شناسایی و تخمین جمعیت پاراپیان پلانکتونیک
خورموزی

(Planktonic Copepods)

امحمد سواری (1)؛ بابک دوست شناس (2) و سیدمحمد باقر نیوی (3)
savari53@yahoo.com

دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر مصداق بستن: 669
تاریخ دریافت: اسفند 1379 تاریخ پذیرش: اردیبهشت 1381

خلاصه

این تحقیق به منظور شناسایی و تخمین تراکم پاراپیان پلانکتونیک خورموزی از آذر ماه 1376 تا لگایت بهمن ماه 1377 در چهار ایستگاه انجام پذیرفت. در این پروژه از زمان شروع 1376 تا لگایت شهریور 1377 نمونه‌برداری بصورت ماهانه انجام شد. پس از این مدت دو تکرار در ماه‌های آذر و بهمن 1377 اجرا گردید.

نمونه‌برداری از سطح و ستون آب (از عمق 20 متری تا سطح) انجام شد. در کل، نمونه‌برداری‌ها مجموعاً 16 جنس از پاراپیان شناسایی گردید. از جنس‌های شناسایی شده 11 جنس متعلق به راسته Calanoida 2 جنس Poecilostomatoida از راسته Harpacticoida 1 جنس مربوط به راسته Cyclopoida و 2 جنس از راسته Acartia با 75/9 درصد نیروی نسبی بود و دوستین مشاهدات مربوط به جنس Corycaeus است که ۲۰۰/۰ درصد نیروی نسبی داشته است.

آنالیز و ارائه نمونه‌برداری پاراپیان در ایستگاه‌های مختلف نفرت معنی‌داری نشان نداد و در اثر اکنون این موجودات در ماه‌های مختلف اختلاف معنی‌داری نداشتند و در اثر تفاوت در ارتفاع قرار نسبی به سایر ماه‌ها بوده است. در مقایسه میانگین نمونه‌های سطحی و نمونه‌های آب ستون آب تنا در بهمن ماه ماه‌های مختلف معنی‌داری در سطح اطمینان ۹۵/۰ مشاهده گردید.

فاکتورهای فیزیکی و شیمیایی در بین ایستگاه‌ها تفاوت معنی‌داری نداشتند. ولی آنالیز واریانس مفاهیمی اختلاف معنی‌دار pH و دما در ماه‌های مختلف مپایانگ

لغات کلیدی: جمعیت، پاراپیان پلانکتونیک، خورموزی، خوزستان، ایران
مقامه


و در منطقه خورمودی نیز بدلیل ویرگی های جغرافیایی و مرشه لزیک آن و ارتباط با تالاب شادگان، نوازگاهه مناسب برای پرورش و تولید مثل آبزیان بوژیه میگو و ماهی می باشد. همچنین این منطقه در طریقات توسعه کشور مورد توجه قرار گرفته و بعنوان منطقه اقتصادی ویژه پتروشیمی در نظر گرفته شده و با تنظیم اطلاعات زیستی از محیط طبیعی این منطقه قبیل از تحت تأثیر قرار گرفته بسیاری مجاور آن، به بررسی آینده این منطقه کمک شایانی خواهد نمود.

مواد و روش‌ها

محل نمونه‌برداری منطقه خورمودی بوده است. این منطقه انشعابی از شمال خلیج فارس است که در آن تعداد زیادی خویریات کوچک و بزرگ و کاوانهای جزر و مدلی گسترده دیده می‌شود.

موقعیت جغرافیایی این ناحیه بین طول جغرافیایی ۲۶° ۴۹’ تا ۵° ۰’، عرض جغرافیایی ۵۰’، ۴۸ شرقی و عرض جغرافیایی
چهار ایستگاه در خورهای مرواس، موسی، ماهشهر و دورق انتخاب گردید که ضمن پوشش دادن منطقه، شرایط مناسب نمونه‌برداری هم در آنها فراهم بود (شکل 1).

