شناسایی و تخمین جمعیت پاروپایان پلانکتونیک (Planktonic Copepods)

احمد سواری (۱)؛ بابک دوستشناس (۲) و سیدمحمد باقر نیوی (۳)

savari53@yahoo.com

دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر مبنای پستی: ۶۶۹
تاریخ دریافت: اسفند ۱۳۷۹ تاریخ پذیرش: اردیبهشت ۱۳۸۱

خلاصه
این تحقیق به منظور شناسایی و تخمین تراکم پاروپایان پلانکتونیک خورمونی از آذر ماه ۱۳۷۶ تا فروردین ۱۳۷۷ بهمین ماه ۱۳۷۷ در چهار ایستگاه انجام پذیرفت. در این پژوهش از زمان شروع بهنی آذر ۱۳۷۶ تا لحظه شهروی ۱۳۷۷ نمونه‌برداری بصورت ماهانه انجام شد. پس از این مدت دو تکرار در ماه‌های آذر و بهمن ۱۳۷۷ اجرای گردید.
نمونه‌برداری از سطح و ستون آب (از عمق ۲۰ متری تا سطح) انجام شد. در کل نمونه‌برداری ها مجموعاً ۱۶ جنس از پاروپایان شناسایی گردید. از جنس‌های شناسایی شده ۱۱ جنس متعلق به راسته Calanoida ۲ جنس Poecilostomatoida و ۴ جنس Cyclopoida از راسته Harpacticoida و ۲ جنس از راسته Acartia با ۷۵/۹ درصد فراوانی نسبی بود و کمترین مشاهدات مربوط به جنس Corycaeus است که ۹/۰۵ درصد فراوانی نسبی داشته است.

آنالیز واریانس فراوانی پاروپایان در ایستگاه‌های مختلف نشان داد که تراکم این موجودات در ماه‌های مختلف اختلاف معنی‌داری نشان نداد ولی تراکم این ماه‌ها بوده است. در مقایسه میانگین نمونه‌های سطحی و نمونه‌های ستون آب تفاوت معنی‌داری در سطح اطمینان ۹۵٪ مشاهده گردید. فاکتورهای فیزیکی و شیمیایی در بین ایستگاه‌ها تفاوت معنی‌داری نداشتند. ولی آنتی‌ز واریانس نمایانگر اختلاف معنی‌داری در pH و دما در ماه‌های مختلف می‌باشد.

لغات کلیدی: جمعیت، پاروپایان پلانکتونیک، خورمونی، خوزستان، ایران
مقدمه

از انجاکه پاروپیان (Copepods) اهمیت بسیار زیادی در زنجیره‌های غذایی دریاها دارند و نیز به علت تنوع و فراوانی زیاد آنها همواره مورد توجه محققین سراسر دنیا بوده اند. در سال‌های اخیر نیز تحقیقات قابل توجهی در منطقه خلیج فارس بر روی این گروه از زیرپوستان‌شناسان انجام گردیده است. از این تحقیقات می‌توان به مطالعات (1974) Michell et al., a,b و Yamazi، 1986 و در سواحل جنوبی خلیج فارس اشاره نمود. مطالعه به جوان بودن رشته‌ای اقیانوس‌شناسی و تحقیقات دریایی در منطقه و کشور طبیعتی میزبان تحقیقات انجام شده در زمینه شمال‌شناسی موجودات دریایی چندان زیاد نمی‌باشد. از انجاکه شمال‌شناسی موجودات از یک‌های مهم‌تر تحقیقات دریایی بوده به نظر می‌رسد، ارزیابی دخایی و می‌باشد و با علم به اینکه شمال‌شناسی سخت یوستن پلانتونیک بوده پاروپیان چندان مورد توجه قرار نگرفته است، سعی در گردد با اجرای این برخی ضمن شمال‌شناسی این گروه، تخمینی از جمعیت هریک از جنس‌های شناخته شده به‌دست آورده شود. بیشتر اینکه این گروه از سخت‌پوستان در اغلب دریاها به‌ین 70 درصد زیرپوستان‌شناسی را تشکیل می‌دهند (Raymont، 1985) و در هر انرژی دریا جایگاه مهمی دارند.

