پافتاشناسی لايههای مختلف تخمک ماهی ازونبرون

(\textit{Acipenser stellatus})

رضوانا... کاظمی(1)، محمود بهمنی(2) و عباس‌دین رومانوف(3)

Rezkazemi2000@yahoo.com

1 و 2 - بخش فیزیولوژی و بیوشیمی، انستیتو تحصیلات بین‌المللی مامیان خاویاری،
رشت صندوق پستی: ۴۴۴۳۰۵۳۵
3 - مرکز تحصیلات دکتری کاسپینرخ، استاراکخان، روسیه
تاریخ دریافت: دی ۱۳۸۰ تاریخ پذیرش: آذر ۱۳۸۱

چکیده
این تحقیق طی سالهای ۱۳۷۷ تا ۱۳۷۶ روز تخمک ۴۶ عدد مولد ماده ازونبرون
ماهی شهید بهشتی انجام گرفت و بر اساس آن، مقاطع بانه در زیر میکروسکوپ بورسی
شکل گرفتند.
مطالعه بافتی تخمک ازونبرون در وضعیت طبیعی، وجود ۹ لايهه‌ای اصلی و قابل تنئیک
از یکدیگر نشان داد که ترتیب از خارج به داخل شامل: فولیکول (Follicle)،
زهای (External Zona Radiata)، شعاعی خارجی (Jelly Coat)، منطقه‌ی شعاعی خارجی
شعمائی داخلی (Fat Layer)، شعمائی داخلی (Internal Zona Radiata)، شعمائی (Nucleus)
و هسته (Nucleoli)، سیتوپلاسم (Cytoplasm)، پیکارخ مدروالی در تخمک‌ها
بویند. حضور شاخ‌های غلیظ‌تر ذرات (التروسیتهای) و مجرای میکروپیل در تخمک‌ها
حاکی از روند طبیعی رشد و نمو در آنها می‌باشد.

لغات کلیدی: ازونبرون، تخمک، بافت‌شناسی، دهی‌ای جرز
مقدمه

تاسماهیان از جمله ماهیان با ارزش اقتصادی می‌باشند که شناخت دقیقی از وضعیت طبیعی بافت‌شناسی تخمک‌ها جهت مطالعات فیزیولوژیک، حفظ ذخایر آنها از طریق تکثیر مصنوعی و نیز بهره‌گیری بهینه از خاوبار، امری ضروری می‌باشد.

روند رو به رشد آلودگی‌ها و تخربی اکو‌سمی‌های آبی بیوزه در دو دهه اخیر، محيط زیست آبزیان را به‌طور گسترده‌ای تغییرات شدید مواجه ساخته است. آلودگی‌های فراوان‌برد بزرگترین دریچه جهان (دریای خزر) توسط مواد نفتی و دیگر آلاینده‌ها که حاصل فعالیت‌های نسنجیده و آزمون‌دهنده بشر می‌باشد، وضعیت فیزیولوژیک و بیوشیمیایی تاسماهیان را دچار بحران‌های شدید و در برخی موارد غیرقابل بازگشت نموده است (روموتوف و شپر، 1993). مطالعات نشان داده‌اند که اعمال & Ruban، 1993) بنابراین با تغییر شرایط محیطی، آبزیان برای سازگاری با شرایط جدید بمنظر آکیمووا (1964)، تحقیقات بعمل آمده بی‌پناهی، شکل‌دار شدن، تغییر شکل ظاهری اندام‌ها و بافت‌های مختلف بدن از جمله تخمک‌ها (غشاء، سیتوپلاسم، هسته، هستهک و...) را سبب می‌گردد. تحقیقات بعمل این می‌داند که از دیگر نشانه‌های حیاتی از خود حساسیت نشان می‌دهند، بطوریکه با بررسی تغییرات پدیدار شده در این نشانه‌ها می‌توان پیش از تأثیر منفی آلاینده‌ها روی جمعیت آبزیان، آنها را از اسبی‌های احتمالی نجات داد. اما برای دستیابی به این می‌باید، شناخت دقیقی از وضعیت طبیعی تخمک که یکی از دولاسی معنی‌داری در تشخیص توان زاداواری ماهیان می‌باشد، توصیه‌های اهمیت است.

