مطالعه رشد تخمک در ماهی کفال پوزه باریک

Liza saliens Risso

مهدي یوسفیان(1)، شهربانو عربان(2)، فرزانه فرخی(3) و حسین عصاییان(4)

1381 و 1382 - موسسه تحقيقات شیلات ايران. پژوهشگاه اکولوژی دریای خزر. ساری صندوق پستی: 961
2 - دانشگاه آزاد اسلامی. واحد علوم و تحقيقات. تهران صندوق پستی: 181-185/1385-1386
تاريخ دریافت: هرداد 1379 تاریخ پذیرش: دی 1381

خلاصه

در این پژوهش، مراحل مختلف تکامل نخندان ماهی کفال پوزه باریک (Liza saliens) از نظر ریختشنسیس و بافت شناسی، مورد مطالعه و مقایسه قرار گرفت. برای این منظور، از سالهای 1377 و 1378 بیش از یکصد و پنجاه عدد ماهی کفال از پرهای صیادی در سواحل جنوبی دریای خزر تهیه و تکامل و رشد گندان آنها براساس پارامترهای ظاهری و بافت مخلوطانه شدند. در مرحله نخست، تخمک‌ها کوچک و پی‌رنگ می‌باشند. در مرحله دوم رشد مستحکم و در انتظاری‌ها دیده می‌شود. در مرحله سوم، توده‌ی تخمک‌ها با فشردن تخم‌دان قابل نسخ است و انقباضات رگ‌های خونی پوست‌ها درون می‌شود و زرد‌های سازی موجب افزایش رشد سیتوپلاسم‌شده و در این دوره زونارادیاتا پوست‌های مشابه می‌گردد. در مرحله چهارم تخمک‌ها با چشم غیرملح قابل نسخ شده شده، تخمک‌ها رشد پیشرفتی نموده و زرد‌های سازی نیز افزایش یافته. در این دوره هسته به سمت قطب جانوری مهاجرت می‌کند.

نکات کلیدی: رشد، تخمک، کفال پوزه باریک،

Liza saliens
مقدمه

موفقیت تولید مثلی یکی از مهم‌ترین و مقابعی است که می‌تواند سازگاری فرد، گونه و یا جمعیت را در مسیر تکامل، میسر سازد. اطلاعات فراوانی در اختیارش که حاکی از کاهش صید ماهی کفال در سال‌های اخیر در دریای خزر می‌باشد. تغییر شرایط اکولوژیک و صید غیرمرمای از دلایل این امر محسوب می‌شود.

گامی‌تنزین جنس ماده روشنی می‌نماید که تخمک‌ها با انتسه‌هایی که موجود زنده چگونه تکامل بافته و به برخ و جنسی می‌رسند، اخیراً نتایجی در جهت اینکه بتوان تمام نمایشی از گام‌تنزین را در گونه‌های مثل ماهی آزاد، خانه ماهی و کفال بوسله‌های مورفیک دستگاهی کرده انجام شده است (فرخزاد، ۱۳۷۶). برای این شناسایی مراحل مختلف گامی‌تنزین، باید وضعیت و بیافته شناسی تخمدان مورد بررسی قرار گیرد. ساختار عضوی تخمک‌ها در ماهیان اختلافاتی را می‌توان بافت مشابه می‌آید، اما با کمی دقت در شکل و بیافته‌شناسی آنها اختلافاتی را می‌توان بافت تخمک‌ها در جنس قسمت اصلی شامل سلولهای تخم، لایه زاینده، بافت پیوندی و سلولهای داربست (Stem cell) و عروق تشکیل شده است. سلولهای تخم یا اوسیئا شامل سیتوپلاسم، هسته و غشاء سلولی و در مراحل پیشرفت تاریک توده زرد‌های می‌باشند (شکری بوسیجین، ۱۳۷۴).

با تخمک‌ها در سال ۱۹۷۷ بیولوژی تولید مثل سه گونه کفال شامل M. chelo در سال ۱۹۷۸ Vilenskaya و Apkin را بررسی نمودند. همچنین M. capito و M. cephalus اختصاصات چرخه جنسی و وضعیت گنده‌ها کفالت مالوس در دریای سیاه طی مهاجرت تخم‌بری را مطالعه نموده و معتقدان از این تحقیقاتی در زمینه بافت شناسی گونه‌های

