مطالعه رشد تخمک در ماهی گوزه باریک

Liza saliens Risso

مهدي يوسفيان\(^1\), شهرابانو عربان\(^2\), فرزانه فرخی\(^3\) و حسین عصاییان\(^4\)

3 و 4 - موسسه تحقیقات شیلات ایران. پژوهشکده اکولوژی دریای خزر، ساری. صندوق پستی: 961
2 دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تبریز. صندوق پستی: 181-185

تاريخ دریافت: 1379
تاريخ پذیرش: 1381

خلاصه

در این پژوهش، مراحل مختلف تکامل نخجوان ماهی گوزه باریک (Liza saliens) از نظر بیش از یکصد و پنجاه عدد ماهی کنال از پرهای صیدی در سواحل جنوبی دریای خزر تهیه و تکامل و رشد گذاشته می‌شوند. در مرحله نخست، تخم‌ها کوچک و بی‌رنگ می‌باشند. در مرحله دوم، رشد محسوسی در انبوه‌ها دیده می‌شود. در مرحله سوم، تعداد تخم‌ها بیشتر می‌شود. در مرحله چهارم، تخم‌ها به چشم غیرصلح قابل رؤیت هستند. تخم‌های رشد شسته‌های نموده و زرده‌سازی نیز افزایش می‌یابد. این دوره هسته به سمت قطب جانوری مهاجرت می‌کند.

Liza saliens

لغات کلیدی: رشد تخمک، کنال گوزه باریک،
مقدمه

موفقیت تولید مثلی یکی از مهم‌ترین و قابلی است که می‌تواند سازگاری فرد، گونه و یا جمعیت را در مسیر نکامل، میسر سازد. اطلاعات فراوانی در اختیار کست که حاکی از گاه‌ش سیم ماهی کالف در سال‌ها اخیر در دریای خزر می‌باشد. تغییر شرایط اکولوژیک و صید غیرمحترم از دلایل این امر محسوب می‌شود.

گام‌تونز جنس ماده روشی چنین که تخمها با اتوسیستهای یک موجود زنده گونه تکامل بافته و به بلوغ جنسی می‌رسند، اخیراً تلاش‌هایی در جهت ایجاد بتوان تمام با قسمتی از گام‌تونز را در گونه‌های مثل ماهی آزاد، خامه ماهی و کاله بوسیلیه هورمون تراپی دستگاهی کرد انجام شده است (فرخ زاد، ۱۳۷۶). برای شناسایی مراحل مختلف گام‌تونز، بايد وضعیت و بافت شناسی تخمدان مورد بررسی قرار گیرد. ساختار عمومی تخمدان در ماهیان استخوانی به نظر می‌ساده و مشابه می‌آید، اما با کمی دقت در شکل و بافت شناسی آنها اختلافاتی را می‌توان پدیده رامانن (Ramanathan, 1982). تخمدان ماهیان تنوع شکلی بسیار زیادی داشته و عبارت است از یکه توخالی یا یک جسم تورب با یک دو نه که بوسیلیه بند تخمدانی عروق دار در حفره بدن آویزان است (Hoar & Randel, 1983).

بافت تخمدان از جنح قسمت اصلی شامل سلولهای تخم، لایه زاینده، بافت پیوندی و سلولهای دامپست (Stem cell) و عروق تشکیل شده است. سلولهای تخم یا اووسیسته شامل سیتپلاسم، هسته و غشاء سلولی و در مراحل پیشرفته دارای نوده زردک از پیش ایزد (شکری بووسیجن، ۱۳۷۴).

M. chelo در سال ۱۹۷۷ بوسیلیه تولید مثل سه گونه کالف شامل Brusle و Brusle Vilenskaya و Apkin را بررسی نمودند. همچنین M. capito و M. cephalus در سال ۱۹۷۸ اختصاصات جنسی و وضعیت گناده‌ای کالف سفالوس در دریای سیاه از مهاجرت تخم‌زی از مطالعه ناموده و متعاقب ان تحقیقاتی در زمینه بافت شناسی گونه نیز در سال انجام گرفت (سید، ۱۹۸۲ ; Valter, 1980 ; Kulikova & Loshakova, 1982).
RAO و JOSEPH کمال سفالنژور توصیه نمودند که در سال 1993 مطالعات دیگری روی تغییرات بافتشناسی و بیوشیمیایی طی اسیرمانتونز صورت گرفت. شعبانی بور در سال 1365 نیز مطالعات بافتشناسی روی تخم‌انهای کمال اورانتسوس در سواحل دریای خزر را به انجام رساند. ولی روز گذشته کمال پوزه باریک دریای خزر جنوبی مطالعاتی انجام نگرفته است. بنابراین بررسی حاضر در پاره جنس ماده کمال پوزه باریک که از سواحل جنوبی دریای خزر صید می‌شود می‌تواند اطلاعات بیشتری در رابطه با روند اوپوزیس و زمان تخم‌بری این ماهی در انتخاب قرار دهد.