شکل 1: موقعیت ایستگاه‌های نمونه‌برداری در منطقه خور مسی (77-1376)
شناسایی و تخمین جمعیت پاراپاتر یاکونتیک خورمونی

سواری و همکاران

مقدار pH و کمک دستگاه اکسیژن، در هر ایستگاه بوسیله دستگاه pH، C.T.D بوسیله دستگاه pH سنجیده شد.

محلول به کمک دستگاه اکسیژن سنج از نوع YSI 330 μm استفاده گردید. نمونه بداری با

برای نمونه بداری پاراپاتر از تور یاکونتیک با چشم، چنین چشم‌های تصویر مناسب و نسبتاً دقیقی از ژئولیکانوها را ارائه می‌دهد (John & Weiker, 1981) برای نمونه بداری سطحی از تور یاکونتیک استاندارد با مساحت ده‌نانه 1.166.

ومتریع استفاده گردید (Omori & Ikeda, 1984)

در نمونه بداری عمودی از تور عمودی با مساحت ده‌نانه 0.4 متریع استفاده شد. در

هر ایستگاه تور با یک طناب مدرج به عمق 10 فرستاده می‌شود و زاویه انحراف طناب بوسیله زاویه

سنجه اندازه‌گیری می‌شود (Omori & Ikeda, 1984).

در هر ایستگاه سه نمونه از سطح و سه نمونه از عمق برداشته گردید که نمونه‌های عمودی از

عمق 10 متری تا سطح آب برداشته شدند. سپس نمونه‌های جمع‌آوری شدند و توسط تور به طریق

500 میلی لیتری منتقل گردید. نمونه‌ها پس از جمع‌آوری بلافصله با استفاده از فرمالین با فاصله

5 تا 0 درصد تغییر گردیدند که این محلول شامل 20 گرم بوراکس در یک لیتر فرمالین بود. (Omori & Ikeda, 1984) محلول pH بوراکس محلول Rا بین 7/1 تا 8/3 متعادل نگه می‌دارد (1984). دوره

نمونه بداری از آذر ماه 1366 تا مهر ماه 1370 بوده که 4 تکرار در ماه‌های آذر و بهمن 1370،

متغیر برای انجام گردید. بعلت نامناسب بودن شرایط جوی و بارانه مشکلات در ماه‌های اسفند

36 1/4 مارس 1377 نمونه بداری صورت نگرفت. نمونه‌ها با مایکروسکوب معمولی و مایکروسکوب

معکوس دارای تیابین فاز بررسی گردیدند و در موارد ضروری نیز تصاویری از آنها تهیه گردید. برای

شناسایی پاراپاتر از کتاب، مقالات و کلیدهای شناسایی مختلف استفاده گردید (1982):

Coul, 1950 ; Raymont, 1983 ; Davis, 1955 ; Newell & Newell, 1977 ; Shih, 1982

(Brodskii, 1975 و Morris & Cressey, 1986

برای محاسبات آماری از روش‌های آزمون t و آنالیز واریانس یک طرفه (ANOVA) استفاده

گردید که در تمام مراحل هرگاه مقایسه‌ای بین گروه‌های مختلف داده‌ها انجام گرفته از یکی از دو

