بررسی مولکولی جمعیت ماهی در آبهای Barbus capito

حوضه جنوبی دریای خزر بروش

فرامرز لالونی (۱) سهاراب رضویان (۲) و محمد پورکاظمی (۳)

laloei@yahoo.com

۱- بخش بیوتکنولوژی، پژوهشکده اکولوژی دریای خزر، ساری، صندوق پستی: ۹۶۱
۲- پژوهشگران قلمبیه‌سازی، تهران، صندوق پستی: ۱۴۵۸-۶۲۹۸
۳- استینتو تحقیقات میان المللی ماهیان خاویاری، رشت، صندوق پستی: ۴۲۴۲-۳۲۴۲-۳۲۴۲

تاریخ دریافت: خرداد ۱۳۸۸
تاریخ پذیرش: دی ۱۳۸۱

چکیده
در این برسی ۵۰ عدد ماهی از گونه Barbus capito از دریا و رودخانه‌های استان مازندران و گیلان جمع‌آوری گردیده. DNA استخراج شد. بر اساس توافل تکنوئی‌دهای ژن سیتوکروم b ماهی Barbus capito با ۴۰ نمونه ماهی و با برنامه مناسب انجام شد که جفت پارامتر طراحی گردیده و PCR در نتیجه آن محصول ۳۴۴bp RFLP (۲) از آنزیمی‌های RFLP PCR از هم‌جزیی‌های استفاده شد. الگوهای هضم آنزیمی با HincII, Ddel, HinfI در هریمن حاوی جفت های ژن سیتوکروم b می‌تواند تفاوتی در ماهی Barbus capito اقتباسی را دهد. در عمل مشاهده نماد و جمعیت تقابل DNA لفوت کلیدی: Barbus capito, PCR, RFLP, mlDNA

1- Polymerase Chain Reaction
2- Restriction Fragment length polymorphism

لپاک، تکنوئی‌دهای ژن سیتوکروم b دریای خزر، ایران
مقدمه

عملیات مدیریت صحیح بر ذخایر آبیاری و توسعه ابری پروری زمانی با موثریت همراه خواهد بود که ذخایر زنی گونه‌های بومی، مورد مطالعه قرار گرفته باشند. اولین گام در این زمینه، تشخیص صحیح گونه‌ها، جمعیت‌ها و یا نژادها می‌باشد که این امر هم از نظر مدیریت شیلاتی و هم برای برنامه حفاظت از گونه‌ها حائز اهمیت است.

سن ماهیان از ماهیان اقتصادی ایران می‌باشد که از اهمیت خاصی برخوردار هستند. از این ماهی‌ها تاکنون 80 گونه در جهان شناسایی شده است (Howes, 1987) که 5 گونه در ایران یافت می‌شود (رامین، 1378).

گونه در اندام‌های متوسط و سیب گرده در دریاچه خزر و تالاب انزلی و رودخانه‌ها صید می‌شود. بعنوان مثال صید آن در سال 1377 در دریا و تالاب انزلی در حدود 30 تن گزارش شده است (رامین، 1378) و نمودهایی با طول 80 سانتی‌متر در رودخانه سردابرود صید شده است (عبدلی، 1373).

مواد زنیکی اعماک از کروموزوم‌های خارج از کروموزوم‌های معرض تغییرات و جهش‌های دائمی قرار دارد و عوامل فیزیکی و شیمیایی از درون سلول و یا بیرون از ارگانیسم در هنگام همانتسازی سبب جابجایی در ترتیب نوکلئوتیدهای DNA می‌شوند. زنوم میتوکندری بعنوان Yik نشانگر زنیکی بطور گسترده‌ای برای مطالعات زنیکی بکار می‌رود (Hynes et al., 1996) (Ovenden, 1990).

