سنگش میزان عناصر سنگین در شاه میگوی آب شیرین (Austacus leptodactylus caspicus)

مریم پایدار (1)، محمد شریف فاضلی (2) و علیرضا ریاحی بختیاری (3)

talasht@hotmail.com

1 - تهران صندوق پستی: 193723873
2 - کروه بیولوژی ماهیان دریا، دانشکده منابع طبیعی دانشگاه تربیت مدرس نور
3 - تاريخ دریافت: دی 1380
4 - تاريخ پذيرش: آذر 1381

چکیده

با توجه به فعالیت‌های مختلف انسانی در محدوده حوضه آبریز تالاب انزلی و ورود آلاینده‌های مختلف از جمله عناصر سنگین به آبی اکوسیستم آبی و جنبه تجمع احتمالی آنها در بیوت و عضله شاه میگو که یکی از کنترل‌های بومی تالاب انزلی بوده و از ارزش غذایی و اقتصادی بسیار بالایی برخوردار است، نموده برداری آب و رسوبات استفاده از این ایستگاه و در مورد شاه میگو از 5 ایستگاه انجام گرفت. بسیار زیست‌سنجی و توزین شاه میگو، هضم شیمیایی نموده‌ها طبق روش استاندارد بین المللی صورت گرفت. توسط دستگاه جذب اتمی میزان عنصر سنگین شامل کروم، رود، سرب، نیکل و وانادیوم در آب، رسوبات نستر، بیست و هفتمان، اندازه‌گیری گردید.

میزان‌های میزان عنصر کروم، رود، سرب، نیکل و وانادیوم در آب‌های تالاب انزلی به ترتیب ۱/۷۳، ۰/۸۷، ۰/۹۸، ۰/۲۷ و ۰/۱۴ میکروگرم در لیتر می‌باشد که در مقایسه با استانداردهای جهانی پایه آب آشامیدنی مناسب نیست، اما برای آب‌های اپیکاری و آب‌های نوروزی مناسب می‌باشد.

هر چند که میزان عنصر سنگین در رسوبات در حد بالایی است، اما این مقدار در محدوده میزان قابل تحمیل برای آب‌زایان می‌باشد.

میزان‌های همبستگی بین اندام‌ها و وزن ثروت‌های میگو با میزان عناصر جذب و تجمع عنصر در پوست و عضله آنها وجود داشت، اما همبستگی معنی‌دار و مستقیمی بین میزان عنصر سنگین در آب و رسوبات و همچنین بین رسوبات، پوست و عضله شاه میگو در تالاب انزلی وجود دارد.

لیست کلیدی: آماسنگی، عنصر سنگین، شاه میگو، Tالاب انزلی Astacus leptodactylus

www.SID.ir
پیامدن میزان عناصر سنگین در...

موضوع

تالاب انزلی از جمله تالاب‌های ارزشمند جنوب غربی دریای خزر است که به‌دلیل شرایط خاص اکولوژی، اقتصادی، اجتماعی و تنویع گونه‌های مختلف گیاهان و جانوران آبی از اهمیت ویژه‌ای برخوردار است. وجود فاعلیت‌های مختلف شهروی، صنعتی و کشاورزی در نواحی اطراف تالاب انزلی و رودخانه‌های منتهی به آن، باعث گردیده تا میزان زیادی از آلاینده‌های مختلف از جمله عناصر سنگین وارد تالاب گشته و نهایتاً وارد رسوبات بستر و در واقع محل زندگی کنفیکان با ارزشی مانند شاه میگو گردند. تجمع آلاینده‌های مختلف در آب و رسوبات بستر تالاب؛ باعث گردیده تا شاه میگو که یکی از کنفیکان با اهمیت و از گونه‌های بومی تالاب می‌باشد، در معرض خطرات احتمالی آلاینده‌های مختلف و تجمع عناصر سنگین در برونشت و عضله آنها قرار گیرد. لذا با توجه به ارزش غذاهای اقتصادی و صادراتی این گونه، ضروریت تا به تعیین میزان عناصر سنگین وانادیوم، نیکل، روی، کروم و سرب در آب و رسوبات بستر تالاب و قدرت جذب این عناصر در عضله و پوسته این کنفیک و رسوبات بستر تالاب و مقایسه آنها با استانداردهای بین‌المللی و پیش‌بینی راهکارهای مناسب برای جلوگیری از نابودی این کوسمیت آبی نادر اقدام گردند.