مواد و روش‌ها

در مدت یکسال (مرداد ماه 1377 تا شهریور ماه 1378) بیش از 150 عدد ماهی کمال پوزه باریک (M. saliens) بطور انتخاب آنفافی در هر ماه از بردگان های صیدی صیادان محلی منطقه محمود آباد تا نواحی دریای خزر (مانندرود) نمونه‌برداری شدند. مشخصات بیومتریک شامل وزن، طول کل و طول جنگلی آنها ثبت گردید. نمونه‌هایی از فلسفه به‌ای پایل بانه سینه‌ای جهت تعیین سن به‌داشت شد. بنابراین نمونه‌ها به آزمایشگاه بلافاصله تخم‌بری شده و با دقت وزن گردید. تخم‌انهایی کوچکی بصورت کامل و نمونه‌هایی از قسمت ابتدا، میانی و انتهایی تخم‌انهایی بزرگ در محلول برونش میثیت شد و روز بعد آب‌گیری بافت میانی و نهایی تخم‌انهایی و بلوک‌های گردید. از مقطع بافتی با ضخامت دمیکرونشر گرفته شد و طی 17 مرحله با محلول همانتوکسیلین و آنیون رنگ آمیزی گردید. به دلیل مشابهت رسمی بودن تخم‌کشها در نواحی مختلف تخم‌بری و نیز ارائه گرمایی یکنواخت نهایی همگنی ضریب شاخش رسیدگی گردید. (GSI) (gonado somatic index)
در بررسی مشاهدات ماکروسکوپی، شکل تخمدان از لحاظ رنگ، ضخامت دیواره تخمدان، اندازه تخمدان و مراحل نمو تخمک در آن و وضعیت رگه‌های خونی در سطح بیرونوی و داخلی تخمدان لحاظ گردید.

در بررسی مشاهدات میکروسکوپی به تفاوت‌های آشکار در وضعیت هسته، هسته، سیتوپلاسم و غشاء تخمک در مراحل مختلف نمو اووسیتها پرداخته شد. در پژوهش حاضر با توجه به کارهای انجام شده در مورد بافت‌شناسی تخمدان گونه مذکور و نتایج حاصله از بررسی‌های میکروسکوپی، برای رنگ‌بندی نمو تخمدان 6 مرحله‌ای در نظر گرفته شد. این رنگ‌بندی در گونه کفال درایی خزر (تعیین (M. auratus) (شعبة پور، 1374) قبلاً صورت گرفته است. این مراحل عبارتند از:

1- تامالگ یا اووسیتها اولیه 2- رشد اولیه (وزیکول های زرد) 3- نمیمه رشد یافته (گلبول زرده) 4- بالغ 5- بالغ کامل 6- تخمرزی کرده

نتایج
کفال پوزه باریک دارای یک چند تخمدان از نوع کیسه‌دار است که به یک توسط یک مجرای تخمدان به بیرونو راه می‌یابند. معمولاً یکی از تخمدانها بزرگتر از دیگری بوده ولی از لحاظ مراحل رسیدگی تفاوتی بین تخمدانها مشاهده نشد. مراحل رشد تخمدان به صورت ماکروسکوپی و میکروسکوپی به شرح ذیل است:

- مشاهدات ماکروسکوپی (شکل شناسی): مراحل یک (تامالگ):

در مرحله یک تخمدان بصورت باریک و شفاف با دیواره نازک می‌باشد. در مرحله یک گنادن نر و ماده تقریباً یک شکل است و لذا تغییرات جنسیت در این مرحله مشکل می‌باشد. حداقل طول آن به 0/5 سانتیمتر می‌رسد (شکل 1-الف).

www.SID.ir
مرحله دو (رشد اولیه):
تخمیدان تقریباً صورتی یا قرمز رنگ است. كمی بزرگتر شده، قطر آن افزایش یافته، رگهای خونی مشخص تر شده و نیمه فعال است. طول آن به 6/5 سانتیمتر می‌رسد.
(شکل 1: ألف و ب).

مرحله سه (نیمه رشد یافته):
رنگ تخمیدان روشتر شده و تقریباً زرد رنگ می‌شود. دیواره تخمیدان مشخص، نازک و انساعبات رگهای خونی بخوی دیده می‌شود. با شکاف دیواره تخمیدان، تخمکهای بهم جسبیده و دانه‌های تخمک با دست قابل حس و تشخیص است. حداقل طول تخمیدان به 6/5 سانتیمتر می‌رسد (شکل 1-ج).

مرحله چهار (بالغ):
در مرحله چهار تخمیدان بزرگ بوده و دارای رنگ زرد که ریزی است. در این مرحله رگهای خونی در سطح بیرونی و داخلی تخمیدان پخش شده و تخمک‌ها نیز کاملاً رشد یافته و با چشم غیر مسلم دیده می‌شوند. حداقل طول تخمیدان به 9/5 سانتیمتر می‌رسد (شکل 1-د).
مطالعه رشد تخمک در ماسی کفالت پوزه باریک

بیشبانی و ممکران

Archive of SID

مرحله پنجم (تخم‌بری):
این مرحله تخم‌بری است. تخم‌ها سیال شده و برای یافتن مجزا از مجرای تناسلی خارج شده، تخم‌دان دارای رنگ قهوه‌ای و فضای شکم را پر کرده است. دیواره تخم‌دان خیلی نازک و شفاف است، تخم‌ها کاملاً قابل هستند. طول تخم‌دان تا ۱۴ سانتی‌متر نیز مشاهده شده است.