آزمون فوق الذکر استفاده شده است. در مواردی که آزمون ANOVA

26
نتایج

فراوانی باروبیان در ماه‌های مختلف نمونه‌برداری تغییرات زیادی را نشان می‌دهد (جدول 1). بنحویکه بطور متوسط کمترین تعداد باروبیان مربوط به آذر ماه ۱۳۷۷ به میزان ۹۴ عدد در مترمکعب و بیشترین مشاهدات مربوط به اردیبهشت ۱۳۷۷ با ۶۱۳ عدد در مترمکعب آب فیلتر شده محاسبه گردید. در بین نمونه‌برداری‌های سطحی کمترین مقدار مربوط به شهر ۱۳۷۷ با ۴۱۲ عدد در مترمکعب است و پس از آن بهمین ۱۳۷۶ با ۳۹۹ عدد در مترمکعب قرار دارد. در نمونه‌برداری‌های عمومی هم کمترین میزان، مربوط به آذر ماه ۱۳۷۷ با تعداد ۹۴ عدد در مترمکعب آب فیلتر شده می‌باشد. در بین باروبیان سطحی شده جمعاً ۱۶ جنس شناسایی شدند که از این تعداد ۱۱ جنس متعلق به راسته Calanoida، ۱ جنس به Cyclopoida و ۲ جنس به Harpacticoida از گروه Poecilostomatoida بود که ۲۵/۱۶ درصد مشاهدات را به خود اختصاص داده است. پس از آن جنس pleuromama (Acartia) با ۸/۸۳ درصد قرار می‌گیرد. کمترین فراوانی نسبی هم متعلق به جنس Corycaeus می‌باشد که فقط ۵/۰۰ درصد از مشاهدات را به خود اختصاص داده است.

فراوانی کل باروبیان در ماه‌های مختلف در نمونه‌برداری شخص ۱ مشاهده شده است. همچنین نمونه‌برداری ۲ و ۳ فراوانی چاه جنس عمدی را در ماه‌های مختلف نمایش می‌دهد. فراوانی تین جنس مشاهده شده (Acartia) در آذر ماه ۱۳۷۶ و دی ماه ۱۳۷۶ حداکثر سه چهارم نمونه‌ها را به خود اختصاص می‌دادند. در بهمن ماه ۱۳۷۶ و فوروردین ماه ۱۳۷۷ به میزان نیمی از نمونه‌ها کاهش یافت و لی盼اک در اردیبهشت ماه و خرداد ماه روند صعودی طی نموده و بیش از ۸۰ درصد نمونه‌ها را شامل می‌شد.

بطور کلی فراوانی تین نمونه‌ها مربوط به جنس Acartia می‌باشد، ولی فراوانی نسبی آن تحت
تأثیر افزایش موضوعی جنس‌های Temora و Pleuromamma, Eucalanus در طول سال تغییر می‌نماید. سایر نمونه‌ها به میزان بسیار کم در طول دوره نمونه‌برداری دیده شدند.

جنس Temora در طول ماه‌های سرد فرآوانی تقریباً با ماه‌های انتهای بهمن 1376 تا بهمن 1376 و پس از آن در ماه‌های فروردین و اردیبهشت 1377 می‌باشد و سپس به شدت کاهش نشان می‌دهد. آن در جنس‌های این ساوا و Centropages و Pseudodiaptomus مشاهده گردید که این فراوانی نسبی همراه با بالاترین فراوانی مطلق این جنس می‌باشد.

می‌توان مشاهده نمود که فراوانی بالایی آن در بهمن 1376 و پس از Temora در مورد جنس Labidocera مشاهده گردیده است که نقطه اوج فراوانی آن ماه بهمن 1377 است.

سایر نمونه‌ها نیز در طول سال بطور بارکند مشاهده گردیدند. خصوصاً جنس‌های Corycaeus و Microsetella مختلف از نظر آماری اختلاف معنی‌داری نشان داده است (جدول ۳). همچنین در میان این گونه‌ها، تفاوت معنی‌داری از این بابت مشاهده گردیده است.

به منظور ارزیابی شرایط محیطی حاکم بر منطقه مورد مطالعه، چهار عامل مهم در هر ایستگاه بطور متوسط و عمیق سنجیده شدند که نتایج آنها در نمودارهای ۱ تا ۷ دیده می‌شود. 