Resvani Golkolaei (1997) در مطالعات مختلف در مورد ماهیان حدود 500 146 500 47 جفت با می‌باشد mtDNA اندازه‌گیری کرده‌است. در گونه‌های جانوری، زنوم میتوکندری دارای 37 ژن می‌باشد که عبارتند از 13 ژن رمز دهنده پروتئین، 22 ژن tRNA و یک ناحیه بعنوان آغاز همانتسازی یا D-loop (Resvani Golkolaei, 1997) در مطالعات مختلف در مورد ماهیان حدود mtDNA تابث شده است. هر چند که زنوم میتوکندری جانوری اغلب می‌باشد مادری دارد (Avise et al., 1989; Gyllensten et al., 1991)
و موش گزارش شده است (1991)؛ Gyllensten et al., 1990)

باتوجه به اینکه میوتکوندروی مشابه مادرا و نوترکیبی در آن انجام نمی‌گیرد، لذا این خاصیت باعث بروز اختلاف‌های زننیکی بیشتر در زننی میوتکوندروی نسبت به زننی هسته‌ای شده است. از اینرو نشانگر خوبی برای تشخیص گروه‌هایی که برای ۱۰۰۰ یا ۱۰۰۰ سال از هم جدا بوده‌اند، مهره داران عالی تقریباً ۵ mtDNA سرعت گاجینی نوکلوتوپیدها در (Berrebi, 1996) می‌باشد.

تا ۱۰ برابر بیشتر از زننی هسته‌ای است که درصد تغییر به ازار هر میلیون سال می‌باشد. سرعت تغییرات نوکلوتوپید در نواحی مختلف زننی میوتکوندروی متفاوت است. زننی‌های tRNA نسبت به سایر قسمت‌ها محفوظ‌تر و ناحیه D-loop منطقه‌ای است که بیشترین تغییر را دارا می‌باشد. این ناحیه تنوع کافی با قابلیت تغییر زیاد را در سطح جمعیت نشان می‌دهد. (Beckenbach, 1991)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک هستند. (Zardoya & Myer, 1996؛ Briolay et al., 1998)

شناسایی ارتباطات فیلوژنی با گونه‌هایی است که از نظر مورفولوژی خیلی به نزدیک H. capito
مواد و روش‌ها

در این برسی تعداد ۳۰ نمونه گونه Brachysomus capito از استان مازندران (۱۵ نمونه از دریا و ۱۵ نمونه از دریاچه رودخانه‌های ترن، شیرود و تنگاب) و ۳۰ نمونه از استان گیلان (۱۵ نمونه از دریاچه رودخانه حوض و ۸ نمونه از سفیدرود) جمع آوری گردید. جهت استخراج مقدار ۵۰ میلی‌گرم از باله ماهی در الکل مطلق تشییب و به آزمایشگاه مستقل شده است.

(Pourkazemi, 1996 ; Rezvani Gilkolaei, 1997
1 ; Fevolden & Pogson, 1997
2) استحکام DNA باروش فنل-کلروفورم-انوپانسیال، قرار گرفتن (بهتر است نمونه‌ها به مدت یک شب در این حالت بمانند). سپس مقدار ۵۰ μl فنل به آن اضافه شده و پس از مخلوط کردن، به مدت ۳۰ تا ۶۰ دقیقه در دمای اتاق روی همزن قرار گرفت. پس از این مدت نمونه‌ها در ۱۲۰۰ دور در دقیقه به مدت ۵ دقیقه سانتیفروژ شدند. از دولایه تشکیل شده، لایه روغنی به دقت جدا گردید و در یک لوله دیگر ریخته شد. سپس مقدار ۵۰ μl کلروفورم به آن اضافه گردید و در ۱۳۰۰ rpm مقدار ۴۰ μl استانتیفرژ در ۸۰ μl کل، محلول فتو به روی جدا و مقدار ۱۵ دقیقه سانتیفرژ و سپس الکل روغنی یک دور ریخته و سپس تشکیل شده که همان است با الکل ۷۰ درجه تستشو داده شد و برای تبخیر کامل الکل، نمونه در انتگونیوتور ۳۷ درجه سانتی‌گراد قرار داد شد. به رسوی مقدار ۵ آب مقطع اضافه شد تا دمای DNA برسی کمیت و کیفیت استحکام شده از روش الکتروفورز افقی با زل آگارز ۱ درصد و

۱ - Sodium Chloride, Tris, EDTA
۲ - Sodium Dodecyl Sulfate
رنگ آمیزی اتیوکروم برای آن و نیز اشعه uv استفاده گردید و غلظت آن با استفاده از
اسپکتروفوتومتری با طول موج 260 نانومتر محاسبه گردید.
کمیت و کیفیت محصول PCR با الکترورفورز زل آگارز 1 درصد و استفاده از مارکر
(BDNA/Hind III) بررسی شد.

برای جداسازی و تکثیر زن مورد نظر، مولکول mtDNA فرد گرفت که در انجام آن
PCRs مورد استفاده قرار می‌گرفت. از جفت پرایمرها سنس ماهی استفاده شده است.