مناطق حوروموسی نیز بدلیل ویژگی‌های جغرافیایی و مرفولوژیک آن و ارتباط با تالاب شادگان نوزادگاهی مناسب برای پرورش و تولید مثل آبزیان بیوه و ماهی می‌باشد. همچنین این منطقه در طرحدی توسه کشور مورد توجه فراوان قرار گرفته و بعنوان منطقه اقتصادی ویژه پتروشیمی در نظر گرفته شده و داشتن اطلاعات ویژتیزی از محيط طبیعی این منطقه قبل از تحت تأثیر قرار گرفتن بوسیله صنایع مجازی آن به بررسی آینده این منطقه کمک شایانی خواهد نمود.

مواد و روش‌ها

محل نمونه‌برداری منطقه حوروموسی بوده است. این منطقه انشعابی از شمال خلیج فارس است که در آن تعداد زیادی خوریات کوهک و بزگ و کتان‌های چرخ و مدل گسترده دیده می‌شود. موقعیت جغرافیایی این ناحیه بین طول جغرافیایی ۴۰° ۵۰ تا ۴۸° ۵۰ شرقي و عرض جغرافیایی
چهار ایستگاه در خورهای مرموس، موسی، ماهه، و دویچ انتخاب گردید که ضمن یوشش دادن منطقه، شرایط مناسب نمونه‌برداری هم در آن‌ها فراهم بود (شکل 1).

شکل 1: موقعیت ایستگاه‌های نمونه‌برداری در منطقه خورمومسی (77-۷۲۶)
شناسایی و تخمین جمعیت باروبایان پلاکتکوئیک خورموسی

سوری و دما در هر ایستگاه بوسیله دستگاه pH، C.T.D بوشیله دستگاه pH، C.T.D و اکسیژن pH محلول به کمک دستگاه اکسیژنی سنج از نوع YSI سنجدیه شد.

در نمونه برداری عمودی از تور عمودی با سماحیده دهانه ۲/۰ متراً مربع استفاده شد. در هر ایستگاه تور با یک طناب مدرج به عمق آب فرستاده می‌شد و زاویه انحراف طناب بوشیله زاویه

سنجد آنانیا گیری می‌شد (Omori & Ikeda, 1984).

در هر ایستگاه سه نمونه از سطح و سه نمونه از عمق برداشت گردید که نمونه‌های عمودی از عمق ۲۰ متری تا سطح آب برداشته شدند. سپس نمونه جمع‌آوری شد و توسط دور به طوره ۵۰۰ میلی لیتری منتقل گردید. نمونه‌ها پس از جمع‌آوری بلافاصله با استفاده از فرملین بنری ۵ تا ۱۰ دقیقه تثبیت گردیدند که این محلول شامل ۳۰ گرم یوزاکس در یک لیتر فرملین بود. (Omori & Ikeda, 1984).

بوراکس pH محلول را بین ۲/۱ تا ۲/۳ متعادل نگه می‌دارد (1984). دوره نمونه برداری از آذر ماه ۱۳۷۶ تا شهریور ماه ۱۳۷۷ بوده که ۲ تکرار در ماه‌های آذر و بهمن ۱۳۷۸ و مارس ۱۳۷۲ نمونه‌برداری صورت نگرفت. نمونه‌ها با میکروسکوب معمولی و میکروسکوب معمولی تایپین فاز بررسی گردیدند و در موارد ضروری نیز تصادفی از آنها تهیه گردید. برای

(Brodskii, 1975 و Morris & Cressey, 1986)

برای محاسبات آماری از روش‌های آزمون t و آنالیز واریانس یک طرفه ANOVA) استفاده گردید که در تمام مراحل هرگاه مقایسه‌ای بین گروه‌های مختلف داده‌ها انجام گرفته‌است یکی از دو آزمون فوق الذکر استفاده شده است. در مواردی که آزمون ANOVA اختلاف معنی‌داری در سطح