در زمینه تحقیق حاضر، مطالعاتی توسط امین نژاد و همکاران، ۱۳۷۳؛ امینی رنجبر، ۱۳۷۳ و برادران نوری، ۱۳۷۲، میرزاجانی و همکاران، ۱۳۷۶ و نادری، ۱۳۷۶ انجام شده است.

مواد و روش‌ها

پس از بررسی‌های مقدماتی درخصوص نحوه ورود آلاینده‌ها به تالاب انزلی و تعیین مکانهای طبیعی زندگی شاه میگو، نمونه‌برداری از آب و رسوبات از ۱۸ استگاه و از شاه میگو در اندازه‌های مختلف از ۵ استگاه در تالاب انزلی (هر استگاه بطور مداوم ۲۵ عدد که ۶ عدد بعنوان نمونه در اندازه‌های کوچک، متوسط و بزرگ انتخاب شد) و یک استگاه از سد مخزنی ارس به عنوان شاهد انجام پذیرفت. نمونه‌برداری در فصل پاییز سال ۱۳۸۰ از آب‌های سطحی تا عمق یک متری توسط بطری نانس، رسوبات بستر توسط ون و گربه و شاه میگو توسط نله‌های مخصوص انجام گرفت. یک لیتر از نمونه‌های آب هر استگاه را از صافی واپس ۶۲ عبور داده با حراط مایل‌تایم تا حد ۶۰

www.SID.ir
میلیلتر تغییر نموده، سپس به هر نمونه یک میلی لیتر اسید نیتریک ۶۵ درصد یا ۴۶/۱۳ ترمال اضافه نموده و مجدداً از صفحه عبور داده شدن و در ظرف پلی اتیلنی جهت تزریق به دستگاه جذب اتمی تگهداری گردیدند (توروز اصل، ۱۳۷۲). نمونه‌های رسوبات برسر به مدت ۲۴ ساعت در دما ۶۰ درجه سانتی‌گراد در دستگاه آون الکتریکی حراست داده شدند تا خشکی گردد. سپس از الک شماره ۴۵۰ عبور داده شدند و دو دار به کمک ۱۳۳ میکرون جداسازی گرددند. نمونه‌های جدا شده توسط هاون عقیق به صورت هموئزینه و یکنواخت در آمدهان. سپس یک گرم از هر نمونه را در ظروف پلی اتیلنی قرار داده با اسیدهای فلوئوریدریک (۷ میلی لیتر)، کلریدریک و نیتریک (هر یک ۵ میلی لیتر) و با استفاده از حمام آبی هضم کامل نمونه‌ها (بتریب پس از عمل هضم یکی پس از ۵ دقیقه) انجماد پذیرفت و با آب مقتضب به حجم ۳۰ میلی لیتر رسانیده شد (Roger & John, 1994). پس از پختن شدن شاه میگووا، نمونه‌های بوسته و عضله (عضلات تمام بدن و ضرائع و بوسته سر، سینه و شکم) پس از جداسازی، خشکی ۵۰ درجه سانتی‌گراد و هموئزینه شدند، و یک گرم وزن خشکی از هر نمونه با اسیدهای تیازاب سلطانی (۱ میلی لیتر) و پرکلریک (۷ میلی لیتر) و با برای پی‌بردن به هر گونه خطای احتمالی، کلیه مراحل فوق در یک ظرف پلی اتیلنی خالی و بدون نمونه نیز به عنوان شاهد انجماد شد و به دستگاه جذب اتمی تزریق گردید. میزان عناصر مشتقین در کلیه نمونه‌ها با ۳ بار تکرار و توسط دستگاه جذب اتمی (AAX) فیلیپس مدل ۹۵۰۱ اندازه‌گیری شد،(Van Loon, 1980). تمام مراحل آماده‌سازی نمونه‌ها، از استفاده (Analytical AR Reagent) ساخت کارخانه مرکز استفاده استفاده شد. جهت کنترل کیفیت کار آزمایشگاهی و صحت عمل آزمایشات از استانداردهای کانادایی و از روش BCSS-1 , MESS-1 آماری تحلیل واریانس و آزمون (Least Significant Difference) برای تجزیه معنی دار میزان نتایج و همچنین روشهای بررسی همگنی براي Kolmogorov-Smirnov و روش رگرسیون برای Leven Statistics Test بودند اختلاف‌ها در سطح اعتناد ۹۵ درصد و روشهای براي LD (Least Significant Difference) برای همگنی واریانس و آزمون روشهای گرگسیون برای بودست آوردن همگنی و ارتباط بین داده‌ها استفاده شد.
نتایج