توالی پرایمرها سنس ماهی:

برایمی‌ها از روز تولید نوکلئوتیدهای زن سیتوکروم b زنوم میتوکاندرو ماهی
و با B. capito استفاده از نرم‌افزار DNAsis طراحی گردید. با استفاده از توالی فوق، 5 یک از پرایمرها با شماره
9 و 5 پرایمر دیگر با شماره 10 زن مورد نظر بوده است. تعداد نوکلئوتیدهای هر یک از
پرایمرها 18 نوکلئوتید بوده که ترتیب آن شامل:

\[
C T A C G A A A A A A C A C C C C - 3' \\
A G G G C T G A T G C A A T T T G T - 3'
\]

با استفاده از این پرایمر محصول PCR قابل پیش بینی 1002 bp می‌باشد.

جهت انجام PCR، ابتدا محلول دیل آماده گردید:

\[
\begin{align*}
\text{DNA} & \quad 50-100 ng \\
\text{Taq DNA Polymerase} & \quad 0.5 \mu l \\
\text{Buffer PCR} & \quad 5 \mu l \\
MgCL_2 & \quad 3 \mu l \\
dNTP & \quad 0.5 \mu l \\
\text{Primer(1)} & \quad 15 \mu l \\
\text{primer(2)} & \quad 15 \mu l \\
\text{d H}_2\text{O} & \quad 33-37 \mu l \\
\end{align*}
\]

* dNTP (dATP - dGTP - dTTP - dCTP)
پرسی مولکولی جمعیت ماهی در...

برای انجام آنالیز RFLP از آنزیم‌های Taq I و Rsal, Hae III با فرآیند تاکرتوپای بو آب مقطع به حجم 25 μl رسانده و به مدت 2 ساعت درون بن ماری 37 درجه سانتی‌گراد قرار گرفت.

محصولات PCR هضم شده با استفاده از الکتروفورز عمودی با زل پلی اکریلیامید و رنگ آمیزی نیترات نقره همراه با مارکر موردن بررسی قرار گرفت.

نتایج

استخراج DNA با روش فنل کلروفورم به خوبی انجام شده است. با استفاده از پراپایمرهای سنترن PCR تکنیک یافت. استفاده از پراپایمر اسپس ماهی متارک به بروز باند DNA در تمام 60 نمونه مورد نظر گردید که اندازه باند این نمونه‌ها مشابه بوده و در حد 165 bp بوده است. برای هضم آنزیمی 165 جفت با محصول PCR نمونه‌ها، تعادل 10 انزیم مورد استفاده Rsal, DdeI, HpaII, Hinc II, Hinfl, Aval, Taq I, Hae III, Sau3AI, Aval شامل قرار گرفت و الگوهای الکتروفورزی با زل پلی اکریل امید به دست آمد. شکل‌های 1 و 2 نمونه‌های از
Jakob 1: تعداد و طول قطعات ایجاد شده بر اثر هضم آنزیمی محصولات

<table>
<thead>
<tr>
<th>نام آنزیم</th>
<th>تعداد قطعات</th>
<th>طول قطعات (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ava I</td>
<td>3</td>
<td>288 292 282</td>
</tr>
<tr>
<td>Ava II</td>
<td>3</td>
<td>242 402 317</td>
</tr>
<tr>
<td>Dde I</td>
<td>7</td>
<td>112 270 272 134 258 176</td>
</tr>
<tr>
<td>Hae III</td>
<td>4</td>
<td>134 159 105 664</td>
</tr>
<tr>
<td>Hinc II</td>
<td>2</td>
<td>47 1015</td>
</tr>
<tr>
<td>Hinf I</td>
<td>3</td>
<td>480 472 540</td>
</tr>
<tr>
<td>Hpa II</td>
<td>2</td>
<td>132 930</td>
</tr>
<tr>
<td>Rsa I</td>
<td>4</td>
<td>386 63 441 177</td>
</tr>
<tr>
<td>Sau3AI</td>
<td>4</td>
<td>236 616 59</td>
</tr>
<tr>
<td>Taq I</td>
<td>2</td>
<td>505 457</td>
</tr>
</tbody>
</table>

*این قطعات بعلت کوچکی در برخی موارد مشاهده نشدند.

قابل ذکر است که جمع اندازه‌های تمام آنزیم‌ها برای هر آنزیم ۱۰۶۲ bp می‌باشد.