۴۶
نتایج

فراوانی پاراپایان در ماه‌های مختلف نمونه‌برداری تغییرات زیادی را نشان می‌دهد (جدول 1). بنحویکه بطور متوسط کمترین تعداد پاراپایان مربوط به آذر ماه 1377 به میزان 94 عدد در مترمکعب و بیشترین مشاهدات مربوط به اردیبهشت 1377 با 613 عدد در مترمکعب آب فیلتر شده محسوب گردید. در بین نمونه‌برداری‌های سطحی کمترین مقدار مربوط به تیر 1377 با 212 عدد در مترمکعب است و پس از آن به‌همان 1376 با 399 عدد در مترمکعب قرار دارد. در نمونه‌برداری‌های عمودی هم کمترین میزان، مربوط به آذر ماه 1377 با تعداد 46 عدد در مترمکعب آب فیلتر شده می‌باشد. در بین پاراپایان شناسایی شده مجموعاً 16 جنس شناسایی شدند که از این تعداد 11 جنس متعلق به راسته Calanoida 1 جنس به Cyclopoida، 2 جنس به Harpacticoida و 2 جنس از Poecilostomatoida متعلق به Poecilostomatoida (Acartia) بود که 25/94 درصد مشاهدات را به‌خود اختصاص داده است. پس از آن جنس Pluromamma (Pleuromamma) با 28/38 درصد قرار می‌گیرد. کمترین فراوانی نسبی هم متعلق به جنس Corycaeus (Corycaeus) می‌باشد که فقط 2/05 درصد از مشاهدات را به‌خود اختصاص داده است.

فراوانی کل پاراپایان در ماه‌های مختلف نمونه‌برداری 1 مشخص شده است. همچنین نمونه‌برداری 2 و 3 فراوانی چهار جنس عمده را در ماه‌های مختلف نشان می‌دهد. فراوانی ترین جنس مشاهده شده (Acartia) در آذر ماه 1376 و دی ماه 1376 حذف سه چهارم نمونه‌ها را به‌خود اختصاص می‌دادند. در همین ماه 1376 و فوریه ماه 1377 به میزان نیمی از نمونه‌ها کاهش یافت و در اردیبهشت ماه و فروردین ماه و خرداد ماه روند صعودی طی نموده و بیش از 80 درصد نمونه‌ها را شامل می‌شد. بطور کلی فراوانی ترین نمونه‌ها مربوط به جنس Acartia می‌باشد، ولی فراوانی نسبی آن تحت
تأثیر افزایش موضعی جنس‌های *Temora* و *Pleuromamma*، *Eucalanus* در طول سال تغییر می‌نماید. سایر نمونه‌ها به میزان بسیار کم در طول دوره نمونه‌برداری دیده شدند. جنس *Pleuromamma* در طول ماه‌های سرد فراوان تر می‌باشد و از آذر ماه 1276 تا بهمن ماه 1276 بین 29 تا 39 درصد نمونه‌ها را بخود اختصاص داده بود. در ماه 1277 بیشترین فراوانی مشاهده گردید که این فراوانی نسبی همراه با بالاترین فراوانی مطلق این جنس *Eucalanus* می‌باشد.

می‌توان مشاهده نمود که فراوانی بالای آن در بهمن 1276 و پس از *Temora* در مورد جنس *Eucalanus* در ماه‌های فروردین و اردیبهشت 1277 می‌باشد و سپس به شدت کاهش نشان می‌دهد. جنس‌های *Centropages* و *Pseudodiaptomus* تنها در ماه‌های فروردین و اردیبهشت رؤیت گردیدند.

جنس *Labidocera* در ماه‌های اردیبهشت، خرداد و تیر رؤیت نشده وی در سایر ماه‌ها مشاهده گردیده است که نقطه اوج فراوانی آن ماه بهمن 1277 است.

سایر نمونه‌ها نیز در طول سال بطور پراکنده مشاهده گردیدند، خصوصاً جنس‌های *Euterpinia* و *Corvacea* و *Microsetella* مختلف از نظر آماری اختلاف معنی‌داری نشان داده است (جدول ۳) همچنین بین میانگین پاراپراپان سطح و ستون آب مقایسه انجام شد که فقط در بهمن ماه تفاوت معنی‌داری از این بابت مشاهده گردید (جدول ۳).

به منظور ارزیابی شرایط محیطی حاکم بر منطقه مورد مطالعه، جهت عامل مهم در هر ایستگاه به‌صورت سطحی و عمقی سنجیده شدند که نتایج آنها در در نمودارهای ۴ تا ۷ دیده می‌شود.