مرحله ششم (تخم ریخته):
مرحله پس از تخم‌بری است. تخم‌دان چروک‌یده و موجک شده و به رنگ قرمز در می‌آید و دیواره آن ضخیم می‌گردد.

مراحل رشد از نظر میکروسکوپی (بافت مناسب):

نتایج میکروسکوپی نشان داد که مراحل مختلف نمو اوسیتیا دارای تفاوت آشکاری هستند.

براساس پارامترهای نظیر اندازه تخم و هسته، وسعت سیتوپلاسم، میزان تراکم زرد، تعداد هسته‌ها و ناپدید شدن هسته و همچنین مهاجرت آن به سمت قطب جانوری، به مراحل رشد گزینی شد. مرحله پس از تخم‌بری (و یا عدم آن) و در نتیجه تحلیل رفت و یا جذب تخمک، مرحله ۶ نامیده شد. بر پایه مشاهدات مذكور، برای هر مرحله و پژوهش‌های زیبرشناسی گردد.

مرحله یک (نابالغ):

در این مرحله اووسیتیا نابالغ بوده و در (Ovigerous خوردارگی‌های تخم‌دانی به شکل کریو، بیضی و یا چند lamellae) وجه مشاهده می‌شود. هسته بسیار بزرگ و قسمت اعظم تخم‌ک را اشغال می‌کند و سیتوپلاسم بصورت لایه نازکی دور آن را احاطه نموده است. سیتوپلاسم تخمک بعلت گرایش زیاد به حالت قلبیت با هماتوتکسیلین به رنگ آبی تیره در می‌آید (شکل ۲)

شکل ۲ الف: مرحله یک گناد کفالت پوزه باریک (رنگ آمیزی هماتوتکسیلین - انوزین ۵۰×)
در این مرحله رشد پروتوپلاسمی و افزایش قطر تخمدان است. فضای تخمدان را لایه‌ها یا چین خورده‌گیهای تخمدانی پر کرده و اطراف اووسیت‌ها را لایه فولیکولی فراگرفته است. لایه فولیکولی در این مرحله به دور تخمک‌ها ظاهر می‌شود. در این مرحله هسته بزرگ و واضح است که در مرکز آن شبکه گروماتیکی وجود دارد. افزایش تعداد هسته‌ها در مجاورت غشاء هسته و ظهور واکولت‌ها به دور هسته در سیتوپلاسم دیده می‌شود. وجود هسته زرده (1) کروی شکل ابتدا در قسمت داخلی غشاء و سپس در سیتوپلاسم از مشخصات نهایی این مرحله است. سیتوپلاسم به همان‌کسیلین گروش‌کننده نشان می‌دهد (شکل 2 ب).

(شکل 2 ب)

شکل 2 ب: مرحله دور گنداد کف‌بال باریک
(رنگ آمیزی همان‌کسیلین-انتوژین 175×)

- مرحله سه (نیمه رشد باریک):

فرآیند تولید واکولت و زرده‌سازی اولیه و وجود واکولته‌های بیشتری بدو حسیه بر جزء هسته از مشخصات این مرحله است. واکولته‌های کوچک دور هسته یکی شده و واکولته‌های بزرگتری یا ایجاد می‌کنند و واکولته‌های کوچکتر نزدیک حاشیه غشاء سلولی قرار می‌گیرند. این حالت قرار گرفتن واکولت‌ها به دور هسته و در حاشیه سیتوپلاسم به همراه حفره‌های کورنیکال را تشکیل می‌دهد. در این مرحله زرده‌سازی (Vitelogenesis) با پدیدار شدن و پاپاپ‌شدن گرانوله‌های زرده به اجسام زرده تبدیل می‌گردد. در این حالت، هسته برده از فاصله غشاء تخمدان و غشاء هسته قرار داشته ولی اندازه بند هسته زرده که اندازه‌ای ان بسیار کوچک شده است، روی غشاء تخمدان قرار می‌گیرند.

1-کشت اوروسیت های مانند استخوان‌های مانند سایر جانوران در مرحله پویاکولنوس پایانی دارای بک مخاطبان یا کنده مسحتان برای کنده مسح. که
مطالعه رشد تخمک در ماهی کمال پوشه با رنگ

با رشد اوجسته‌ها تعداد زیادی از گلوله‌های زرده‌ای متراکم که توسط یک غشاء پوشیده شده‌اند اشغال می‌گردد. گرایش سینوپلاسم به حالت اسیدی، گنناگونی تراکم رنگ‌دانه‌ای، استقرار هسته‌کروی با غشاء مشخص در مرکز تخمک و تجمع مواد کروم‌ماتین در مرکز هسته، در این مرحله دیده می‌شود. هسته‌ها معمولاً در این مرحله بپیشی شکل، کوچک و به تعداد زیاد در نزدیکی غشاء هسته قرار دارند.