میزان اکسیژن از ۲/۳ الم/ل در بهمن ماه 1377 در ایستگاه دورن تا مقدار ۱/۱۳ الم/ل در ایستگاه خورمیس در نوامبر به مقدار کمترین مقدار متوسط تام ایستگاه به میزان بهمن ماه 1377 با میانگین ۴/۸۵ الم/ل و بیشترین مقدار متوسط متعلق به ماه 1377 به میزان ۱/۰/۵ الم/ل قرار داشت. به منظور بررسی اختلافات احتمالی بین ایستگاه‌ها و ماه‌های مختلف آنالیز واریانس انجام گردید که نتایج بین ایستگاه‌ها و ماه‌ها مشاهده نگردید (جدول ۳). 

۴۸
میزان اکسپرسن در ماه‌های مختلف در نمودار 4 قابل مشاهده می‌باشد.
کمترین مقدار دما آب مربوط به استگله خور ماه‌شهر به میزان 134 درجه سانتی‌گراد در
دبی ماه 1376 و بیشترین مقدار اندوزه گیری شده دما مربوط به استگله خور مربوط به
خورموزی و خوردوی باید درجه سانتی‌گراد در شهریور ماه 1377 می‌باشد. بطور متوسط در
تمامی ماه‌ها کمترین میزان دما آب مربوط به دی ماه 1376 و بالاترین دما آب نیز مربوط به
شهریور ماه 1377 می‌باشد.
کمترین مقدار اندوزه‌گیری شده شوری مربوط به استگله خور مرسوس در بهمن ماه 1377 به
مقدار 37/88pct مشاهده شده است. تفاوت‌های مایع استیگاه‌ها از نظر شوری تست انالیز و اربانس گردیده که
تفاوت معنی‌داری بین استیگاه‌ها مشاهده نگردید (جدول ۴). در بین ماه‌های مختلف نیز تفاوت
معنی‌داری دیده نشد که نتیجه آن در جدول ۴ مشاهده می‌گردد. نمودار ۶ نشان‌دهنده تغيیرات
شوری در ماه‌های مختلف می‌باشد. همانگونه که مشاهده می‌شود بیشترین شوری مربوط به
ماه‌های گرم سال است که می‌تواند ناشی از تبخیر آب باشد و کمترین مقدار شوری نیز مربوط به
ماه‌های سرد سال (بهمن 1376 و 1377) است که احتمالاً ناشی از کاهش تبخیر و افزایش ورودی
آب شیرین به منطقه می‌باشد.
میزان pH آب هم در این مطالعه سنگی‌ده شده است که کمترین مقدار آن 7/29 در استگله
خور ماه‌شهر در دی ماه 1376 مشاهده گردیده است و بیشترین مقدار آن هم 8/7 است که در
بهمن 1376 و استگله خور دری هفت شده است. در بین ماه‌های مختلف مطالعه کمترین مقدار
pH مربوط به آذر ماه 1376 به مقدار 7/24 و بیشترین میانگین متعلق به ماه شهریور 1377 به
میزان 8/37 است. تغییرات میزان pH آب در استیگاه‌های مختلف با تست آنانالیز و اربانس تفاوتی را نشان نمی‌دهد
(جدول ۴)، ولی در بین ماه‌های مختلف تفاوت در سطح ۹/۵٪ مشاهده شد که نتیجه آن در جدول
۴ مشاهده می‌گردد.
جدول 1: فراوانی جنس‌های پاراپانی خورشدوی در ماه‌های مختلف سال (تعداد در متراکم)