نتایج حاصل از تجزیه نمونه‌های آب و رسوبات بستر تالاب از الله به تفکیک در جدول ۱ و
۳ و نتایج نجزیه بوسته و عضله شامیگو آب شیرین در جدول ۳ مشخص شده است. نتایج حاصل از
تجزیه نمونه‌های آب بیشترین میزان عناصر سنگی در ایستگاه‌های ۱۳ (انزل رگا) و کمترین آنها
در ایستگاه‌های ۵ و ۷ (کلر و باقره‌خانه) با میانگین کلی ۱/۶، ۱/۸، ۱/۵، ۵/۵ و ۷/۲ و ۹/۰/۸/۲ و
۷/۴۷ و ۷/۴۷. میکروگرم در لیتر برتی تری برای عناصر کروم، روت، سرب، نیکل و وانادیوم می‌باشد. تجزیه
نمونه‌های بوسته شامیگو کریا بیشترین میزان عنصر سنگی در ایستگاه‌های ۱ و ۵ (قنادی و
شیجان) و کمترین مقدار برای اغلب عنصر مربوط به ایستگاه ۷ (سد ارس) می‌باشد. همچنین در
نمونه‌های عضله بیشترین میزان عنصر سنگی مربوط به ایستگاه‌های ۲ و ۵ (رودخانه پیر بازار و
شیجان) و کمترین مقدار آنها غالباً در ایستگاه‌های ۶ و ۷ (سد ارس) می‌باشد. میانگین عناصر در
بوسته و عضله شامیگو تالاب از الله و سد ارس در جدول ۶ مشخص گردد. بطور کلی میزان
عناصر در بوسته بیشتر از عضله می‌باشد. نتایج حاصل از زیست‌سنگی نمونه‌ها در جدول ۶ ارائه
گردیده است.
جدول 1: میزان عناصر سنگین در آب‌های تالاب انسلی (میکروگرم در لیتر) استان گلستان

<table>
<thead>
<tr>
<th>شماره استخراج</th>
<th>نام استخراج</th>
<th>زنادیوم</th>
<th>نیکل</th>
<th>سرب</th>
<th>روی</th>
<th>کروم</th>
<th>قنادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>44</td>
<td>28</td>
<td>38</td>
<td>127</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>43</td>
<td>24</td>
<td>40</td>
<td>130</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5/3</td>
<td>38/4</td>
<td>14</td>
<td>21</td>
<td>99</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5/6</td>
<td>36/6</td>
<td>10</td>
<td>21</td>
<td>94</td>
<td>5/7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7/8</td>
<td>41/7</td>
<td>22</td>
<td>25</td>
<td>110</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7/9</td>
<td>39/3</td>
<td>19</td>
<td>24</td>
<td>100</td>
<td>4/5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>38/6</td>
<td>36/6</td>
<td>12</td>
<td>36</td>
<td>150</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>52</td>
<td>51</td>
<td>18</td>
<td>140</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>53</td>
<td>54</td>
<td>32</td>
<td>27</td>
<td>170</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>50</td>
<td>32</td>
<td>27</td>
<td>490</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>51</td>
<td>54</td>
<td>37</td>
<td>34</td>
<td>140</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>56</td>
<td>52</td>
<td>49</td>
<td>190</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>53</td>
<td>55</td>
<td>45</td>
<td>195</td>
<td>20</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>54</td>
<td>54</td>
<td>24</td>
<td>18</td>
<td>150</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>51</td>
<td>51</td>
<td>15</td>
<td>14</td>
<td>170</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>52</td>
<td>52</td>
<td>21</td>
<td>33</td>
<td>350</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>53</td>
<td>53</td>
<td>29</td>
<td>21</td>
<td>160</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>54</td>
<td>54</td>
<td>39</td>
<td>16</td>
<td>37</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>48</td>
<td>160</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>56</td>
<td>56</td>
<td>50</td>
<td>28</td>
<td>170</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>48</td>
<td>160</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>48</td>
<td>160</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>48</td>
<td>160</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>48</td>
<td>160</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲: میانگین میزان عناصر سنگین در رسواد بستر (میلیگرم در کیلوگرم) استفاده‌ای مختلف تالاب انتلی