M. auratus نیز در سال ۱۹۸۲ انجام شد (Valter، ۱۹۸۰; Kulikova & Loshakova، ۱۹۸۰ و Hussein، ۱۹۸۲).
مواد و روش‌ها

در مدت بکسال (مرداد ماه ۱۳۷۸ تا شهریور ماه ۱۳۷۸) بیش از ۱۵۰ عدد ماهی کفال پوزه باریک (M. saliens) بطور انتخاب اتفاقی هر ماه از بره های صید صیادان محلی منطقه محمود آباد تا نکا در سواحل جنوبی دریای خزر (مازندران) نمونه‌برداری شدند. مشخصات بیومتریک شامل وزن، طول کل و طول جنگلی آنها ثبت گردید. نمونه‌هایی از فلش‌های بالایی بانه سیه‌ای به‌عنوان سلول تحمیلی بییور گرفته شدند. سپس از انتقال نمونه‌ها به آزمایشگاه بلاغ‌افشای تخم‌اخن تشريح شده و با دقت وزن گردید. تخم‌اخن‌های کوچک بصورت کامل و نمونه‌هایی از قسمت ابتدایی، میانی، و انتهایی تخم‌اخن‌های بزرگ در محلول بیون تثبیت شد و روز بعد آنگرازی بافتن نموده شد و انتخاب کرده صورت گرفت. سپس در زمان‌های چهار محصول گردید. از مقاطع بافتی با ضخامت دو میکرون برچ گرفته شد و طی ۱۷ مره‌لة با محلول هیمالوتکسین و انزوین، رنگ‌آمیزی گردید.

به دلیل مشابهت رسیده بودن تخم‌کشی‌ها در نواحی مختلف تخم‌اخن و نیز ارائه انگوریک یکنواخت، نهایی مقطع تنها از قسمت مسایل انجام گرفت. همچنین ضریب شاخص رسیدگی طبق فرمول زیر محاسبه گردید:

$$G.S.I = \frac{G.S.T}{G.S.\text{total}} \times 100$$
در بررسی مشاهدات ماکروسکوپی، شکل تخمدان از لحاظ رنگ، ضخامت دیواره تخمدان، اندازه تخمدان و مراحل نمو تخمک در آن و وضعیت رگه‌های خونی در سطح بیرونی و داخلی تخمدان لحاظ گردید.

در بررسی مشاهدات میکروسکوپی به تفاوت‌های اشکار در وضعیت هسته، هستک، سیتوپلاسم و غشاء تخمک در مراحل مختلف نمو اوسیت‌ها پرداخته شد. در پژوهش حاضر با توجه به کارهای انجام شده در مورد بفت شناسی تخمدان گونه مذکور و نتایج حاصله از بررسی‌های میکروسکوپی، برای فرآیند نمو تخمدان ۶ مرحله‌ای در نظر گرفته شد. این رده‌بندی در گونه کفمال دریایی خزر (M. auratus) (شعبانی پور، ۱۳۷۴) قبلاً صورت گرفته است. این مراحل عبارتند از:

۱- نابالغ یا اوسیت‌های اولیه ۲- رشد اولیه (وزیکول‌های زرده) ۳- نسمه رشد بافته (گلبول زرده) ۴- بالغ ۵- بالغ کامل ۶- تخمرپری کرده

نتایج

کفمال بوزه باریک دارای یک چفت تخمدان از نوع کیسه‌دار (Cystovanian) است که به‌یک توسط یک مجاری تخمدان به بیرون راه می‌یابند. معمولاً یکی از تخمدان‌ها بزرگتر از دیگری بوده ولی از لحاظ مراحل رسیدگی تفاوتی بین تخمدان‌ها مشاهده نشد. مراحل رشد تخمدان به صورت ماکروسکوپی و میکروسکوپی به شرح ذیل است:

- مشاهدات ماکروسکوپی (شکل شناسی)
- مرحله یک (نابالغ): در مرحله یک تخمدان بصورت باریک و شفاف با دیواره نازک می‌باشد. بر روی تخمدان رگه‌ای خونی کمی دیده می‌شود. در مرحله یک گناد نر و ماده تقیبیاً یک شکل است و لذا تعيین جنسیت در این مرحله مشکل می‌باشد. حداقل طول آن به ۴/۵ سانتی‌متر می‌رسد (شکل ۱-الف).

www.SID.ir
- مرحله دو (رشد اولیه):
تخمدان تقریباً صورتی یا قرمز رنگ است، کمی بزرگتر شده، قطر آن افزایش یافته، رگه‌های خونی مشخصتر شده و نیمه فعال است. طول آن به ۶/۵ سانتی‌متر می‌رسد.
(شکل ۱: الف و ب).

شکل ۱ الف و ب: مرحله بک و مرحله دو گناد کنال پوزه باریک.