با در دست داشتن تصاویر و اطلاعات از اجزاء و لاپاهای مختلف باخته تخمک‌ها، به بهترین کاهش بیان‌گر آسیب‌داوری، فرسودگی و یا از بین رفتنی آنها باشد، قابل تشخیص خواهد بود. در سال‌های اخیر با پیشرفت علم بافت‌شناسی و دستگاه‌های عکس‌برداری، تصاویر شاسعی از بافت‌های مختلف بدن ماهیان بدست آمده است که بر اساس آن با قاطعیت می‌توان سلامت و یا عدم سلامت بافت‌ها را بیان داشت. اگرچه فیزیولوژی بافت‌های جنسی طی سال‌های پس از جنگ
دوم جهانی پایه گذاری شد، اما استفاده از تحقیق دقیق بافتی در علم بافتشناسی تنها در سالهای اخیر پیشرفت یافته است (آنتفو و همکاران، 1984). با توجه به جویان بودن دانش بافتشناسی ماهیان در ایران، تاکنون در زمینه برداشت تئوری درخت شاخی از وضعیت طبیعی تخمک ناسالمان، تحقیق صورت نگرفته است. پژوهش حاضر به خشکهای اصلی تخمک ازون برون را مورد مطالعه قرار داده است.

مواد و روش‌ها

تخمک‌هایی مورد آزمایش در این تحقیق از 46 عدد مولد ماده ازون برون که از صیدگاه‌های استان گیلان صید شده و برای تکثیر مصنوعی به مجتمع تکثیر و برورش ماهی شهید بهشتی سد سنگر شهرستان رشت انتقال یافته بودند، تهیه شده است.

تخمک‌ها طی سال‌های 1376 تا 1377 بوسیله سوقه از ناحیه دومین صفحه استخوانی شکمی مولدهای ماده به آرامی نمونه‌برداری گردیدند. پس از نمونه‌برداری، تخمک‌ها بالافصله در محلول تهیه کننده بیولئن قرار گرفتند و به آزمایشگاه بخش فیزیولوژی و پیوستهای انتی‌تیکی نشانده تحقیقات بین‌المللی ماهیان خاویاری انتقال داده شدند. پس از 48 ساعت، تخمک‌ها از محلول فیکس کننده بیولئن خارج شده، توسط الکل اتانال با درجات مختلف و کلروفن آبی‌گریز و شفاف شدند. پس از شفاف نمودن، تخمک‌ها بوسیله بارفایننش مذاب، پارافین و قالب‌گیری گردیدند (بهمنی و کاظمی، 1377). با استفاده از میکروتروم دورز Akhundov & Fedorov (1995) و Leitz (1977)، تهیه و برش‌های بافتی برخی از رنگ‌آمیزی شدند (H & E) و رنگ‌آمیزی شدند (H & E) نمونه‌های (Hung et al., 1990). بافت‌ها پس از رنگ‌آمیزی بوسیله میکروسکوپ نوری مورد مطالعه قرار گرفتند.

نتایج

براساس برسی و مطالعات انجام یافته بافت‌شناسی روی تخمک ازون برون‌های مولد در وضعیت طبیعی و در مرحله چهارم رسیدگی، وجود 9 لایه اصلی و قابل (Acipenser stellatus)
تفکیک به اثرات رسید. این لاشه‌ها از خارج به داخل عبارتند از: لاشه اپی‌تیلاس فولیکول (External Zona Radiata)، لاشه جلی‌پوش (Jelly Coat)، منطقه شعاعی خارجی (Follicle) و لاشه زلاده (Internal Zona Radiata)، لاشه چرخی (Fat Layer)، رنگدانه‌ها (Cytoplasm)، سیتوپلاسم (Nucleus)، هسته (Nucleoli) و پیرویک (Pigments) می‌باشند.