<table>
<thead>
<tr>
<th>شماره استخراج گاه استخراج</th>
<th>کروم</th>
<th>روی</th>
<th>سرب</th>
<th>نیکل</th>
<th>راندموم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲۹۰</td>
<td>۸۵</td>
<td>۷۷</td>
<td>۶۹</td>
<td>۱۶۵/۱</td>
</tr>
<tr>
<td>۲</td>
<td>۲۸۹</td>
<td>۸۱</td>
<td>۷۵</td>
<td>۶۶</td>
<td>۱۶۳/۵</td>
</tr>
<tr>
<td>۳</td>
<td>۲۱۹</td>
<td>۵۴</td>
<td>۶۲</td>
<td>۴۲</td>
<td>۸۷/۶</td>
</tr>
<tr>
<td>۴</td>
<td>۲۵۸</td>
<td>۷۱</td>
<td>۶۰</td>
<td>۵۷</td>
<td>۱۰۲/۹</td>
</tr>
<tr>
<td>۵</td>
<td>۲۲۴</td>
<td>۷۶</td>
<td>۴۴</td>
<td>۸۰/۸</td>
<td>۱۳۰</td>
</tr>
<tr>
<td>۶</td>
<td>۲۱۶</td>
<td>۷۲</td>
<td>۳۶</td>
<td>۵۸/۲</td>
<td>۱۷۰/۱</td>
</tr>
<tr>
<td>۷</td>
<td>۲۸۸</td>
<td>۶۴</td>
<td>۲۰</td>
<td>۶۱/۸</td>
<td>۱۵۹/۳</td>
</tr>
<tr>
<td>۸</td>
<td>۲۵۵</td>
<td>۷۹</td>
<td>۴۲</td>
<td>۳۷/۸</td>
<td>۱۴۴/۲</td>
</tr>
<tr>
<td>۹</td>
<td>۳۹۰</td>
<td>۷۰</td>
<td>۵۵</td>
<td>۳۷/۴</td>
<td>۱۳۸/۵</td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۵۵</td>
<td>۴۸</td>
<td>۳۷</td>
<td>۶۴/۵</td>
<td>۱۳۸/۵</td>
</tr>
<tr>
<td>۱۱</td>
<td>۲۰۵</td>
<td>۸۱</td>
<td>۶۰</td>
<td>۷۱/۷</td>
<td>۱۵۲/۲</td>
</tr>
<tr>
<td>۱۲</td>
<td>۷۰۰</td>
<td>۶۷</td>
<td>۸۰/۷</td>
<td>۴۱/۸</td>
<td>۱۴۳</td>
</tr>
<tr>
<td>۱۳</td>
<td>۹۹۰</td>
<td>۶۶/۲</td>
<td>۱۴۲/۲</td>
<td>۳۱/۸</td>
<td>۱۲۰/۸</td>
</tr>
<tr>
<td>۱۴</td>
<td>۳۴۷</td>
<td>۸۲/۱</td>
<td>۴۴/۵</td>
<td>۳۹/۶</td>
<td>۱۲۶/۵</td>
</tr>
<tr>
<td>۱۵</td>
<td>۴۲۰</td>
<td>۶۰/۳</td>
<td>۷۹/۲</td>
<td>۵۳/۳</td>
<td>۱۶۰/۱</td>
</tr>
<tr>
<td>۱۶</td>
<td>۳۰۰</td>
<td>۳۰/۳</td>
<td>۶۳/۴</td>
<td>۹۶</td>
<td>۱۶۲</td>
</tr>
<tr>
<td>۱۷</td>
<td>۷۸۰</td>
<td>۹۸/۴</td>
<td>۶۸/۵</td>
<td>۵۶/۶</td>
<td>۱۴۹/۴</td>
</tr>
<tr>
<td>۱۸</td>
<td>۲۵۵</td>
<td>۷۰/۸</td>
<td>۳۳/۳</td>
<td>۵۵/۴</td>
<td>۱۱۳/۱</td>
</tr>
<tr>
<td>۱۹</td>
<td>۳۱۶</td>
<td>۴۸</td>
<td>۵۱/۸</td>
<td>۳۱/۸</td>
<td>۸۷/۶</td>
</tr>
<tr>
<td>۲۰</td>
<td>۳۰۳</td>
<td>۹۶</td>
<td>۱۴۲/۲</td>
<td>۳۱/۸</td>
<td>۱۸۰/۱</td>
</tr>
<tr>
<td>۲۱</td>
<td>۲۲۴</td>
<td>۹۹/۰</td>
<td>۵۹/۵</td>
<td>۵۶/۹</td>
<td>۱۳۹/۱</td>
</tr>
<tr>
<td>۲۲</td>
<td>۲۱۲/۴</td>
<td>۶۵/۶</td>
<td>۳۷۷/۲</td>
<td>۵۸/۶</td>
<td>۲۳/۸۲</td>
</tr>
</tbody>
</table>