- مرحله سه (نیمه رشد یافته):
رنگ تخمدان روشن‌تر شده و تقریباً زرد رنگ می‌شود. دیواره تخمدان مشخص، نازک و انشعابات رگه‌های خونی بخوی دیده می‌شود. با شکاف دیواره تخمدان، تخم‌کهای بهم چسبیده و دانه‌های تخم‌ک با دست قابل حس و تشخیص است. حداکثر طول تخمدان به ۶/۵ سانتی‌متر می‌رسد (شکل ۱-ج).

- مرحله چهار (بالغ):
در مرحله چهار تخمدان بزرگ بوده و دارای رنگ زرد‌کهربایی است. در این مرحله رگه‌های خونی در سطح پیوسته و داخلی تخمدان پخش شده و تخم‌کها نیز کاملاً رشده یافته و با جسم غیر سملح دیده می‌شوند. حداکثر طول تخمدان به ۹/۵ سانتی‌متر می‌رسد (شکل ۱-د).
مطالعه رشد تخمک در ماهی کفال پوزه باریک

بوسیلوان و ممکران

- مرحله پنجم (تخم‌بری):

این مرحله تخم‌بری است. تخم‌ها سیال شده و بر ارتفاعی از مجزای تناسلی خارج شده، تخم‌های دارای رنگ قهوه‌ای و فضای شکم روی کرده است. دیواره تخم‌های خالی نازک و شفاف است. تخم‌ها کاملاً قابل هستند. طول تخم‌های 14 سانتی‌متر نیز مشاهده شده است.

- مرحله ششم (تخم ریخته):

مرحله پس از تخم‌بری است. تخم‌های چروک‌یده کوچک شده و به رنگ قرمز در می‌آید و دیواره آن ضخیم می‌گردد.

مراحل رشد از نظر میکروسکوپی (بافت شناسی):

نتایج میکروسکوپی نشان داد که مراحل مختلف نمو اوسیته‌ها دارای تفاوت آشکاری هستند.

براساس پارامترهای نظیر اندازه تخم و هسته، وسعت سایتوپلاسم، میزان تراکم زرد، تعداد هسته‌ها و ناحیه‌های نازک و همچنین ماهوران آن به سمت قطب جانوری، به مراحل رشد گویان تقسیم شد. مرحله پس از تخم‌بری (و یا عدم آن) و در نتیجه تحلیل رفتی و یا جذب تخمک، مرحله ۴ نامیده شد. بر پایه مشاهدات مذکور، برای هر مرحله ویژگی‌های زیر شناسایی گردید:

- مرحله یک (نابالغ):

در این مرحله اوسیته‌ها نابالغ بوده و در چئین خورداری گیاه تخم‌داتی به شکل گروهی، بیضی و یا چند lamellae) وجهی مشاهده می‌شود. هسته به بسیار بزرگ و قسمت اعظم تخمک را اشغال می‌کند و سایتوپلاسم بصورت لاشه نازکی دور آنها احاطه نموده است. سایتوپلاسم تخمک بعلت گرایش زیباد به حالت قلبیت با هم‌توکسیلین به رنگ آبی نیز در می‌آید.

(شکل ۱)
در این مرحله رشد پروتوپلاسمی و افزایش قطر تخمک محسوس است. فضای تخمک مادری ناپایدار است. این‌طوریکه در این مرحله به دور تخمک‌ها ظاهر می‌شود. در این مرحله هسته بزرگ و واضح است که در مرکز آن شبکه کرومانتینی وجود دارد.

افراشیت تعداد هسته‌ها در جوار غشاء هسته و ظهور واکولتها به دور هسته در سیتوپلاسم دیده می‌شود. وجود هسته زرده در کروی شکل ابتدا در قسمت داخلی غشاء و سپس در سیتوپلاسم از مشخصات نهایی این مرحله است. سیتوپلاسم به همان‌واکول‌های گراشی کمتری نشان می‌دهد.

شکل 2 ب: مرحله دوم گند کمال پوزه باریک (رنگ آمیزی همان‌واکول‌های 175×)

- مرحله سه (نیمه رشد بانه):

فرآیند تولید واکول و زرده‌سازی اولیه و وجود واکول‌های بیشتری بیشتری دور هسته از مشخصات این مرحله است. واکول‌های کوچک دور هسته بیشتری نسبت به واکول‌های بزرگتر را ایجاد می‌کند. این حالت قرار گرفتن واکول‌ها به بالا در حالی، سیستم حفره‌های کور نیکلا را تشکیل می‌دهد. در این مرحله زرده‌سازی با پیدادار شدن و پایدار شدن گرانول‌های زرده به اجسام زرده تبدیل می‌گردد. در این حالت، هسته زرده ابتدا در فاصله غشاء تخمک و غشاء هسته قرار داشته ولی اندازه بعد هسته زرده که اندلزعش ان با سیار کوچک شده است، روی غشاء تخم قرار می‌گیرد.