(شکل 1 و 2) حضور شاخه‌گیبوله‌های قرمز در لاشه اپی‌تیلاس فولیکول حاکی از فعالیت زیستی و طی روند طبیعی رشد و نمو تخمک‌ها در مرحله IV رسیدی چنین و تکمیل مرحله ویتلونژ است (شکل 1).

شکل 1: لاشه‌های مختلف غشای تخمک ازون برون: 1- فولیکول 2- اپی‌تیلاس 3- لاشه زلاده 4- منطقه شعاعی خارجی 5- منطقه شعاعی داخلی 6- لاشه چرخی 7- رنگدانه 8- سیتوپلاسم (H & E و X۴۲۵۰)
با این ترتیب ساختار بافت شناسی تخمدانها در ماهی آورونپون بعنوان یکی از مشخصات اساسی توسه سیستم تولید مثلی ابریان، قابل کاربرد در تشخیص مرحله رشدگی تاسماهیان و تعریف توانایی آنها در انجام تکثیر مصنوعی از طریق محاسبه موقعیت هسته زایشی (animal pole) در مقایسه با قطب حیوانی تخمدان (germinale vesicle).
از آنجا که باز بودن مجاری میکروپیل بعنوان یکی از مشخص‌های طبیعی رشد و سلامت تخمک‌ها در ماهیان مطرح می‌باشد، تصاوير بافتی حاصل نیز می‌باشد که مناسب یک مجاری میکروپیل در تخمک مولدین ازون برون است (شکل ۳).

شکل ۳: ساختار میکروپیل (محل ورود اسپرم) در غشای تخمک ماهی ازون برون: ۱- میکروپیل (H & E X۴۷۵) ۲- غشای تخمک ۳- سیتوپلاسم
بحث

نتایج حاصل از این پژوهش حاکی از وجود چهار لاشه به یویسته (ایپی تیلیال فولیکولی، لاشه زلهای، منطقه شعاعی خارجی و داخلی) و همچنین دو لاشه غیر یویسته (چربی و رگدانه‌ها) در اطراف سلول تخمک ماهی ازون برون (Acipenser stellatus) می‌باشند. بطوریکه این یافته‌ها مؤید (Acipenser gueldenstaedti) مطالعات Ginsburg و همکاران نیز در تخمک‌های تاسماهی روس است (Dettlaff et al., 1993). همچنین تحقیقات بعمل آمده توسط Spinaci و همکاران در سال 1997 ساختار بافت‌شناسی مشابهی را در تخمک‌های تاسماهی آدیدینیک نشان داده است. (Acipenser naccarii)

نتایج حاصل بیان می‌کند که اگرچه ممکن است برخی از مراحل تکاملی رشد در تخمک‌های ماهیان، واجد تفاوت باشد اما در مرحله‌ی چهارم رسیدگی جنسی روند تکامل رشد و حضور تخمک‌ها بعنوان شاخص تولیدمکمل قابل ارزیابی است. بطوریکه یافته‌های Williot و Brun در پرورش نیز مؤید این موضوع می‌باشد. البته مراحل اولیه تکامل غدد جنسی تاسماهیان ماده برونی (عمدتاً مرحله دوم رسیدگی جنسی) نیز از این قانون پیروی می‌نماید و بخش اعظم تخمک‌های مرحله دوم رسیدگی جنسی تشکیل می‌دهند (بهمنی و کاظمی، 1377).

بررسی ساختار میکروسکوپی تخمک‌های ماهیان ازون برون، علاوه بر ترسیم بی‌خشت‌نشانی سلول‌های تخمک، در تعیین کیفیت مولید نیز حائز اهمیت می‌باشد. بطوریکه مطالعات انجام شده نشان می‌دهد که تخمک‌ها بطور مستقیم به زمان تخم‌گذاری وابسته بوده، رشد مواد زردیده و اندازه قطر تخمک، نشانه کیفیت بالا و تجمیع قطرات چربی نشانه کیفیت پایین تخمک است. همچنین تراکم رگدانه‌ها نیز از عوامل مؤثر روزی کیفیت و باروری سلول تخم خواهند بود (بهمنی، 1378).