در هنگام تجمع مواد زرده‌ای هیپو بلاژی سلوله‌ای فولیکولی مشخص شده و سلوله‌ای‌ستگن‌فرشی تکا در دو لایه مربی می‌شوند. لایه شعاعی (Zona radiata) پدیدار گشته و خون‌رسانی به تخمک‌ها به‌طور می‌گیرد. در این مرحله تعدادی از تخمک‌های مرحله‌ی یک و ذو قابل مشاهده هستند و همچنین تخم‌های در حال جذب که احتمالاً از دوره‌های قبل تخم‌زعی در تخمدان باقی مانده‌اند نیز دیده می‌شوند (شکل ۲ ج).

- مرحله چهار (باغل): مرحله چهار بنا کامل شدن واکول‌ها شروع و تخم‌ک‌ها وارد مرحله بلوغ می‌شوند. رشد تخمک‌ها کاملاً با مرحله سوم تفاوت داشته و تمایل اسیدی سینوپلاسم (واکنش با افزایش) کاملاً مشهود است (شکل ۲ د).

شکل ۲ج: تخمک در مرحله سه: واکول‌ها (V)، هسته‌ها (N)، لاپی شعاعی (Z) (رنگ آمیزی هماوتکسیل - انوزین ۱۷۵×175).

شکل ۲د: مرحله باغل: هسته کنگرده‌دار (N)، هسته‌های باکتری‌کم (N)، واکول‌های بزرگ دور هسته (V)، منطقه شعاعی (Z)، لاپی فولیکولی (F) (رنگ آمیزی هماوتکسیل - انوزین ۸۷/۵×175).
هسته بوسیله واکونیها و اجسام زرده محصور شده و تحت فشار کنگره‌دار می‌گردد (شکل ۲). در این مرحله با کامل‌سازی، متحد شدن گلوبول‌های زرد و تجمع قطارات جریان بفروپ هموگلوبین کاملتر شده و لایه شعاعی بهتر دیده شده و بصورت دو لایه بنظر می‌رسد. تخمک‌های مراحل قبلی کمتر لایه دیگر می‌شوند (شکل ۲ و).

- مرحله پنجم (تخمک‌ریزی با بلوز کامل):

اندمازه تخمک به بالاترین حداکثر رسیده، بصورت یکنواخت درآمده و اجسام کروی زرد از بین رفته و دیده که در انتهای این مرحله یک یا دو حفره یا برگ از پیوست واقعی تخمک و ابتکار تخمک انجم می‌شود. مهاجرت هسته تخمک به سمت قطب جانوری همراه با کوچک‌سازی دندان و از دست دادن و تاپید شدن فیضای آن در این مرحله می‌باشد. در اطراف اعویسی‌ها لایه فولیکولی وسعت یافته و فقط لایه شعاعی به دور تخمک دیده می‌شود. این مرحله دارای مدت زمان بسیار کوتاه است (شکل ۲) .
چون حفظ تخم‌هایی خالی شده است
لایه‌های تخم‌کاز هم فاصله گرفته،
تخم‌های نابلگ مشخص می‌شوند و دیواره
تخم‌های نابلگ چروکی‌های دارد. سلول‌های
فولیکولی پس از تخم‌گذاری، متورم و تقسیم
شد و فاگوسیت‌وز را نشان می‌دهند.
سلول‌های فولیکولی و سلول‌های سرگردان
در جذب تخم‌های تحلیل رفت‌نه نش دارند
(شکل 2 ط).
شکل 2 ط: یک تخم‌دان در حال جذب (رنگ‌آمیزی هماتوکسولین - اناژین ۳۵۰×)
بافت شناسی تخم‌دان و بررسی شکل ظاهری آن در ماهی کفَلال پوزه باریک و همچنین
برآورده GSI در مراحل مختلف رشدی تخم‌کاز، نشان داده که به موازات رشد و بلوغ ماهی و
نردنیکی به قصّل تخم‌بری، گناد ماهی تکامل یافته و GSI نیز سیر صعودی داشته است (نموندار
۲). در ابتدا در مرحله یک میزان GSI پایین بوده و به تدریج تا مرحله ۸ اندکی افزایش داشته که
همزمان با افزایش وزن گناد و وزن ماهی می‌باشد (نموندار ۱).

[شکل 2 ح: فولیکول خالی (F)، تخم‌هایی در حال جذب (A)، تخم‌های نابلگ مرحله 1 (رنگ‌آمیزی هماتوکسولین - اناژین ۳۵۰×)]
در مرحله ۴ زیاد بوده و در مرحله ۵ دقیقاً قبل از تخم‌ریزی در میزان حداکثر خود قرار GSI به کاهش می‌یابد (جدول ۱).

در مرحله شش پس از تخم‌ریزی یا تخم ریخته بار دیگر GSI، ترکیب درصد تخمک‌ها براساس ماههای سال در نمودار ۲ و براساس مراحل تخمک در نمودار ۳ ارائه شده است. همانطوری که از نمودارهای فوق مشخص شده است تخمک‌ها در هر مرحله از بلوغ رشدگی زیاد دارد و برای رسیدن به مرحله نهایی، دارای رشدگی هم‌زمان هستند.