1- کمی‌کننده‌های مایه‌ای سایر ماده‌سازی ثانویه‌ای در مرحله پروکلسترولیس پایانتی درایل‌بی‌ما ممکن‌می‌باشد. نیز همین، نیز به این نهاد اصطلاحی (هرت، زرده) گفته می‌شود.
مطالعه رشد تخمک در ماهی کمال پوزه باریک

پوسته و همکاران

شاخص ۲ ج: تخمک در مرحله سه واکولنها (۱۷۵x۱۷۵) (۱)

شکل ۲ ج: مرحله سه: واکولنها (۱)

شاخص (۲) لاشه شعاعی (۲)

شکل ۲ ج: مرحله سه: هستکه (۱۷۵x۱۷۵) (۲)

در هنگام تجمع مواد زرددهای الیپولاژی

سلولهای فولیکولی مشخص شده و سلوهای سنگفرشی تکا در دو لاشه مرتب می‌شوند.

پدیدار گشته و خون‌رسانی به تخمک‌ها به‌صورت می‌گیرد. در این مرحله تعدادی از تخمک‌ها مرحله یک و دو قابل مشاهده

هستند و همچنین تخم‌های در حال جذب که احتمالاً از دو هرها قبیل تخم‌ریزی در تخمدان باقی مانده‌اند نیز دیده می‌شوند (شکل ۲ ج).

- مرحله چهار (بایگان):

مرحله چهارم با کامل شدن واکولنها

شرو و تخمکا وارد مرحله بلوغ می‌شوند. رشد تخمک‌ها کاملاً با مرحله سوم تفاوت داشته و تماشای شعاعی (واکولنها با اوزین) کاملاً مشهور است (شکل ۲ د)
همه‌شماری واکنش‌ها و اجسام زرد محصور شده و تحت فشار کنگره‌دار می‌گردد (شکل ۲). در این مرحله با کامل شدن زردکاپ، متحد شدن غلظت‌های زرد و تجمع قطعات چربی به‌وجود می‌آید. همستا به تعداد کمتر در مناطق مختلف هم‌رشته مشاهده می‌شوند. لیاه فولیکولی کامل‌تر شده و لیاه شعاعی بهتر دیده شده و بصورت دو لیاه بنظر می‌رسد. تخم‌های ماراح قبیلی کمتر دیده می‌شوند (شکل ۲ و).

- مرحله پنجم (تخشریز یا بلع): اندام‌های تخمک به بالاترین حبز خود رسیده، بصورت یک‌نواخت درآمده و اجسام کروی‌زد از بین رفته و دیده نمی‌شوند. در انتهای این مرحله یک یا دو حفره بزرگ از بیوستن واقع‌شده تخمک‌شکل و ابگیری تخمک انجام می‌شود. مهاجرت همست تخمک به سمت قطع جانوری هرگاه با کوچک شدن و از دست دادن و ناپیداد شدن غشایان آن در این مرحله می‌باشد. در اطراف اعویض‌ها لیاه فولیکولی وسعت یافته و فقط لیاه شعاعی به دور تخمک دیده می‌شود. این مرحله دارای مدت زمان بسیار کوتاه است (شکل ۲ و).
چون حفره تخم‌داری خالی شده است
لایه‌های تخم‌دار از هم فاؤسه گرفته،
تخم‌های نابالغ مشخص می‌شوند و دیواره تخم‌داران حالت چروک‌پذیره دارد. سلول‌های فولیکولی پس از تخم‌گذاری، متورم و تقسیم شده و فاگوسیتوز را نشان می‌دهند.
سلول‌های فولیکولی و سلول‌های سرگردان در جذب تخم‌های تحلیل رفته نقش دارند
(شکل 2 ط).
بافت شناسی تخم‌دان و بروزی شکل ظاهری آن در ماهی کفاف پوزه باریک و همچنین برآورده GSI در مراحل مختلف رشدی تخم‌دار نشان داده که به مواد شر و بلوغ ماهی و نزدیکی به فصل تخم‌بریزی، گنگ ماهی تکامل یافته و GSI نیز سیر صعودی داشته است (نمودار 2). در ابتدا در مرحله یک میزان پایین بوده و به تدریج نا مرحله سه اندکی افزایش داشته که همزمان با افزایش وزن گناد و وزن ماهی می‌باشند (نمودار 1).
نمودار ۱: رابطه بین وزن گناد (W) و شاخص رسیدگی (S1)

(اعداد روزی نمودار معرف وزن گنادهای ارائه شده در نمودار است)
نمودار ۲: رابطه بین ماه و شاخص رسیدگی (GSI)
(اعداد روی نمودار همان ستون می‌باشند)
(S.E.mean)
نمودار ۲: ترکیب درصد تخمک‌های ماهی کفالت سالینس