پراکنش مجاری میکروبی در تخمک تاسماهیان از نوع خاصی برخوردار است. بطوریکه می‌توان آن را به عنوان یکی از مهم‌ترین عوامل در ایجاد پیدایی پیل اسپرمی برشرمی در حالی در سال 1377 میانگین تعداد مجاری میکروبی را در مولیدین ماده ازون برون صید شده از سواحل
مطالعه بافت-شناسی الیوهای مختلف تخم ماهی ازون درون
کاظمی و مکرانی

جنوبی دریای خزر ۴۸ عدد (حدود ۲ و حداکثر ۱۲ عدد) و میانگین این مجاری در مولدین ازون درون صید شده از رودخانه سفیدرود ۱۲ عدد گزارش نموده است.

بنابراین برکناری مجاری میکروبیل در غشا سلول تخمک تاسماهانی و کیفیت آن نیز از دیگر مشخصه‌های زیستی تخمک محصول می‌شود، بطوریکه در شرایط استرس، امکان پذیری

شبد مجاری میکروبیل و بروز ناهنجاری در روند تکثیر بروز خواهد نمود.

ساخت و مطالعه ساختار بافتی تخمک تاسماهانی دارای اهمیت بسزایی در تشخیص حالات سلامت، بیماری و یا وجود شرایط نامناسب نگهداری آنها می‌باشد. از عوامل مؤثر بر کیفیت تخمک می‌توان به آریدیسم، تغییرات فیزیولوژیک و زننکی، شرایط نگهداری مولدین ماده در کارگاه‌های تکثیر و برورش و... اشاره نمود که جهت کنترل دقتی روند تکثیر و کیفیت تخمک مولدین، آگاهی از ساختار بافتی و عوامل مؤثر بر آن حاصل اهمیت است.

توجه و قدردانی

از استاد فرمانه و دانشمند بزرگ علم بافت-شناسی، شادی‌دان دکتر آنانلیوی آگنیویچ رومانوف که از نطقه نظرات ارزشی ایشان در طی انجام این تحقیق برخوردار بودیم، توجه و قدردانی می‌نماییم. از آقای مهندس صدرایی به چه جهت ترجمه مکالمات و منابع روسی، همچنین از کلیه همکارانی که در مجمع تکثیر و برورش ماهیان خاویاری شهید بهشتی و استیتو تحصیلات بین المللی ماهیان خاویاری بوزه آقای سهراب درمانی از بخش فیزیولوژی و بیوشیمی که به نحوی ما را در اجرای پروژه نیروی نموده‌اند، قدردانی می‌گردد.

منابع

آلتنوف، پ.و.؛ رومانوف، آ.آ.و داکوبیل، آپ.، ۱۹۸۶. روشهای مطالعه غذای جنسی گونه‌های مختلف تاسماهانی آنتیتیتو تکنولوژی اقتصاد ماهی استرایان آسیایی، روسیه.

ترجمه: سید هادی صدرایی، رضوان الله کاظمی و محمود بهمنی. آنتیتیتو تحصیلات بین المللی ماهیان خاویاری، ۶ صفحه.

www.SID.ir
کاظمی، م. و کاظمی، ر. 1377. مطالعه بافت‌شناسی غدد جنسی در تاسماهای جوان پرورشی. مجله علمی شیلات ایران، سال هفتم، شماره ۳، بهار ۱۳۷۷، صفحات ۱ تا ۱۵.

تروسوف، و.ز. 1964. برخی از ویژگی‌های رسیدگی غدد جنسی در تاسماهی روس. انسپیتو تحقيقات شیلاتی و اقیانوس شناسی ویره، مسکو. ترجمه: سید هادی صدرآبادی، رضوان الله کاظمی و محمود بهمنی. انسپیتو تحقيقات بين المللی ماهیان خاویاری، ۱۰ صفحه.

جلایان، ع. ۱۳۷۷. بررسی تعداد و وضعیت میکروایل در تخم ناسماهیان سواحل جنوبی دریای خزر. پایان‌نامه کارشناسی ارشد، دانشگاه مهندسی و علوم دریایی دانشگاه تربیت مدرس. ۲۲ صفحه.