<table>
<thead>
<tr>
<th>نام جنس</th>
<th>آذر 1376</th>
<th>دی 1376</th>
<th>بهمن 1376</th>
<th>فروردین 1377</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>سطحی</td>
<td>عمیق</td>
<td>متوسط تعداد</td>
<td>سطحی</td>
</tr>
<tr>
<td>Acartia</td>
<td>144</td>
<td>40</td>
<td>416</td>
<td>379</td>
</tr>
<tr>
<td>Pleuromamma</td>
<td>165</td>
<td>60</td>
<td>198</td>
<td>159</td>
</tr>
<tr>
<td>Temora</td>
<td>16</td>
<td>8</td>
<td>11</td>
<td>773</td>
</tr>
<tr>
<td>Paracalanus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tortanus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Corycaeus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oithona</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Oncaeae</td>
<td>16</td>
<td>8</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Eucalanus</td>
<td>14</td>
<td>10</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Centropages</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudodiaptomus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Candacia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Labidocera</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Microstella</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Euterpinia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Temoropia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>نام جنس</td>
<td>اردبیشت 1377</td>
<td>خرداد 1377</td>
<td>تیر 1377</td>
<td>آذر 1377</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Acaria</td>
<td>784</td>
<td>838</td>
<td>857</td>
<td>938</td>
</tr>
<tr>
<td>Pleuromamma</td>
<td>28</td>
<td>161</td>
<td>1145</td>
<td>3</td>
</tr>
<tr>
<td>Labidocera</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oithona</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Temoropia</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Temora</td>
<td>119</td>
<td>376</td>
<td>2475</td>
<td>4</td>
</tr>
<tr>
<td>Paracalanus</td>
<td>11</td>
<td>55</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tortanus</td>
<td>12</td>
<td>51</td>
<td>3615</td>
<td>8</td>
</tr>
<tr>
<td>Corycoides</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oncaeae</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eucalanus</td>
<td>19</td>
<td>113</td>
<td>146</td>
<td>133</td>
</tr>
<tr>
<td>Centropages</td>
<td>22</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudodiaptomus</td>
<td>0</td>
<td>169</td>
<td>8305</td>
<td>3</td>
</tr>
<tr>
<td>Candacia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Microstella</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Euterpinia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

فرآیند کل جنسها: 3161 - 916 - 212 - 1253 - 2108 - 94 - 94 - 3335 - 21015

* در شهریور ماه و آذر ماه 1377 تعداد 277/8 تعداد بسیار کمی انجام گردید.
جدول ۳: مقایسه میانگین تعداد پارواپان در مترمکب بین نمونه‌برداری سطحی و عمودی در ۹۵٪ اطمینان

<table>
<thead>
<tr>
<th>میانگین</th>
<th>آذر۱۳۷۶</th>
<th>بهمن۱۳۷۶</th>
<th>فروردین۱۳۷۷</th>
<th>تیر۱۳۷۷</th>
<th>خرداد۱۳۷۷</th>
<th>شهریور۱۳۷۷</th>
<th>اردیبهشت۱۳۷۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین سطحی</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
</tr>
<tr>
<td>میانگین عمودی</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
<td>۱۱۸/۵/۳</td>
</tr>
</tbody>
</table>

توجه: در شهريور و آذر ۱۳۷۷ نمونه‌برداری سطحی بصورت کیفی انجام شد، بنابراین مقایسه میانگین برای سایر ماه‌ها صورت گرفت.

جدول ۴: نتایج آنالیز واریانس فاکتورهای فیزیکوشیمیاتی در ماه‌های و استگاههای مختلف (خورموزی)

<table>
<thead>
<tr>
<th>عامل</th>
<th>میانگین F برای استگاههای مختلف</th>
<th>میانگین F برای ماههای مختلف</th>
</tr>
</thead>
<tbody>
<tr>
<td>a ۲۰</td>
<td>۱/۳/۸۵</td>
<td>۱/۲/۵۲</td>
</tr>
<tr>
<td>۲۰۰۵</td>
<td>۱/۳/۸۵</td>
<td>۱/۲/۵۲</td>
</tr>
</tbody>
</table>

توجه: وجود اختلاف معنی‌دار در سطح اطمینان ۹۵٪
نمودار ۱: فراوانی کل باروبایان در ماههای مختلف (خروموسی ۱۳۷۷ - ۱۳۷۶)

نمودار ۲: فراوانی جنس Acartia در ماههای مختلف (خروموسی ۱۳۷۷ - ۱۳۷۶)