جدول ۱: قطر تخمک و ماهی کفالت بوزه باریک در مراحل مختلف رشد GSI

<table>
<thead>
<tr>
<th>GSI</th>
<th>Cuestion</th>
<th>میانگین</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۸۳</td>
<td>۰/۳۶۷۲</td>
<td>۰/۳۳۵۰</td>
<td>مرحله ۱</td>
</tr>
<tr>
<td>۱/۷۷</td>
<td>۰/۴۲۴۱</td>
<td>۰/۴۲۴۱</td>
<td>مرحله ۲</td>
</tr>
<tr>
<td>۲/۱۷</td>
<td>۰/۴۲۴۱</td>
<td>۰/۴۲۴۱</td>
<td>مرحله ۳</td>
</tr>
<tr>
<td>۳/۱۲</td>
<td>۰/۴۲۴۱</td>
<td>۰/۴۲۴۱</td>
<td>مرحله ۴</td>
</tr>
<tr>
<td>۴/۵۰</td>
<td>۰/۴۲۴۱</td>
<td>۰/۴۲۴۱</td>
<td>مرحله ۵</td>
</tr>
<tr>
<td>۵/۱۰</td>
<td>۰/۴۲۴۱</td>
<td>۰/۴۲۴۱</td>
<td>مرحله ۶</td>
</tr>
</tbody>
</table>
جدول ۲: قطر تخمک و ماهی کفالت پوزه باریک در طی ماههای سال (۱۳۷۷-۸)

<table>
<thead>
<tr>
<th>GSI</th>
<th>قطر تخمک</th>
<th>ماههای سال</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میانگین</td>
<td>SD</td>
</tr>
<tr>
<td>۱/۱۵</td>
<td>۳۲/۷۵</td>
<td>۲/۷</td>
</tr>
<tr>
<td>۱/۳۰</td>
<td>۳۴/۲۷</td>
<td>۲/۸</td>
</tr>
<tr>
<td>۱/۶۰</td>
<td>۳۶/۷۲</td>
<td>۲/۵</td>
</tr>
<tr>
<td>۲/۳۰</td>
<td>۴۰/۱۷</td>
<td>۳/۶</td>
</tr>
<tr>
<td>۳/۶۰</td>
<td>۴۲/۸۲</td>
<td>۴/۹</td>
</tr>
<tr>
<td>۳/۴۷</td>
<td>۴۷/۱۹</td>
<td>۴/۶</td>
</tr>
<tr>
<td>۶/۱۷</td>
<td>۵۱/۴۴</td>
<td>۱۸/۳</td>
</tr>
<tr>
<td>۷/۵۰</td>
<td>۵۳/۰۶</td>
<td>۲۱/۸</td>
</tr>
<tr>
<td>۱۱/۶۰</td>
<td>۵۶/۲۵</td>
<td>۳۲/۸</td>
</tr>
<tr>
<td>۱/۲۴</td>
<td>۶۸/۲۲</td>
<td>۵/۶</td>
</tr>
<tr>
<td>۱/۲۳</td>
<td>۷۱/۷</td>
<td>۳/۱</td>
</tr>
<tr>
<td>۱/۵۵</td>
<td>۷۲/۲۱</td>
<td>۲/۸</td>
</tr>
</tbody>
</table>

بحث

تغییرات تخمدان و سلولهای جنسی در طول اوج و زوال مختلف بسیاری از محققین مورد مطالعه و بررسی قرار گرفته است (Biswas, 1993; Bhatti & Al-Daham, 1978). با توجه به شاخص‌های تشخیصی نظر رنگ، اندازه تخمکها و میزان اشغال مخوطه بدن در ماهیان استخوانی محققین کلیدهایی را در نظر گرفتند. خصوصیت تخمدان در ماهیان توسط محققین برحسب تفاوت‌ها و تشابه‌ها بین گونه‌های به مراحل مختلفی تقسیم‌بندی گردیده است و در ۷ مراحل متغیر بوده است. (Suluchanamma et al., 1981; Neelakantan et al., 1989; Salem et al., 1999) که در کنال پوزه باریک با توجه به شاخص‌های تعیین شده، به ۶ مرحله تقسیم‌بندی و شرح داده شد. تخمدان در مراحل اول بسیار کوچک و بصورت یک نوار نخ مانند پو زنگ دیده شد. با تکامل تخمدان به