این گونه، ماهی ۹ تا ۱۰ ماه از سال را در مراحل بین یک و سه می‌پاشد و تنها ۲ تا ۳ ماه از سال را در مرحله پنجم و شش قرار دارد ولذا با در اختیار داشتن GSI در جدول، به رشدگی ماهی و زمان تخم‌ریزی را می‌توان تخمین زد (نمودارهای ۱ و ۲).

با بررسی نمونه‌های مربوط به ماههای شهریور تا اسفند، مقدار GSI کم و وجود تخم‌میان مرحله پنجم در جمعیت این ماه مشاهده شده است. پس از آن مراحل دوم و سوم تکامل گنای در تخم‌ماند تا آخر ماه خرداد دیده می‌شود. تخم‌میانه‌های بالغ در بیشتر موارد دوره گتاه در ماههای تیر و مرداد مشاهده شده که زمان تخم‌ریزی ماهی می‌باشد. در شهریور‌های دومه پس از تخم‌ریزی (مرحله شش) می‌باشد (جدول ۳).

نمودار ۱: رابطه بین وزن گناد (W) و شاخص رشدگی (GSI) (اعداد روزی نمودار معرف وزن گنادهای ارائه شده در نمودار است.)
نمودار 2: رابطه بین ماه و شاخص رشد گی (GSI)

(اعداد روی نمودار S.E.mean همان ستون می باشد)

نمودار 3: ترکیب درصد نخمه‌های ماهی کفالت پژوه باریک در ماه‌های سال (۱۳۷۷-۷۸)
نمودار 2: ترکیب درصد تخمک‌های ماهی کفال سالیس

جدول 1: قطر تخمک و ماهی کفال پوزه باریک در مراحل مختلف رشد

<table>
<thead>
<tr>
<th>GSI</th>
<th>میانگین</th>
<th>SD</th>
<th>قطر تخمک</th>
<th>میانگین</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.83</td>
<td>0.3</td>
<td>30/72</td>
<td>3.30</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>1.21</td>
<td>0.7</td>
<td>82/41</td>
<td>5.24</td>
<td>5.24</td>
</tr>
<tr>
<td></td>
<td>2.12</td>
<td>0.3</td>
<td>172/81</td>
<td>9.72</td>
<td>9.72</td>
</tr>
<tr>
<td></td>
<td>11/5</td>
<td>0.9</td>
<td>312</td>
<td>8.16</td>
<td>8.16</td>
</tr>
<tr>
<td></td>
<td>18/7</td>
<td>1.6</td>
<td>422</td>
<td>6.10</td>
<td>6.10</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>0.4</td>
<td>40/12</td>
<td>5.10</td>
<td>5.10</td>
</tr>
</tbody>
</table>
جدول 2: قطر تخمک و GSI ماهی کفالت پوزه باریک در طی ماههای سال (1378-1377)

<table>
<thead>
<tr>
<th>GSI</th>
<th>میانگین</th>
<th>SD</th>
<th>میانگین</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/685</td>
<td>0/11</td>
<td>3/4/25</td>
<td>2/7</td>
<td>آذر</td>
</tr>
<tr>
<td>0/846</td>
<td>0/18</td>
<td>3/4/27</td>
<td>2/8</td>
<td>دی</td>
</tr>
<tr>
<td>1/172</td>
<td>0/26</td>
<td>5/6/27</td>
<td>3/5</td>
<td>بهمن</td>
</tr>
<tr>
<td>1/215</td>
<td>0/22</td>
<td>6/0/17</td>
<td>3/4</td>
<td>اسفند</td>
</tr>
<tr>
<td>2/400</td>
<td>0/38</td>
<td>7/9/32</td>
<td>4/9</td>
<td>فروردين</td>
</tr>
<tr>
<td>3/377</td>
<td>0/32</td>
<td>8/7/19</td>
<td>4/6</td>
<td>اردیبهشت</td>
</tr>
<tr>
<td>5/617</td>
<td>1/7</td>
<td>11/4/24</td>
<td>18/3</td>
<td>خرداد</td>
</tr>
<tr>
<td>12/510</td>
<td>2/3</td>
<td>30/6/19</td>
<td>21/5</td>
<td>تیر</td>
</tr>
<tr>
<td>11/890</td>
<td>2/8</td>
<td>30/6/2</td>
<td>32/7</td>
<td>مرداد</td>
</tr>
<tr>
<td>0/241</td>
<td>0/0/62</td>
<td>38/33</td>
<td>6/6</td>
<td>شهریور</td>
</tr>
<tr>
<td>0/852</td>
<td>0/0/65</td>
<td>35/19</td>
<td>3/1</td>
<td>مهر</td>
</tr>
<tr>
<td>0/450</td>
<td>0/0/33</td>
<td>33/21</td>
<td>8/9</td>
<td>آبان</td>
</tr>
</tbody>
</table>