میزان اکسیژن از 2/3۱۱mg/l در بهمن ماه 1276 در ایستگاه دورق تا مقدار 11 در ایستگاه خورمرومس در نوسانات بوده است که کمترین مقدار متوسط تمام ایستگاه‌ها مربوط به بهمن ماه 1277 و بیشترین مقدار متوسط متعلق به تیر ماه 1277‌بای میزان 4/85mg/l و بیشترین مقدار متوسط متعلق به تیر ماه 1277 با میزان 0/05mg/l می‌باشد. به منظور بررسی اختلافات احتمالی بین ایستگاه‌ها و ماه‌های مختلف آنالیز واریانس انجام گردید که تفاوتی بین ایستگاه‌ها و ماه‌ها مشاهده نگردید (جدول 4). تغییرات...
میزان اکسیژن در ماههای مختلف در نمونه ۴ قابل مشاهده می‌باشد.

کمترین مقدار دمای آب مربوط به استگاه خور ماهشهر به میزان ۱۳۷۴ درجه سانتیگراد در ۱۳۷۶ می‌باشد. بطور متوسط در کمترین مقدار دمای آب مربوط به شهربور ماه ۱۳۷۷ می‌باشد.

میزان مقدار اندازه‌گیری شده شوری مربوط به استگاه خور مرسو در بهمن ماه ۱۳۷۷ به مقدار ۱/۷۸ppt می‌باشد که در تیرماه به مقدار ۴/۲ppt گذشته است. تفاوت‌های میانی این استگاه‌ها از نظر شوری تا انالیز واریانس گردیده که معنی‌داری دیده نشد. منبع تفاوت مشاهده به شوری در ماههای مختلف به استگاه خورمروس در بهمن ماه ۱۳۷۷ و شوری در ماههای سرد سال (بهمن و ۱۳۷۶) است که احتمالاً ناشی از کاهش تبخیر و افزایش ورودی آب شیرین به منطقه می‌باشد.

میزان pH آب در این مطالعه سنجدیه شده است که کمترین مقدار آن ۷/۶۹ در استگاه خور ماهشهر در دی ماه ۱۳۷۶ مشاهده گردیده است و بیشترین مقدار آن هم ۸/۷ است که در بهمن ۱۳۷۶ و استگاه خور در دو هفته شده است. در بین ماههای مختلف مطالعه کمترین مقدار pH مربوط به آذر ماه ۱۳۷۶ به مقدار ۷/۹۴ و بیشترین میانگین متعلق به ماه مهر ماه ۱۳۷۷ به میزان ۸/۳۷ است. تغییرات میزان pH آب در استگاه‌های مختلف با تابع انالیز واریانس تفاوت‌های زبانی نیمی دهده ۴/۹۵ مشاهده شده که نتیجه آن در جدول ۴ مشاهده می‌گردد.
جدول ۱: فراوانی جنس‌های پاراپینار خورمونس در ماه‌های مختلف سال (تعداد در مترمکعب)

<table>
<thead>
<tr>
<th>نام جنس</th>
<th>فروردین ۱۳۷۷</th>
<th>بهمن ۱۳۷۷</th>
<th>دی ۱۳۷۶</th>
<th>آذر ۱۳۷۶</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>متوسط تعداد</td>
<td>عمقی</td>
<td>متوسط تعداد</td>
<td>عمقی</td>
</tr>
<tr>
<td>Acartia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleuromamma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paracalanus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tortanus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corycæus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oithona</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oncaea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalanus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centropages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudodiaptomus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candacia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labidocera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microstella</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euterpin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temoropia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