www.SID.ir
مراحل ۱ و ۲ همره با افزایش و ظهور گره‌های حولی، دیواره تخم‌دار ضخیم شده و رنگ آن به ترتیب به صورتی، زرد و زرد بر رنگ تغییر رنگ می‌یابد. توده تخم‌دار در مرحله ۳ قابل تشخیص و در مرحله ۴ تخم‌ها با چشم غیرمسلح قابل رویت است. در مرحله ۵ تخم‌ها از فولیکول آزاد شده و ماهی تخم‌بریزی می‌نماید. اندازه تخم‌دار در مراحل نهایی جهت تشخیص مرحله رسیدگی نیز به‌سیار حائز اهمیت است. اندازه تخم ماهی کفال Liza richardsonii از مرحله رسیدگی در حدود ۹۵۵ میکرون و اندازه تخم‌دار در مرحله رسیدگی ماهی کفال Liza dumerilii در حدود ۸۵۰ میکرون.

(Grarsh & Gerd, 1989).

عامل مشخص‌کننده که اطلاعات زیادی درباره فعالیت تولید مثلی ماهیان به‌دست می‌دهد، ترکیب تخم‌های هستند. از روزی تخم‌بریزی می‌توان به نوع رشد تخم‌دار بی‌پرده و وضعیت تولید مثل آن‌ها را مورد مطالعه قرار داد. وجود چندگرده مختلف تخم‌دار در مراحل مختلف نمایانگر فعالیت تولید مثلی بیش از یکبار در سال است و همچنین وجود گروهی یک دست از تخم‌های رسیده و تفاوت فاحش آن با تخم‌های نبایل‌گو وای یک دوره تخم‌بریزی کوتاه می‌باشد. در تخم‌های یک گروه همزمان (group synchronous) حداقل دو گروه انویس در حال رشد قابل مشاهده است و ماهی فقط در یک فرصت کوتاه و یکبار در سال تخم‌بریزی می‌کند.

(Rankin et al., 1983)

با توجه به ترکیب تخم‌های در تخم‌دار کفال پوزه باریک، هنگامی خاصی در انتقال تخم‌دار از مرحله‌ای به مرحله بعدی وجود دارد. ترکیب تخم‌های در کفال به شکلی است که در هر مرحله از بلعو، تقیف‌آمیزی تخم‌های در یک مرحله از رشد قرار دارد و فقط تعداد کمی از مرحله قبلی در آن مشاهده می‌گردد. جزئیات وضعیت نمایانگر آن است که در فصل تخم‌بریزی همه تخم‌های یکبار بیرون ریخته می‌شوند و ماهی در طول سال یکبار تخم‌بریزی می‌کند و پس از آن به مرحله دوم بلعو برمی‌گردد.

مراحلی که توسط محققین در ماهیان استخوانی در چرخه رشد تخم‌داران از ۱۴ تا ۲۴ ماه

(Malhotra et al., 1989; Clark, 1989) تعیین شده است در هر ماه متفاوت می‌باشد.

Liza parsia در ماه کفال نز و تخم‌بریزی به‌دنبال متفاوتی تعريف شده که برای مثال در کفال

(1989).
مطالعه رشد تخمک در ماهی کفان بوزه باریک

پیونج مرحله (1983) در کفان Chama punctata (Krup & Samuel) هشت مرحله (Krup & Samuel, 1979) در کفان سفالوس به 5 مرحله (Kuo et al., 1981) تقسیم شده است. مرحله تکامل تخمک توسط Balasundar Salem (Suluchanamma et al., 1981) همکارانش در سال 1999 به مراتب تقسیم شده است که مرحله نوکلونتوی به آغازی و پایانی و مرحله زرد دسازی به اولیه، ثانویه و نهایی بسط داده شده است. در حالیکه تعدادی دیگر از محققین با ادغام مراحل نزدیک بخاری شبه بودن برخی مراحل و ساده‌تر نمودن بررسی مراحل رسیدگی را به مراتب کاهش داده‌اند.

در این تحقیق نیز به دلیل تشابهات مرفولوژیک و فیزیولوژیک زبادگونه کفان بوزه باریک با اورانووس تقسیم‌بندی و مطالعات مراحل تکامل تخمک و تخمدان بر مبنای 6 مرحله‌ای صورت گرفت که قبل از این مورد اعمال شده بود (شعبانی پور، 1374).

همانطور که در بخش نتایج ملاحظه شد، تخمک‌های مرحله اول بسار کوچک بهره و مربوط به شهریور ماه می‌باشد که شروع فصل فعالیت تخمدان است. در این مرحله هسته از اوسوسی بیشتر بخش سلول را اشغال کرده و درون یک لاکه نازک سیتوپلاسمی قرار دارد. این تخمک در مرحله دوم رشد، دارای رشد سیتوپلاسمی و سپس مقدار زبادی بافت جریبی در گندم می‌شود. در مرحله 3 تکاملی، لاکه فولیکولی به دو تخمکی ظاهر شده و اوسوسیت‌ها در وضعیت وزیکول زرد قرار داشتند. هسته‌ها در مجاورت غشاء هسته از نظر تعداد افزایش یافته‌اند. مرحله 1 و 2 را مرحله (Krisnan of Diwan, 1990) Previtelloyenic می‌نامند.