بحث

تغییرات تخمدان و سلولهای جنسی در طول افزودن توسط بسیاری از محققین مورد مطالعه و بررسی قرار گرفته است (Biswas, 1993; Bhatti & Al-Daham, 1978). و با توجه به شاخه‌های تشخیصی نظیر رنگ، اندازه تخمک‌ها و موقعیت مناسبی باشد، در ماهیان استخوانی محققین کلیدهایی را در نظر گرفته‌اند. خصوصیت تخمدان در ماهیان توسط محققین برحسب تفاوت‌ها و تشابهات بین گونه‌ای مهم مراحل مختلفی تقسیم‌بندی گردیده است و عمدتاً یا 7 مرحله متغیر بوده است (Suluchanamma et al., 1981; Neelakantan et al., 1989; Salem et al., 1999). که در کفالت پوزه باریک با توجه به شاخه‌های تغییر شده، به 6 مرحله تقسیم‌بندی و شرح داده شد. تخمدان در مراحل اول بسیار کوچک و بسیار زیاد نیک مانند پی‌رنگ دیده شد. با تکامل تخمدان به

www.SID.ir
مراحل ۲ و ۳ همراه با افزایش و ظهور گره‌های خویی، دیواره تخمدان ضخیم شده و زنگ آن به ترتیب به صورتی، زرد و زرد بر زرد تغییر زنگ می‌یابد. توده تخمدان در مرحله ۳ قابل تشخیص و در مرحله ۴ تخم‌گذاری می‌نماید. اندازه تخم‌گذاری در مرحله نهایی جهت تشخیص مرحله رسیدگی نیز بسیار حائز اهمیت است. اندازه تخم‌گذاری ماهی کفال Liza richardsonii در مرحله رسیدگی در حدود ۹۵۰ میکرون و اندازه تخم‌گذاری در مرحله رسیدگی ماهی کفال Liza dumerilii در حدود ۸۵۰ میکرون (Horswit & Iasiak, ۱۹۸۹).

گزارش گردید (۱۹۸۹)

عامل مشخص‌کننده آن‌الاتا که اطلاعات زیادی درباره فعالیت تولید مثالی ماهیان برده می‌دهد، ترکیب تخم‌های هسته‌ای از ریوی ترکیب انوستیت می‌توان به نوع رشد تخمدان پی‌برد و وضعیت تولید مثل آنها را مورد مطالعه قرار داد. وجود چندگروه مختلف تخم‌گذاری در مراحل مختلف نمایانگر فعالیت تولید مثلی بیش از یک تخم‌گذاری است و همچنین وجود گروهی چند دست از تخمدان‌های رسیده و تفاوت فاصله آن با تخمدان‌های نابالغ گروهی یک دوره تخمریزی کوتاه می‌باشد. در تخم‌دان‌های با رسیدگی همزمان (group synchronous) حداکثر دو گروه انوستیت در حال رشد قابل مشاهده است و ماهی فقط در یک فرمت کوتاه و یکبار در سال تخمریزی می‌کند (Rankin et al., ۱۹۸۳).

با توجه به ترکیب تخمدان در تخمدان کفال پوزه باریک، هماهنگی خاصی در انتقال تخمدان از مرحله‌ای به مرحله بعدی وجود ندارد. ترکیب تخمدان در کفالت به شکلی است که در هر مرحله از بلعوی، تقریباً تمامی تخمدان در یک مرحله از رشد قرار دارند و فقط تعداد کمی از مراحل قبلی در آن مشاهده می‌گردد. جنین وضعیت نمایانگر ان است که در فصل تخمریزی همه تخمدان‌ها یکباره بیرون ریخته می‌شوند و ماهی در طول سال یکبار تخمریزی می‌کند و پس از آن به مرحله دوم بلعوی برمی‌گردد. 

مراحلی که توسط محققین در ماهیان استخوانی در چرخه رشد تخمدان از ۴ تا ۱۴ مراحله

تعیین شده است در هر ماهی متفاوت می‌باشد (۱۹۳۹; ۱۹۸۹; Clark)

نمایش کفال Liza parisi در ماهی کفال بیشتر تقسیم‌بندی بیشتری متفاوتی تعیین شده که برای مثال در کفال Liza dumerilii
مطالعه رشد تخمک در ماهی کفالت بوزه باریک

پسندان و همکاران

پنج مرحاله (1983) (در کفالت Chana punctata (Kurup & Samuel (در کفالت Kuo et al., 1979) در کفالت سفالوس به 5 مرحاله (1974) Balasundar Salem (تغییر شده است. مراحل تکامل تخمک توسط و همکاریها در سال 1999 به 9 مرحال همکاری نژادی از منطقه نکولتوئیت به آغزي و پایانی و مراحل زرد به اولیه، ثانویه و نهایی بسط داده شده است. در حالیکه تعداد دیگر از محققین با ادعه مراحل نژادی بندی خاص شیبی بودن برخی مراحل و ساده تر نمودن بررسی مراحل