۱۳۷۸
| نام جنس | اردیبهشت 1377 | خرداد 1377 | تیر 1377 | شهریور 1377 | بهمن 1377 | متوسط تعداد
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acartia</td>
<td>74</td>
<td>557</td>
<td>438</td>
<td>774</td>
<td>423</td>
<td>687</td>
</tr>
<tr>
<td>Pleuromamma</td>
<td>48</td>
<td>114</td>
<td>63</td>
<td>37</td>
<td>10</td>
<td>64</td>
</tr>
<tr>
<td>Labidocera</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oithona</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Temoropia</td>
<td>22</td>
<td>22</td>
<td>9</td>
<td>16</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Temora</td>
<td>119</td>
<td>376</td>
<td>75</td>
<td>58</td>
<td>10</td>
<td>54</td>
</tr>
<tr>
<td>Paracalanus</td>
<td>11</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tortanus</td>
<td>12</td>
<td>51</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Corycaeus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oncaea</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eucalanus</td>
<td>19</td>
<td>113</td>
<td>80</td>
<td>104</td>
<td>99</td>
<td>97</td>
</tr>
<tr>
<td>Centropages</td>
<td>32</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudodiaptomus</td>
<td>0</td>
<td>83</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Candacia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Microsetella</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Euterina</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* در شهریور ماه، از آذر ماه 1377، تنها بر اساس متوسط تعداد، کشف نمی‌گردید.
جدول ۲: آنالیز واریانس فراوانی پاروپايان در ماهها و ابستگاههای مختلف (خوروموس)

<table>
<thead>
<tr>
<th>عامل</th>
<th>میزان ف نرسیده‌های مختلف</th>
<th>برای ابستگاههای مختلف</th>
<th>تعداد پاروپايان</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td></td>
<td>0/05</td>
</tr>
<tr>
<td></td>
<td>0/80***</td>
<td></td>
<td>3/32</td>
</tr>
</tbody>
</table>

 وجود اختلاف معنی‌دار در سطح اطمینان ۹۹/۰

جدول ۳: مقایسه میانگین تعداد پاروپايان در مترمکعب بین نمونه‌برداری سطحی و عمودی در ۹۵/۰ اطمینان

<table>
<thead>
<tr>
<th>میانگین</th>
<th>آذر ۱۳۷۶</th>
<th>دی ۱۳۷۶</th>
<th>بهمن ۱۳۷۷</th>
<th>فروردین ۱۳۷۷</th>
<th>اردیبهشت ۱۳۷۷</th>
<th>خرداد ۱۳۷۷</th>
<th>تیر ۱۳۷۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین سطحی</td>
<td>399/0/7</td>
<td>482/9/6</td>
<td>562/3/1</td>
<td>304/0/7</td>
<td>211/8/5</td>
<td>132/8/7</td>
<td>154/0/7</td>
</tr>
<tr>
<td>میانگین عمودی</td>
<td>261/8/9</td>
<td>331/4/2</td>
<td>372/3/5</td>
<td>667/2/7</td>
<td>299/8/5</td>
<td>912/5/8</td>
<td>208/0/2</td>
</tr>
<tr>
<td>مقادیر</td>
<td>0/414</td>
<td>0/495</td>
<td>0/495</td>
<td>0/495</td>
<td>0/495</td>
<td>0/495</td>
<td>0/495</td>
</tr>
</tbody>
</table>

 وجود اختلاف معنی‌دار در سطح اطمینان ۹۵/۰

توضیح: در شهریور و آذر ۱۳۷۷ نمونه‌برداری سطحی بصورت کیفی انجام شد، بنابراین مقایسه میانگین برای سایر ماه‌ها صورت گرفت.

جدول ۴: نتایج آنالیز واریانس فاکتورهای نیزیکومیماتی در ماهها و ابستگاههای مختلف (خوروموس)

<table>
<thead>
<tr>
<th>a</th>
<th>عامل</th>
<th>F برای ابستگاههای مختلف</th>
<th>میزان F برای ماههای مختلف</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/05</td>
<td>اکسیزن</td>
<td>0/5175</td>
<td>1/252</td>
</tr>
<tr>
<td>0/05</td>
<td>دماي آب</td>
<td>1/0113</td>
<td>1/17/195**</td>
</tr>
<tr>
<td>0/05</td>
<td>شورى</td>
<td>1/0622</td>
<td>1/293</td>
</tr>
<tr>
<td>0/05</td>
<td>pH</td>
<td>0/5485</td>
<td>1/21/403**</td>
</tr>
</tbody>
</table>

وجود اختلاف معنی‌دار در سطح اطمینان ۹۹/۰
نمودار ۱: شرایط کلی پاراپایان در ماههای مختلف (خورشیدی ۱۳۷۷-۱۳۷۶)