ایجاد شده برای تمام آنزیم‌ها و برای تمام DNA نمونه‌های مورد استفاده هم انداده بوده و بیانگر این است که زن سیتوکروم b مستقر روی DNA با این آنزیم‌ها، تنوع زنتیکی و یا یلی مورفیسم بین افراد داخل یک منطقه با افراد بین مراکز مختلف را نشان نمی‌دهد. لذا انجام هر گونه آنالیز آماری برای محاسبه و رسم درخت خویشاوندی، بین افراد یا گروه‌ها با بهره‌گیری Nuclotide diversity Haplotype diversity از نرم‌افزارهای اختصاصی برای این منظور مانند برنامه‌های Phylip و Reup امکان‌پذیر نیست.
شکل ۱: الگوهای هضمی محصول PCR با آنزیم Ava II بر روی زل Brabus capito پیش آمیزی. ستوئن‌های ۱ تا ۱۰ نمونه‌های رودخانه. ستوئن ۵: مارکرو ستوئن‌های ۶ تا ۱۰ نمونه‌های دریا

شکل ۲: الگوهای هضمی محصول PCR با آنزیم Hpa II بر روی زل Brabus capito پیش آمیزی. ستوئن‌های ۱ تا ۵: نمونه‌های رودخانه. ستوئن ۶: مارکرو ستوئن‌های ۷ تا ۱۱ نمونه‌های دریا
بحث

نحوی‌های از زنوم میتوکندری‌هایی که مورد مطالعه قرار گرفته، زن سیتروکروم b بوده که هر یک از آن‌ها تنها یک نوع نوکلئوزی‌ای برای تمام نمونه‌ها را نشان داده و تنوع نوکلئوتیدی و هابیلولی‌ی مشاهده نگردید. عدم مشاهده یکی مورفیسم در نمونه‌های جمعی اوری شده از چند جهت قابل تفسیر می‌باشد. اول اینکه موانع فیزیکی رودخانه‌ها و دریاچه خزر و یا موانع زیستی وجود نداشته است که موجب ایجاد تفاوت‌های معنی‌داری بین افراد گونه در مناطق مختلف نمونه‌برداری شود و در واقع گروه‌ها از نظر زنی‌کی هموتون و یکنواخت هستند و تفاوتی بین آنها وجود ندارد. البته استفاده از زنوهای دیگر mtDNA و یا استفاده از تعداد نمونه‌های بیشتر mtDNA و یا تعداد زنی‌های متعددتری می‌تواند نتیجه دقیق‌تر و شفاف‌تری را نشان دهد. دوم اینکه احتمالاً زن سیتروکروم b زن مناسبی برای بررسی جمعیت نسب ماهیان بنویه و نمی‌تواند بخوبی اختلاف بین جمعیت‌ها را نشان دهد. با توجه به اینکه متوسط تعداد نوکلئوتیدی‌های که در این بررسی مورد مطالعه قرار گرفته است، حدود 1126 پپتید تا 95 درصد از زن سیتروکروم b و یا حدود 1 درصد از زنوم میتوکندری‌ها در این تحقیق مورد بررسی قرار گرفته است. به همین منظور جهت اطمینان می‌پایست ناحیه دوگری از زنوم میتوکندری مثل ناحیه D-loop و ناحیه ND5/6 مورد مطالعه قرار گیرد.

در سال 1996 مطرح کرده بطور کلی احتمالاً در ارگانیزم‌های دریایی تابع Ovenden حیلی کم است و عواملی مانند اثر شرایط نامناسب و محدود و یا مورگ و مورگ‌ها و نامرئی‌ها mtDNA که به دلایل ویژه اتفاق می‌افتد. یکی از عوامل بررسی اختلافات نوکلئوتیدی می‌باشد. اغلب گزارشات مربوط به آنالیز mtDNA (Pourkazemi, 1996) می‌گوید که در نمونه‌های ماهیان، تنوع هابیلولی‌ی کمی را نشان می‌دهد و در واقع تعداد هابیلولی‌هایی که وجود دارد، مشتقات جهش پافتنی می‌باشند.

(Billington & Hebert, 1991)

استفاده از مولکول برای تمايز جمعیت‌های گونه‌های ماهیان خاویاری دریای خزر

برای تمايز جمعیت‌های گونه‌های ماهیان خاویاری دریای خزر استفاده از مولکول mtDNA و یا گونه‌های میگوی (Rezvani Gilkolaei & Skibinski, 1999; Rezvani Gilkolaei, 2000) خنجی فارس و دریای عمان (رضوانی گیل کلابی و همکاران، 2005) دارای نتایج مناسب و قابل قبولی بوده است.