بر این تحقیق نیز به دلیل تشابهات مرفولوژیک و فیزیولوژیک زردانگونه کفالت بوزه باریک با اورانوس تقسم‌بندی و مطالعات مراحل تکامل تخمک و تخضمان بر مبنای 6 مراحل‌های صورت گرفت که قبلی در این مورد اعمال شده بود (شنابزی پور، 1374). همان‌طور که در بخش نتایج ملاحظه شد، تخضمان‌های مرحله اول بصار کوکب بوده و مربوط به شهریور ماه می‌باشد که شروع فصل فعالیت تخضمان است. در این مرحله هسته هروسیستمی به‌طور بین‌مرحله بخش سولول را اشغال کرده و درون یک لایه نازک سیتوپلاسمی قرار دارد. این تخضمان در مرحله دوم رشد، در دو رشته سیتوپلاسمی و سپس مقدار زیادی بین‌مرحله چربی در گنج می‌شود. در مرحله 2 تکاملی، لایه فولیکولی به دør تحضیل به ظاهر شده و اووسیت‌ها در وضعیت وزیکول در فازهای داشته‌اید. هسته‌ها در مجاورت غشاء هسته از نظر تعداد افزایش یافته‌اند. مرحله 1 و 2 را مرحله (Krishnan of Diwan, 1990) Previtelloyenic می‌نامند (در مرحله سوم بلوغ، تخضمان شروع به زرد‌سازی می‌نماید. وجود زرد برای رشد سلول الازمی است.

با افزایش زردسازی، بافت چربی کاهش می‌یابد. ظهور گول‌های زرد ریز کروی است. در حاشیه تخضم و در بیرون می‌تویند بخش اولوپلاسمی ظاهر می‌شود و بدریج با رشد اووسیت به سطح هسته نژادی می‌شود و در اواخر مرحله 2 با قرار گرفتن روی غشاء هسته نایاب می‌شوند. موضع استقرار هسته اووسیت در مراحل پایانی رشد تخضم به سمت قطب حیوانی تغییر می‌کند می‌دهد و هسته بطور کامل در محیط دانه‌های زرد ذراتی ناحیه جانوری قرار می‌گیرد. هسته‌ها در این مرحله به خورده و بطور تصادفی در هسته یا پراکندگی می‌شوند بدون آنکه تعداد و اندازه آن تغییر

146
هل scrutiny دیگر این مرحله مشاهده نه شده است. نتایج Zona radiata بوده است. نتایج مربوط به نخستین مشاهده در هسته و به یک رشته انسداد و تکامل انسدی، همان‌طور که در سال Yamamoto 1954 علائم ستت فعال در هسته است. در حالی که در سال 1972 هسته‌ها را Mac Gregor حاوی RNA محل ساخت تغییراتی می‌شود و در نهایت موفقی که زره‌سازی پیوسته می‌رسد به این روش آن منجر می‌گردد. در این تحقیق نیز مشاهده شد که در طی رشد آموزش‌های ماهی کفالت اتاقه باریک و نیز ضمن عمل زره‌سازی، تعادل هسته‌ای هسته افزایش یافته. همچنین در اواخر مرحله 2 هسته به سمت قطب جانوری مهاجرت نموده و کاملی تاکنون دانه‌های زره‌سازی قطب مذکور در برگرفته شد. مطالعات انجام گرفته در این خصوص با نتایج پیش آمده از کفالت سفالوس (خالصی، 1380) مطابقت داشته است.

در مرحله جهارم تکامل بافت چربی کاهش یافته، تخمک‌ها اندکی آزاد بوده و هسته‌های آن افزایش می‌یابد. در پایان دوره زره‌سازی در مرحله جهارم بلوغ و پیش از مراحل جهاری تکمیل بلوغ، لاشه شعاعی کامل‌تر می‌شود و می‌توان آن را بصورت دو لایه مشاهده نمود. غشاء نخمک‌ها در کفال بترین عبارتند از: غشاء سینتولاسی، زونارادیانات، بوش فولیکولی - تکا و گرانولوزی غشاء فولیکولی از مرحله 2 4 بطور کامل تخمک گذاشته می‌کند و نقش اساسی در تغییر التخم و در امر رشد و زره‌سازی ایفا می‌کند. غشاء فولیکولی را جزیی از سیستم ترشحی هورمون‌های استروئیدی (Saidapur, 1978; Guraya & Kaur, 1982) می دانند.

در مرحله پنجم لاشه‌های فولیکولی گسترش دیده و تخمک‌ها از جهت فولیکولی جدید می‌شوند. در مرحله پنجم مرحله‌ای است که تجزیه و تحلیل (دزتراسپون) انسدیتیها غالباً نا مرحله‌هایی است که تجزیه و تحلیل (دزتراسپون) انسدیتیها غالباً نا مرحله‌هایی است که تجزیه و تحلیل (دزتراسپون) انسدیتیها غالباً نا مرحله‌هایی است که تجزیه و تحلیل (دزتراسپون) انسدیتیها غالباً نا مرحله‌هایی است که تجزیه و تحلیل (دزتراسپون) انسدیتیها غالباً نا مرحله‌هایی است که تجزیه و تحلیل (دزتراسپون) انسدیتیها غالباً N