نمودار ۲: فراوانی جنس Acartia در ماههای مختلف (خورشیدی ۱۳۷۷-۱۳۷۶)

نمودار ۳: فراوانی برخی جنس‌های مهم پاراپایان در ماههای مختلف (خورشیدی ۱۳۷۷-۱۳۷۶)
نمودار ۴: میزان اکسیژن محلول آب استگاههای نمونه‌برداری شده (خوروموسی‌های ۱۳۷۶ – ۱۳۷۷)

نمودار ۵: میزان دمای آب استگاههای نمونه‌برداری شده (خوروموسی‌های ۱۳۷۶ – ۱۳۷۷)
نمودار ۶: میزان شوری آب ایستگاه‌های نمونه‌برداری شده (خورمبوسی ۱۳۷۷ - ۱۳۷۶)

نمودار ۷: میزان pH آب ایستگاه‌های نمونه‌برداری شده (خورمبوسی ۱۳۷۷ - ۱۳۷۶)
بحث

خیورموسی بطور نسبی در بین خنسکی محصور گردیده و عرض آن چندان زیاد نمی‌باشد. به سبب این محدودیت و اثر برخی از عوامل محیطی ایستگاه‌های انتخابی نا حدودی از نظر خصوصیات ساختاری و فیزیکی‌شیمیایی به هم شاهد دارند. برخی از دلاایل این شاهد‌ها را می‌توان در رژیم جیر و مدى خیورموسی جستجو نمود. جیر و مداين منطقه از نوع نیم روزانه می‌باشد (Jones, 1986). وجود اين جیر و مداين همچنين دانمه زياد آن كه در بعضي مواقف به چهار متر هم مي‌رسد، سبب شده که اختلاط آب در اين منطقه بسيار زياد باشد.

بنابراین اختلاف قسمت‌های مختلف محدوده نمونه‌برداری از نظر فاکتورهای فیزیک‌شیمیایی کاهش می‌یابد که نتیجه تست نالیسی و روانس و نمودارهای رسم شده مؤثربناهای موضوع می‌باشد. از این رو می‌توان انتظار داشت که عوامل محيطی در هر زمان در ایستگاه‌های انتخابی یکسان عمل نمایند. خصوصاً اگر این واقعیت در نظر گرفته شود که در قسمت عمده منطقه عمق آب کم است و حتماً در عمق زیر قسمت‌ها در مقياس دریاپی عمق قابل توجهی وجود ندارد. به عقیده Ribes et al., 1996 و فراوانی مکانی آنها تحت تأثير فراوانی‌های فیزیکی می‌باشد. همانگونه که قبلاً اشاره گردید بین عوامل فیزیکی‌شیمیایی سنجه‌شنده شده در ایستگاه‌های مختلف تفاوت معنی‌داری مشاهده نگردید. بنابراین انتظار می‌رود که فراوانی‌های کلی پاروپایان نیز در بین ایستگاه‌ها تفاوت معنی‌داری از نظر آماری نداشته باشد که نالیسی و اریانس فراوانی پاروپایان در بین ایستگاه‌ها این موضوع را تأیید می‌نماید.

از این رو تغییرات فراوانی پاروپایان در بعد زمانی از اولویت بررسی بیشتری برخوردار می‌باشد. برای درک بهتر نحوه پراکندگی فراوانی پاروپایان در طول دوره نمونه‌برداری بررسی نتایج حاصل از تست تکه‌تکه دمای آب pH و فراوانی پاروپایان ضروری می‌باشد. می‌توان دمای آب را در طول سال به دو دوره گرم و غير گرم تقسیم‌بندی نمود. دوره گرم سال از ماه اردیبهشت شروع و تا شهروند ادامه دارد و دوره غیرگرم از آخر آذر ماه تا فوریت ماه ادامه دارد.

اختلاف دمای ماههای مختلف از نظر آماری معنی‌دار است. از این رو ایستگاه‌های انتخابی از
نظر دما تفاوت چشمه‌گیری نشان نمی‌دهد و دما عامل تعیین کننده و مؤثر بر پراکندگی ایستگاهی پاراپایا نمی‌تواند بحساب بیاید.