در مرحله سوم بلوغ، تخمک شروع به زردسازی می‌نماید. وجود زرد براز رشد سلول الام‌ای است.

با افزایش زردسازی، بافت چربی کاهش می‌یابد. ظهور گلوله‌های زرد ریز کروی استفاده در حاشیه تخمک و در بیرون تنها بخش اوسوسیم ظاهر می‌شود و بندیدن با رشد اوسوسیت به سطح هسته نزدیک می‌شود و در اواخر مرحله 3 با قرار گرفتن روی غشاء هسته ناپدید می‌شوند. موضع استقرار هسته اوسوسیت در مراحل پایانی رشد تخمک به سمت قطب حیوانی تغییر می‌کند. در این مراحل به عقیده خورشید و بطور تصادفی در هسته پراکنه می‌شوند بدون آنکه تعداد و اندازه‌اند تغییر

پوستین و همکاران
یابد. از خصوصیات دیگر این مرحله مشاهده لاشه شعاعی Zona radiata بوده است. تغییرات Haustorium در هسته و هسته‌های اوسیتی‌ها در مراحل رشد تخم‌های و تکامل اوسیتی‌ها، نشان دهنده فرآیند سنتز فعال در تخم‌هایهاست. از دیدگاه تعداد هسته‌ها از نظر MacGregor 1954 علامت سنوز سنتز فعال در هسته است. در حالی که در سال 1972 هسته‌ها و DNA محل ساخت RNA ریبوسومی می‌دانند. طی فرآیند زره‌سازی در تخم‌هایها، هسته‌ها متحمل تغییراتی می‌شود و در نهایت موقعی که زره‌سازی به پایان می‌رسد به این روش‌ها منجر می‌گردد. در این تحقیق نیز مشاهده شد که در طی رشد اوسیتی‌های ماهی گیاه پوزه باریک و نیز ضمن عمل زره‌سازی، تعداد هسته‌های هسته‌افزاری به مقدار محدودی تغییر خواهد داشت. این تغییرات به سمت قطب جانوی مهاجرت نموده و کامل توسط دانه‌های زره‌سازی قطب مذکور در بزرگ‌ویت شد. مطالعات انجام گرفته در این خصوص با نتایج بسته‌ای از کف‌سال‌های شناخت (خالصی 1380) مطابقت داشته است.

در مرحله چهارم تکامل بهفت چربی کاهش یافته، تخم‌ها اندکی آزاد بوده و هسته‌های اضافی اضافه می‌گردد. مهاجرت به سمت قطب جانوی می‌شود. از خصوصیات دیگر این مرحله اختلاط گلبول‌های زره و قطرات چربی است. که به صورت یک توده یکنواخت بنظر می‌رسد.

در پایان دوره زره‌سازی در مرحله چهارم سلول بلع و بیش از فرآیند تکمیل بلع، لاشه شعاعی کامل‌تر می‌شود و می‌توان این را بصورت دو لایه مشاهده نمود. غشاء تخمک‌ها در کف‌سال بتریب عبارتند از: غشاء سیتوپلاسمی، زونارادیت، یوشش فولیکولی، تکا و گرناوند. غشاء فولیکولی از مرحله 4 گسترده‌تر و دانه‌های زره‌سازی اضافه می‌کنند. غشاء فولیکولی را جزئی از سیستم ترشحی هورمون‌های استروئیدی می‌دانند (Saidapur, 1978; Guraya & Kaur, 1982).