Doadrio و Zardoya در سال 1999 با استفاده از توالی زن سیتروکروم b ارتباط فیلوژنی 52 برای گونه‌های ماهیان ایرانی بررسی نمودند و ارتباط فیلوژنی این ماهیان مشخص شده است.
آنها کیبور ماهیان را به دو گروه اصلی شامل کپرون و ماهیان وضع ماهیان و گروه دوم شامل جنسها و گونه‌های:

در این تحقیق اطلاعات توالی از سیتروکروم b برای نشان دادن اختلاف بین اعداد کپرون ماهیان یونان، دانوب و جنوب مدیترانه مناسب بوده ولی توالی نوکلوئوتیدهای زن سیتروکروم b جهت بررسی ارتباط فیلوژنی و ریشه کپرون ماهیان اروپا مناسب نبوده و برای این منظور توالی زننهای دیگر از میتوکندری و زننهای هسته لازم بود (Zardoya & Doadrio, 1999).

زننهای 31 تا 430 از گونه Berrebi PCR-RFLP و آلزایمر 31 گونه از بربوس ماهیان شمال مدیترانه را مطالعه و ارتباط بین گونه‌های مختلف را بررسی نمود. قابل ذکر است که گونه در تحقیق فوق مورد بررسی قرار گرفته است.

ب. capito

<table>
<thead>
<tr>
<th>PCR محصول</th>
<th>1042 bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ava I</td>
<td>288 392 382</td>
</tr>
<tr>
<td>Ava II</td>
<td>343 402 377</td>
</tr>
<tr>
<td>Dde I</td>
<td>112 31 20 72 144 258 176</td>
</tr>
<tr>
<td>Hae III</td>
<td>114 656</td>
</tr>
<tr>
<td>Hinc II</td>
<td>47 1016</td>
</tr>
<tr>
<td>Hinf I</td>
<td>480 42 540</td>
</tr>
<tr>
<td>Hpa II</td>
<td>132 930</td>
</tr>
<tr>
<td>Rsa I</td>
<td>384 43 441 152 172</td>
</tr>
<tr>
<td>Sau 3AI</td>
<td>226 511 156 59</td>
</tr>
<tr>
<td>Taq I</td>
<td>605 257</td>
</tr>
</tbody>
</table>

شکل 3: شکل شماتیک تعداد و طول قطعات ایجاد شده بر روی محصول ماهی براساس PCR آنزیم‌های محدود کننده

B. capito توسط
از جنب اقای دکتر بهرام کاظمی استاد محترم دانشکده علوم پزشکی دانشگاه شهید بهشتی که با راهنمایی‌های خود و با در اختیار گذاشتن امکانات و تجهیزات آزمایشگاهی موجب انجام این تحقیق را فراهم نمودند کمال تشکر بعمل می‌آید. همچنین از آقای محمد علی افرازی که در نمونه‌برداری ماهیان همکاری نموده‌اند تشکر می‌گردد.

منابع

راویی، م. ۱۳۸۷. شناسایی و تعبیه‌برداری باربوس ماهیان ایران. پایان‌نامه دکتری دانشگاه آزاد اسلامی واحد علوم و تحقیقات. ۱۷۰ صفحه.

رضوانی گیل کلاته‌ی، س.؛ سید علی بابایی، س. ع. و بورکاظمی، م. ۱۳۸۵. بررسی مولکولی جمعیت میگوی برفی و شیر از دریای عمان و خلیج فارس با استفاده از زنی‌تکنیک اکسیداس I بروش RFLP مجهل علمی شیلات ایران، شماره ۲، سال دهم، تابستان ۱۳۸۵، صفحات: ۱۵ تا ۳۰.

Billington, N. and Hebert, P.D.N., 1991. Mitocondrial DNA diversity in fishes and

Pourkazemi, M., 1996. Molecular and biochemical genetic analysis of sturgeon stock from the south Caspian Sea. School of Biological Scince, University of Wales. 258 P.

Rezvani Gilkolaei, S., 1997. Molecular population genetic studies of sturgeon species in the south Caspian Sea. School of Biological Sciences, University of Wales. 196 P.

Brabus capito