نمودار ۳: فراوانی بخشی جنسهای مهم باروبایان در ماههای مختلف (خروموسی ۱۳۷۷ - ۱۳۷۶)
نمودار ۴: میزان اکسیژن محلول آب ایستگاههای نمونه‌برداری شده (خورموزی ۱۳۷۶ – ۱۳۷۷)

نمودار ۵: میزان دمای آب ایستگاههای نمونه‌برداری شده (خورموزی ۱۳۷۶ – ۱۳۷۷)
نمودار 6: میزان شوری آب استانداردی نمونه‌برداری شده (خورموزی ۱۳۷۷ - ۱۳۷۶)

نمودار 7: میزان pH آب استانداردی نمونه‌برداری شده (خورموزی ۱۳۷۷ - ۱۳۷۶)
بحث

خوروموسی بطور نسبی در بین خسکی مخصوص گردنده و عرض چندان زیاد نمی‌باشد. به سبب این محدودیت نیز برخی از عناصر محیطی ایستگاه‌های انتخابی تا حدودی از نظر خصوصیات ساختاری و فیزیک‌شیمیایی به هم شاهدند. برخی آن‌ها از دلایل این شواهد را می‌توان در ریزی جور و مدت خوروموسی جستجو نمود. جرز و مدت این منطقه از نوع نیم روند می‌باشد (Jones, 1986). وجود این جرز و مدت مهم‌ترین دامنه زیاد آن که در بعضی مواد به چهار متر هم می‌رسد، سبب شده که اختلاط آب در این منطقه بسیار زیاد باشد. بنابراین اختلاف قسمت‌های مختلف فناوری نمونه‌برداری از نظر فاکتورهای فیزیک‌شیمیایی کاهش می‌یابد که نتیجه تأثیر A که واریانس و نمودارهای نسبت به مدل مورد بررسی موضوع می‌باشد. از این رو می‌توان انتظار داشت که عوامل محلی در هر زمان در ایستگاه‌های انتخابی یکسان عمل نمایند. خصوصاً اگر این واقعیت در نظر بگیریم، شود که در قسمت عمده منطقه جنوب آمریکا است و حتی در عمیق نیز قسمت‌ها در مسیر دریایی عمق قابل توجهی وجود ندارد. به عقیده Ribes et al., 1996 و فراوانی مکانی آنها تحت تأثیر فراوانی‌های فیزیکی می‌باشد. همانگونه که قبل اشاره گردید بین عوامل فیزیکی شیمیایی سنجه‌گی‌های مختلف تفاوت معنی‌داری مشاهده نگردید. بنابراین انتخاب می‌رود که فراوانی کلی باروپایان نیز در بین ایستگاه‌ها تفاوت معنی‌داری از نظر امکان نداشته باشد که اناлиз واریانس فراوانی باروپایان در بین ایستگاه‌ها این موضوع را تأیید می‌نماید.

از این رو تغییرات فراوانی باروپایان در بعد زمانی از اولویت بررسی بیشتری برخوردار می‌باشد. برای درک بهتر نحوه پراکندگی فراوانی باروپایان در طول دوره نمونه‌برداری بررسی نتایج حاصل از تست تکنیک دما، pH و فراوانی باروپایان ضروری می‌باشد. می‌توان دمای آب را در طول سال به دو دو دوره گرم و غیر گرم تقسیم‌بندی نمود. دوره گرم سال از ماه اردیبهشت شروع و تا شهریور ادامه دارد و دوره نیمار از آخر آذر ماه تا فروردین ماه ادامه دارد.

اختلاف دمای ماه‌های مختلف از نظر آماری معنی‌دار است. از این رو ایستگاه‌های انتخابی از

56
نظر دما تفاوت چشمگیری نشان نمی‌دهد و دما عامل تعیین کننده و مؤثر بر پراکندگی
ایستگاهی پاروپایان نمی‌تواند به‌حساب بیاید.