در مرحله پنجم لاشه‌های فولیکولی گسترش شده و تخمک‌ها از حفره فولیکولی جدا می‌شوند. مرحله پنجم مرحله‌ای است که تجزیه و تحلیل (دیتریپتیو) اوسیتی‌ها غالب تا مرحله سه ROY می‌دهد. گلبول زره بطور نامنظم فشرده می‌شود که از حاشیه لاشه شعاعی شروع شد، به سمت مرکز تخم گردید. تجزیه لاشه شعاعی شروع و سطح خارجی آن نامنظمی می‌گردد. در
نتیجه این لایه گسیخته می‌شود. اشغال درون اوسیست آغاز و زره، دیجیتال فاگوسمیوز می‌گردد. عمل فاگوسمیوز توسط سلول‌های گرانولوزا صورت می‌گیرد که متحمل هیپرتروفی می‌شوند. در مرحله پنجم بات‌چرخه تخمدان بسیار اندهک بود که سبب روان شدن تخمدان‌ها و شروع تخم‌بریده ماهی می‌گردد. وزن گناد قبل از تخم‌بریده به بیشترین میزان می‌رسد. مدتی پس از تخم‌بریده تركیب تخمدان شامل تعدادی از فولیکولهای باقیمانده و تخم‌های مرحله دوم و سوم رسیدگی می‌باشد. تخم‌های مرحله سوم و چهارم که باقیمانده‌اند پس از تخم‌بریده جذب می‌شوند. با توجه به مطالعه که بیان شد و با در نظر گرفتن اطلاعات زیست‌شناسی همانند وزن ماهی، طول ماهی، سن و ایجاد روابط بین آنها و نمایش مراحل اموازی آنها مشخص گردید که در کفل بیوز باریک ماده، گام‌گذاری به رشد انوستت و افزایش تعداد آنها بستگی دارد و در ارتباط با ماهی رابطه محیطی بین وزن ماهی و رشد گناد دیده می‌شود. بنابراین در طول رشد گام‌ها و افزایش وزن تخمدان، وزن ماهی نیز بطور منتفی افزایش می‌یابد.

فعالیت تخمدان و فصول تخم‌بریده ماهیان استخوانی از طریق اطلاعاتی نظر مراحل مختلف تخمدان از نظر ماکروSCOPE و میکروSCOPE، تغییر GSI، ترکیب تخم‌های مراحل مختلف سنجیده می‌شود. مرحله 1 یا 2 مرحله طولانی است و از شهریور ماه تا اردیبهشت ماه طول می‌کشد.

طبق برآورده‌ای انجام شده و تحقیقاتی که در این پژوهش صورت پذیرفته، می‌توان فصل تخم‌بریده کفل بیوز باریک را تخمین زد. در این زمانها تحت شرایط محیطی نیاز به حرارت، شوری و غیره معمولاً است دیرتر یا زودتر صورت پذیرد ولی در كلی می‌توان محدوده زمانی تخم‌بریده و زمان بلوغ این گونه را تخمین زد. در بررسی رشد تخمدان کفل بیوز باریک در جنوب دریای خزر و تحقیق حاضر مراحل یک تا سه در ماه‌های شهریور تا اردیبهشت، مرحله چهار در ماه‌های خرداد و اوایل تیر و مرحله پنج تا طی ماه‌های تیر و مرداد مشاهده می‌شود و ماهی در شهریور در مرحله شش (خم ریخته) به سر می‌برد. در مقایسه با کفل اوراتوس، Mراحل تکامل بنیان ماهی کفل بیوز باریک چند ماه زودتر از کفل اوراتوس است و حداکثر GSI
تشکر و قدردانی

از جنب آقای دکتر حسنعلی خوشباز، استاد محترم پژوهشکده اکولوژی دریای خزر که امکان اجرای پروژه را فراهم نمودند تشکر و قدردانی می‌شود. از این‌ها شاره فیروزکنیان، علیدا رزقی، نرگس ضرابیان و آقایان مولود صفری، حسین طالب‌یان و نووش آبادی جهت همکاری در انجام پروژه کمال سیاسی‌گزاره را داریم و همچنین از سرکار خانم سیده زهرا نیوی جهت تایب مقاله صمیمانه تشکر و قدردانی می‌گردید.

منابع

فرخزاده ف.، ۱۳۷۶. نقش‌گذاری درون‌ربیز در پرورش ماهیان. ش. پ ۵۷۶، دانشگاه دامپزشکی دانشگاه تهران، صفحات ۲۱۰ با تأکید.

شجاعی‌پور، ن.، ۱۳۷۶. مختصری درباره کفالت ماهیان دریای خزر. ماهنامه علمی-تحقیقاتی آبی‌پزشکی شماره ۷، صفحات ۴۱ تا ۶۵.

شکری بوشیج، م.، ۱۳۷۶. روش‌های بررسی بیولوژیک غدد جنسی ماهیان. موسسه تحقیقات و آموزش شیلات ایران، اداره انتشارات معاونت اطلاعات علمی ۵۸ صفحه.

خالصی، م. ک.، ۱۳۸۰. مطالعه بافت‌شناسی چربه سیگتیک نخمه در ماهی کفالت خاکستری در شرایط پرورش. پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی طبیعی و علوم دریایی تربیت مدرس نور، ۸۸ صفحه.

Rengaragan (Eds. K. Noble ; A. Parathibha ; V. Kripa ; N. Sridnar ; M. Zakhariah) COCHIN-INDIA-CmFRI. Vol. 5637, 41 P.