میزان pH آب در ماه‌های مختلف تفاوت معنی‌داری را نشان داده است. تغییرات نسبی pH آب را می‌توان به دو عامل نسبت داد. عامل اول تغییرات طبیعی حاصل از بارندگی و ریزش مواد از خشکی به داخل خور و عامل دوم: فعالیت صنایع عظیم بتروشیمی در محوران خوراکی.

می‌باشد.

برای مثال در آذر ماه 1367 مقادیر بسیار زیادی پودر گوگرد که به آر اپاراپیری نامناسب و انبارداری نادرست روی اسکله‌های پاراپیری ریخته بود بوسیله آب شسته می‌شد و به دریا سرازیر می‌گشت بگونه‌ای که لایه‌ای از گوگرد روى سطح آب را فراگرفت هم. در این ماه کمترین میزان pH سنجیده شد.

در مورد فراوانی پاراپایا نیز بین ماه‌های مختلف از تکوی استفاده شد. فراوانی پاراپایاهن نشان‌دهنده اختلاف معنی‌داری بین ارداپیسته ماه و سایر ماه‌ها می‌باشد و در سایر ماه‌ها تفاوت معنی‌داری را نشان نمی‌دهد. در مراجعه به جدول 1 می‌توان مشاهده نمود که این ماه از فراوانی پاراپایا منطقه را شامل می‌شود. برخی از تحقیقات در دیگر نقاط دنیا نیز هرمذمنی مشابهی را برای فراوانی پاراپایا نشان می‌دهد. برای مثال حجم کلی زریزلاندنها در اواخر اردیبهشت ماه و اواخر خرداد ماه بالاترین رقم را در آگاهی یک‌پروده نشان داده است.

(Moore, 1949)

در خلیج فارس نیز جنس Acartia در نیمه فروردین تا نیمه اردیبهشت دارای نقطه اوج سالانه‌ی Acartia . در نیمه فروردین تا نیمه اردیبهشت دارای نقطه اوج سالانه‌ی Acartia (Michel et al., 1986a) از انگیزه‌ی که در تحقیقات حاضر این جنس فراوانی ترین نمونه مشاهده شده در بین پاراپایا منطقه خوراکی است، لذا تغییرات فراوانی آن اثرات زیادی در کل مشاهدهاگذارده است. در این ارتباط نیز نقطه اوج تعداد Acartia مربوط گذارده است. در این ارتباط نیز نقطه اوج تعداد Acartia مرتبًا کاهش یافته و این کاهش تا آذر ماه ادامه پیدا کرد و پس از آن مجدد آفتاب‌یافت.

تحقیقات درباره تولید تخم توسط غونه Acartia grani نشان می‌دهد که بیشترین تولید تخم
شناختی و تحقیق جمعیت پاروپانی با نام‌نویسی خورمونس

سواری و همکاران

اوج فراوانی پاروپانی را با نکته اوج فراوانی جنس Centropages توجه نمود. جنس‌های Acartia فقط در ماه‌های فوریوردن و اردن‌هشت دیده شدند و جنس Pseudodiaptomus و Tortanus به‌همن تا خرداد مشاهده شده است. بنابراین احتمالاً نخمردی و تولید مثل آنها نیز در محدوده‌های زمانی ذکر شده می‌باشد. در افیانوس هند نیز گزارش شده که جنس‌های Candacia در ماه‌های خرداد مشاهده شدند ولی در ماه‌های آبان و آذر دیده نشدند.

(Madhupratap et al., 1993)

در سواحل جنوبی خلیج فارس یک گونه وابسته به جنس Candacia یعنی گونه Candacia pachydactyla باعث شد که در ماه‌های سرد سال مشاهده گردد. که به‌همان نیز گزارش داده است. در تحقیقی که در سواحل اینگلستان در مقابل یک مجموعه انجام شده، بیشترین تولید تخم به ایام هر ماه از جنس Temora مربوط به نیمه ماه مارس تا اواسط مارس (اسبند ماه) سال 1990 می‌باشد. در خلیج فارس نقطه اوج فراوانی جنس Temora turbinata در خرداد ماه داشته است (Michel et al., 1986). در واقع در تحقیق حاضر نیز فراوانی جنس Temora پس از بهمن ماه در اردن‌هشت بالاترین میزان خود را داشته است که می‌تواند نقطه اوج دوم فراوانی این جنس باشد.