*pH* میزان آب در ماههای مختلف تفاوت معنی‌داری را نشان داده است. تغییرات نسبی
آب را می‌توان به دو عامل نسبت داد. عامل اول: تغییرات طبیعی حاصل از پردازی و ریزش مواد
از خشکی به داخل خور و عامل دوم: فعالیت صنایع عظیم بترولیستی در مجاورت خوریات
می‌باشد.

برای مثال در آذر ماه ۱۳۶۷ مقادیر بسیار زیادی بود که بار یابدیر را نامناسب و
انبارداری نادرست روی اسکله‌های پاروپایان زیاد بود. بود بسیاری آب شسته می‌شد و به دریا سرازیر
می‌گشت بگونه‌ای که در آن زمان از گوگرد روز سطح آب را فراگرفته بود. در این ماه کمترین میزان
ستجیحه شد.

در مورد فراوانی پاروپایان نیز بین ماههای مختلف از تست توکی استفاده شد. فراوانی
پاروپایان نشان‌دهنده اختلاف معنی‌دار بین اردک‌های ماه و سایر ماه‌ها می‌باشد و در بین سایر
ماه‌ها تفاوت معنی‌داری را نشان نمی‌دهد. با مراجعه به جدول ۱ می‌توان مشاهده نمود که این
ماه اوج فراوانی پاروپایان منطقه را شامل می‌شود. برخی از تحقیقات در دیگر نقاط دنیا نیز
همگامان مشابهی را برای فراوانی پاروپایان نشان می‌دهند. برای مثال حجم کلی زنوبانکن‌ها در
اواخر اردیبهشت ماه و اواخر خرداد ماه بالاترین رقم را در آب‌های مردمی نشان داده است
(Moore, 1949).

در خلیج فارس نیز جنس Acartia در نیمه فروردین تا نیمه اردیبهشت دارای نقطه اوج سالانه
می‌باشد. (Michel et al., 1986) از آنجایی که در تحقیقات حاضر این جنس فراوان ترین نمونه
مشاهده شده در بین پاروپایان منطقه خورموزی است، لذا تغییرات فراوانی آن اثرات زیادی در
كل مشاهدات گذارده است. در این ارتباط نیز نقطه اوج تعداد Acartia مرتبط با کاهش یافته این
کاهش نیز اثر ماه ادامه پیدا کرده و پس از
آن مجدداً افزایش یافت.

تحقیقی درباره تولید تخم توسط گونه Acartia grani
نشان می‌دهد که بیشترین تولید تخم
شناختی و تخمین جمعیت پاروپانایان بانکتونیک خورموسی

سواری و همکاران

اوج فراوانی پاروپانایان را با نقطه اوج فراوانی جنس Acartia توجه نمود. جنس هایی از Tortanus فقط در ماههای فوروردین و اردیبهشت دیده شدند و جنس Pseudodiaptomus به مهند تا خرداد مشاهده شده است. بنابراین احتمالاً نخوربّی و تولید مثل آنها نیز در محدوده‌های زمانی ذکر شده می‌باشد. در اقیانوس هند نیز گزارش شده که جنس‌های Candacia در ماههای خرداد مشاهده شدند ولی در ماههای آبان و اذربایجان اند. Pseudodiaptomus

(Madhupratap et al., 1993)

در سواحل جنوبی خلیج فارس یک گونه وابسته به جنس Candacia یعنی گونه Temora و Gorgasia گردیده است (Michel et al., 1986b) در این کشور سال مشاهده گردیدند که بیشترین فراوانی آنها مربوط به ماهاهای بهمن تا فروردین بوده است. در تحقیقی که در سواحل ایتالیا انجام شده بیشترین تولید تخم به ازای هر ماهه از جنس Temora تا اواخر مارس (اسفند ماه) سال 1990 میلادی گزارش گردیده است (Bautista et al., 1994). در خلیج فارس نقطه اوج فراوانی Gorgasia در خرداد ماه داشته است (Michel et al., 1986a). در واقع در تحقیق حاضر نیز فراوانی جنس Temora از بهمن ماه در اردیبهشت بالاترین میزان خود را داشته است که می‌تواند نقطه اوج دوم فراوانی این جنس باشد.

