۰</td>
<td>۴۰/۵۰۰</td>
</tr>
<tr>
<td>۵/۱۵</td>
<td>۷۷/۴۰۰</td>
<td>۳۰/۵۰۰</td>
</tr>
<tr>
<td>۴/۱۵</td>
<td>۷۷/۴۰۰</td>
<td>۲۰/۵۰۰</td>
</tr>
<tr>
<td>۳/۱۵</td>
<td>۷۷/۴۰۰</td>
<td>۱۰/۵۰۰</td>
</tr>
<tr>
<td>۲/۱۵</td>
<td>۷۷/۴۰۰</td>
<td>۰/۰۰۰</td>
</tr>
<tr>
<td>۱/۱۵</td>
<td>۷۷/۴۰۰</td>
<td>۰/۰۰۰</td>
</tr>
<tr>
<td>۰/۱۵</td>
<td>۷۷/۴۰۰</td>
<td>۰/۰۰۰</td>
</tr>
<tr>
<td>۰/۰۰</td>
<td>۷۷/۴۰۰</td>
<td>۰/۰۰۰</td>
</tr>
</tbody>
</table>

شده
بحث

در بررسی بیولوژیک یک گونه آبزی مطالعه کفنزیان مفید می‌باشد، زیرا جانوران کفنزی غذاي اصلی سیب‌زار از گونه‌های تجاری بخصوص ماهیه‌ها می‌باشند. لازم به ذکر است که در این مطالعه دو بالا انگل‌نگاری گروه موجودات کفنزی رودخانه کرخه بوهداند و در تمام طول سال مشاهده می‌شوند و اصلی ترین غذا ماهیه‌ای کفنزی خوار را تشکیل می‌دهند که با مشاهدات غذایی در روده ماهی گطان کاملاً مطابقت داشته و حضور تراکم زیاد این نوع غذا در محیط باعث فراوانی حضور آن در روده ماهی گرده‌برده است. در فصل بهار میزان آن در محیط به شدت کاهش داشته است که احتمالاً دلیل این کاهش گریه‌ها (نمونه‌برداری خردادماه انجام شده است) و افزایش در سرعت دگرگیری آنها و خروج از سطح آب می‌باشد. در فصل زمستان تعداد آن افزایش می‌باید که احتمالاً دلیل آن سرطان هوا و کاهش دگرگیری و همچنین کاهش در تغذیه آبزیان کفنزی خوار می‌باشد (Borr & Delong، 1964). کرمهای کم تار بی‌شتر در ایستگاههایی که از میزان مواد آلی بالاتری برخوردارند مشاهده می‌شوند که طبیعی بنظر می‌رسد، زیرا نسبت به چنین محیط‌هایی مقاوم می‌باشد. بطور کلی در فصول سرد سال کاهش در تغذیه کفنزیان و کاهش در سرعت دگردیسی خود کفنزیان دلیل افزایش جانوران کفنزی می‌باشد و بر عکس در دو فصل بهار و تابستان تعداد کفنزیان بستگی داشت که می‌باید که دلیل آن سرعت در دگردیسی خود کفنزیان و از طرف دیگر افزایش در تغذیه کفنزی خواران می‌باشد.

همانطور که نتایج نشان می‌دهند، این سبب به چه میزان رسوبات گلی‌ها و میزان مواد آلی بیشتر باشد، جانورانی مثل کرمهای کم تار فراوان تر هستند و بر عکس هر چه اندام‌های ذره‌ای بزرگ‌تر و میزان مواد آلی کمتر شود جانورانی مثل لاو حشرات سخت‌پوستان و نرتنان بیشتر حضور دارند که بر نوع تغذیه ماهی در مناطق مختلف مؤثر می‌باشد. ضرایب همبستگی بست آمده‌اند از میزان پایینی برخوردار می‌باشد و به لحاظ آماری قابل اطمینان نمی‌باشد که بکی از دلایل آن تعداد کم نمونه‌برداری می‌باشد.
مقاله علمی شبیه‌سازی

سال دوازدهم / شماره 1 / بهار ۱۳۸۲

محاسبه تعداد لارو و درصد بقای تخم در محیط طبیعی بسیار مشکل و امکان آن کم می‌باشد. لذا جهت تخم‌ین از نسل، هم آوری ماهی تخم‌ین می‌گردد (Pitcher & Hart, 1996). تخم‌ین هم آوری در تماوی نزدیک، مطالعات بقای نسل، ارزیابی ذخایر و تکثیر و پرورش مورد استفاده قرار می‌گیرد (King, 1997).