بنابر مطالعات انجام شده در افیانوس هند جنس Pleuromamma بیشترین فراوانی را در غرب افیانوس هند و سواحل شرقی آفریقا در جنوب شرقی جزیره عربستان و سواحل دریای عمان دارد. همچنین در دیگر نقاط افیانوس هند هم این جنس فراوانی می‌باشد (Stephen et al., 1993). این جنس دارای مهاجرت عمودی زیادی بوده و از ایام بیابان بسیار فعال می‌باشد که معمولاً شیب به لایه‌های سطحی نزدیک می‌شود. در مطالعات انجام شده فعالیت نیز باتوجه به آنکه نمونه‌برداری‌ها در طول روز انجام شده، بیشترین نمونه‌های مهاجرت روزانه این جنس از سطح به عمق است.
جنس‌های Corycaeus در بهمن ماه ۱۳۷۷ و جنس Oncaea و Euterpe در بهمن ماه ۱۳۷۶ مشاهده گردیده است که تعداد موارد آنها نسبتاً اندک می‌باشند. خصوصاً Corycaeus مشاهده شده است. در مورد جنس Eucalanus عمده فراوانی‌ها مربوط به ماه‌های فورودین تا تیر ماه است که در تیر ماه بیشترین فراوانی این جنس مشاهده گردیده. در آب‌های کوته نیز بیشترین فراوانی پاراپلبان در تیرماه تا اواخر ماه بوده که در همین ماه فراوانی نسبی Bies (Michel, 1986) گزارش شده است.

از موارد مشابه می‌توان به گزارش‌های از آقیانوس هند اشاره نمود که در ماه‌های آبان تا آذر فراوانی خانواده Eucalanidae و Bisetia از خانواده Acartiidae از Eucalanidae از Bisetia شده است (Madhupratap et al., 1993). خوراک موسی به سبب داشتن نژادهای بالاتر از شوری دریایی آزاد و بعلت محدود بودن در خشکی شب‌های و ویژگی‌های دارد که همه گونه‌های پاراپلبان قادر به تحمل این شرایط نمی‌باشند. بنابراین در بزین وضعیت گونه‌های این‌نامه و گونه‌های اولاند به جنس Acartia از فرستم برهه جسته و غلیبیت می‌یابند خصوصاً اینکه گونه Acartia tonsa بعنوان گونه (شوری دوست) شناخته شده است (Raymont, 1988). البته این وضعیت با آلودگی منطقه‌های نیز تشدید می‌گردد. زیرا اثر آلاینده‌های صنایع موجود در منطقه باعث کاهش تحمل گونه‌های آبزی می‌گردد که در نتیجه موجب محدود شدن گونه‌های ساکن در منطقه می‌شود. نتایج بررسی‌های فلزات سنگین در منطقه مؤین تجمع این آلاینده‌ها در رسوبات و بدن آبزیان خوراک موسی می‌باشد (محیط زیست ۱۳۷۴).

البته موارد بسیار زیادی روز پراکندگی پاراپلبان دخالت می‌نمایند. مواردی همچون دمای آب، جریانات آب، میزان کلروفیل، فرار از شکارچی، رفتار تجمع‌بایی، تأثیر نوع ماده غذایی، اندامه ذرات غذایی، بدن‌های جوی و جریانات زیرآبی مثل مناطق فراچوبش و غیره مثال‌هایی از این عوامل مؤثر می‌باشند. بدین جهت باید مشخص شدن و یپسی‌های اکولوژیکی یک منطقه عوامل گوناگونی بايد مدقق‌تر قرار بگیرد که این مسئله در زمان طولانی محقق می‌گردد.
منابع

گزارش اداره کل حفاظت محیط زیست خوزستان، ۱۳۷۴. بررسی لیمنولوژیک و حفظ تعادل اکولوژیک‌های داخلی (خورمونی). انتشارات اداره کل حفاظت محیط زیست خوزستان. ۱۹۴ صفحه.

Raymont, J.E.G. , 1983. Plankton and productivity in the oceans. 2nd Ed. Zooplankton, 824 P.