روی می‌دهد. گلبول‌های پنجم برتر نامنظمی که در می‌شود که از حاشیه لاشه شعاعی شروع شده، به سمت مرکز تخم می‌گردد. تجزیه لاشه شعاعی شروع به سمت مرکز تخم می‌گردد. تجزیه لاشه شعاعی شروع به سمت مرکز تخم می‌گردد. تجزیه لاشه شعاعی شروع به سمت مرکز تخم می‌گردد. تجزیه لاشه شعاعی شروع به سمت مرکز تخم می‌گردد. تجزیه لاشه شعاعی شروع به سمت مرکز تخم می‌گردد. تجزیه لاشه شعاعی شروع به سمت مرکز تخم می‌گردد. تجزیه لاشه شعاعی شروع به سمت مرکز تخم می‌گردد. تجزیه لاشه شعاعی شروع
نتیجه این کاغذی به می‌خود. اشغال درون اوسیت آغاز و زره، دچار فاگوسیتوز می‌گردند.
عمل فاگوسیتوز توسط سولهای گرانولوزا صورت می‌گیرد که منحور هپیترولوی می‌شوند. در
مرحله پنجم باتف ویک تخمدان بسیار اندک بود که سبب روان شدن تخمک‌ها و شروع تخمک‌بزی
ماهی می‌گردد. وزن گندی قبل از تخمک‌بزی به بیشترین میزان می‌رسد.
مدتی پس از تخمک‌بزی تخمک‌دامان شکل تعدادی از فولیکول‌های باقی مانده و تخمک‌های
مرحله دوم و سوم رشد می‌کند. تخمک‌های مرحله سوم و چهارم که باقی مانده‌اند بس از
تخمک‌بزی جذب می‌شوند.
با توجه به مطالعه که بیان شد و با در نظر گرفتن اطلاعات زیست‌شناسی همانند وزن ماهی،
طول ماهی، سن و ایجاد روابط بین آنها و تغییرات مراحل از طرف امکان‌آمیزی آنها مشخص گردید که در کفال پوزه
باریک ماده، گام‌بستگی به رشد انسپتیت و افزایش تعداد آنها بسنگی دارد و در ارتباط با ماهی رابطه
محسسی بین وزن ماهی و وزن گند دیده می‌شود. نباین در طول رشد گام‌ها و افزایش وزن
تخمدان، وزن ماهی نیز با پطرینه افزایش می‌یابد.
فعالیت تخمک‌دامان و فصول تخمک‌بزی ماهیان استخوانی از طریق اطلاعات نظر مراحل مختلف
تخمدان از نظر مکروسکوپی و میکروسکوپی، تغییر، تشکیل تخمک‌های مراحل مختلف
سنجیده می‌شود. مرحله 1 تا 2 مرحله طولانی است و از شهروپ ماه تا اردیبهشت ماه طول
می‌کشد.
طبق بروهرهای انجام شده و تحقیقاتی که در این پژوهش صورت بذریفت، می‌توان فصل
تخمک‌بزی کفال پوزه باریک را تخمین زد. در جلد این زمان‌ها تحت شرایط محیطی نظر درجه
حرارت، شوری و غیره ممکن است دیرتر یا زودتر صورت بذریفتی در محدوده
زمانی تخمک‌بزی و زمان بلع این گونه را تخمین زد. در بررسی رشد تخمدان کفال پوزه باریک در
جنوب دریای خزر و تحقیق حاضر مراحل یک تا سه در ماه‌های شهروپ تا اردیبهشت، مرحله
چهار در ماه‌های خرداد و اولین تیر و مرحله پنجم طی ماه‌های تیر و مرداد مشاهده می‌شود و
ماهی در شهروپ در مرحله شش (تخم ربخه) به سر می‌برد. در مقایسه با کفایل اوراتوس،
مراحل تکامل گند ماهی کفال پوزه باریک چند ماه زودتر از کفایل اوراتوس است و حداکثر 1 GSI

148
تشکر و قدردانی

از جنب آقای دکتر حسینعلی خوشنوار رستمی ریاست محترم پژوهشکده اکولوژی دریای خزر که امکان اجرای پروژه را فراهم نمودند تشکر و قدردانی می‌شود. از خانم‌ها شرارت فیروزکندیان، عذرا رزقی، نرسگی ضرابیان و آقایان مولود صفری، حسین طالشیان و نوش‌آبادی جهت همکاری در انجام پروژه کمک سیاسگزاری را داریم و همچنین از سرکار خانم سیده زهرا نیوی جهت تایب مقاله صمیمانه تشکر و قدردانی می‌گردد.

منابع

فرخزاد ف. 1376. نقش غذ در پرورش ماهیان دریای خزر. ماهنامه علمی-تحقيقی آبیاری، شماره 7، صفحات 47-52.
شکری بوشجن، م. 1374. روش‌های بررسی بیولوژیک غذ جنسی ماهیان. موسسه تحقیقات و آموزش شیلات ایران، اداره انتشارات معاونت اطلاعات علمی، صفحه 58.
خالصی، م. ک. 1380. مطالعه بافت‌شناسی چرخه رسیدگی نخجک در ماهیان دریای خلیج فارس با نام Mugil cephalus در شرایط پرورش. پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی تبریز.


Rengaragan (Eds. K. Noble; A. Parathibha; V. Kripa; N. Sridnar; M. Zakhariah) COCHIN-INDIA-CmFRI. Vol. 5637, 41 P.


Archive of SID