بنابر مطالعات انجام شده در اقیانوس هند جنس Pleuromamma بیشترین فراوانی را در غرب اقیانوس هند و سواحل شرقی آفریقا در جنوب شرقی جزیره عربستان و سواحل دریای عمان دارد. همچنین در دیگر نقاط اقیانوس هند هم این جنس فراوانی می‌باشد (Stephen et al., 1993). این جنس دارای مهاجرت عمودی زیادی بوده و از این بابت بسیار فعال می‌باشد که معمولاً شیب‌ها به لایه‌های سطحی نزدیک می‌شود (Stephen ; Madhupratap & Haridas, 1990). در مطالعات انجام شده فعلاً نیز باتوجه به آنکه نمونه‌برداری‌ها در طول روز انجام شده، بیشترین نمونه‌های مهاجرت روزانه این جنس از سطح به عمق است.

58
جوش‌های Corycaeus در بهمن ماه ۱۳۶۷ و جنس Oncaea و Euterpina مشاهده گردیده است که تعداد مشاهدات آنها نسبتاً اندک می‌باشد. خصوصاً مشاهده‌های عمده فراوانی‌ها مربوط به ماه‌های فوروردین تا تیر ماه این جنس مشاهده گردید. در آهنگ کویت نیز بیشترین فراوانی پاروپیان در تیرماه‌ها اولاب مرداد ماه بوشه که در همین ماه فراوانی نسبی Eucalanus بیشتر از فراوانی نسبی Acartiia گزارش شده است (Michel, 1986).

از موارد مشابه می‌توان به گزارش‌های از افیانوس هند اشاره نمود که در ماه‌های آبان و آذر گزارش گردیده ولی در ماه‌های خرداد Eucalanidae ویش از خانواده Acartiidae از Eucalanidae با تا تیر فراوانی خانواده Acartiidae از Eucalanidae از ماه‌های آبان و آذر خورسوسی با سبب داشتن شوری بالاتر از شوری دریایی آزاد و بعلت محسور بودن در خشکی شرایط و پزشکی دارکه همه گونه‌های پاروپیان قادر به تحمل این شرایط نمی‌باشد. بنابراین در چنین وضعیت گونه‌های همانند گونه‌های ویسته به جنس Acartiia از فرستخ پره به نام Acartiia tonsa بعنوان گونه (شهری دوست) جسته و غلبه می‌یابد خصوصاً اینکه گونه Acartiia شناخته شده است (Raymont, 1988). بنا به وضعیت با آلودگی منطقه نیز تشکیل می‌گردد زیرا اثر آلاینده‌های صنایع موجود در منطقه باعث کاهش تحمل گونه‌های آبی می‌گردد که در نتیجه موجب محدودیت گونه‌های ساکن در منطقه می‌شود. نتایج بررسی های فلزات سنگین در منطقه مؤید تجمع این آلاینده‌ها در رسوبات و بدن آبی‌زمان خورسوسی می‌باشد (محیط زیست، ۱۳۷۴).

المابه موارد سیاسی روز پراکندگی پاروپیان دخالت می‌نماند. مواردی همچون دمای آب، جریان‌های آب، میزان کلروفیل، فارا و شکارچی، رفتار تجمع‌بندی، تأثیر نوع ماده غذایی، اندازه ذرات غذایی، پدیده‌های جوی و جریان‌های زیاسی مثل مناطق فراوجوشی و غیره مثال‌هایی از این عوامل مؤثر می‌باشند. بدين چهت برای مشخص شدن و پژوهی های اکولوژیکی یک منطقه عوامل گوناگونی بايد مدل‌نظر قرار بگیرد که این مستلزم در زمان طولانی محقق می‌گردد. 1382

59
References


Raymont, J.E.G., 1983. Plankton and productivity in the oceans. 2nd Ed. Zooplankton, 824 P.