میزان هماوری ماهی گطان را ۳۵۰۰۰۰۰۰۰۰ نا تخمین زده Al-Hamed (1977) است که با نتایج بدست آمده در این مطالعه اختلاف دارد. تفاوت در میزان هم آوری در جمعیت هایی که در وضعیتی مختلطی زندگی می‌کنند، دیده می‌شود. در سال ۱۹۹۳ علت این اختلافات را به تفاوت‌های زنتیکی زیر گروه‌های مختلط و فاکتورهای محیطی مانند غذا، رناک، جمعیت و تغییرات درجه حرارت نسبت می‌دهند. با توجه به میزان تخم به ازای یک کیلوگرم وزن بدن (فریدپاکی، ۱۳۶۵)، بنظر می‌آید این گونه از تخم‌یهای خود مراقبت می‌کند. در رابطه بین هم آوری و طول کل ارزش ۵ برابر ۰.۲ و با وزن برابر ۱ می‌باشد (Bagenal, 1978). در این مطالعه ارزش ۵ برای طول کل، برابر ۵/۱ و برای وزن ۶/۲۰ می‌باشد که این تفاوت‌ها به سن، فصل تخم‌زی و محیط نسبت داده می‌شود. همچنین مشاهده می‌شود که هماوری با فاکتورهای دیگر (Reddy & Neelakantan, 1993)

روابط پیهری را نسبت به طول و وزن نشان می‌دهد. (Girth, FL)

غذای اصلی اغلب کبیر ماهیان جوان، زنبور‌لاکنیه‌ای می‌باشد، حتی وقتی غذا اصلی از بی‌مهرگان باشد، همیشه از مواد گیاهی و جلبک‌ها به عنوان مکمل غذایی استفاده می‌کند (Winfield & Nelson, 1991).

در آب‌های عراق در روده‌های چهار عدد ماهی گطان عمدتاً نرتنان و جورپایان یافت گردید (Al-Hassan et al., 1986). در این برسی غذا اصلی و فرعی ماهی گطان در دو منطقه با هم کمی اختلاف دارند که این تفاوت‌ها در گروه‌های غذا گروه‌های در گونه‌ها یکسان از دو منطقه به حالت هیجانی ماهی، قابلیت در دسترس بردن و انتخاب آن بعنوان غذا و به نوسانات فصلی و فاکتورهای هیدرولولوژیک (Cavetiviere, 1987) (Wootton, 1995)
بستگی دارد، بطوری که فراوانی حضور حشرات در بستر و در محوطه‌های روده را به‌خوبی می‌توان مشاهده کرد. همچنین با توجه به نوع دهان و وجود دندان حلقوی، کم بودن شیب (b) در رابطه طول کل با طول نسبی روده (کمتر از 5% و 0% بویین بودن میزان طول نسبی روده و محتوای آن، می‌توان گفت که یک ماهی همه پیچ‌بندی می‌باشد که عمداً از بی‌مهرگان و گیاهان تغذیه می‌کند. شدت تغذیه در هورالعظیم بیشتر از کرخه می‌باشد که نشان دهنده تغذیه ماهی در هورالعظیم قبل از فصل تخم‌زی‌ی می‌باشد و در فصل تخم‌زی‌ی در رودخانه بالاترین درصد روده‌های خالی (با توجه به تعداد ماهی نسبت به ماهی‌های دیگر سال) دیده می‌شود.

 تشکر و قدردانی

از ریاست محتور مرکز تحقیقات شیلاتی خوزستان و همکاران به‌پژوهی به‌خصوص آقای یوسف می‌حاجی و بخش‌آبشناسی و دفتر اطلاعات علمی جهت راهنمايی و همکاریهای ارزندآ آنها و از کلیه کسانی که بنحوی در تکمیل این مقاله ما را یاری نمودند سپاسگزاری می‌گردد.

منابع

فرید پاک، ف. 1365. تکثیر مصنوعی و پرورش ماهیان گرماپای. معاونت تکثیر و پرورش آبزیان.

Boleslaw, A.U., 1982. Artificial spawning and breeding of hatchalings of *Barbus*
grapus (Heckel) and **Barbus xanthurterus** (Heckel). Fourth congress of European Ichthyologists.

Congress of European Ichthyologists, Hamburg.

Winfield, I.J. and Nelson, J.S., 1991. Cyprinid fishes systematic, biology and
exploitation. Chapman and Hall. Fish and fisheries series 3. 667 P.