انحراف معیار

www.SID.ir
جدول ۳: میانگین کلی میزان عناصر سنجین (میلیگرم در کیلوگرم وزن خشک) در پوسته و عضله

<p>	شماره	محل محل محل محل محل محل محل	پوسته عضله پوسته عضله پوسته عضله پوسته عضله پوسته عضله پوسته عضله	پوسته عضله پوسته عضله پوسته عضله پوسته عضله پوسته عضله پوسته عضله	پوسته عضله پوسته عضله پوسته عضله پوسته عضله پوسته عضله پوسته عضله
۱	۳۷۵	رودخانه قناری	۴۳۵/۱۱۲	۵۳۵/۱۱۲	۵۳۵/۱۱۲
۲	۴۳۵	رودخانه پریزا	۴۳۵/۱۱۲	۴۳۵/۱۱۲	۴۳۵/۱۱۲
۳	۳۸۵	رودخانه سیاه رشیان	۳۸۵/۱۱۲	۳۸۵/۱۱۲	۳۸۵/۱۱۲
۴	۳۳۵	رودخانه کلر	۳۳۵/۱۱۲	۳۳۵/۱۱۲	۳۳۵/۱۱۲
۵	۲۸۵	رودخانه شبیجان	۲۸۵/۱۱۲	۲۸۵/۱۱۲	۲۸۵/۱۱۲
۶	۱۸۵	سد ارس (نر)	۱۸۵/۱۱۲	۱۸۵/۱۱۲	۱۸۵/۱۱۲
۷	۹۵	سد ارس (ماده)	۹۵/۱۱۲	۹۵/۱۱۲	۹۵/۱۱۲
۸	۱۸۵	حداقل	۱۸۵/۱۱۲	۱۸۵/۱۱۲	۱۸۵/۱۱۲
۹	۸۵	حداقل حداکثر	۸۵/۱۱۲	۸۵/۱۱۲	۸۵/۱۱۲
۱۰	۳۸۵	میانگین کل	۳۸۵/۱۱۲	۳۸۵/۱۱۲	۳۸۵/۱۱۲
۱۱	۳۱۵	میانگین در تلالاب انزلی	۳۱۵/۱۱۲	۳۱۵/۱۱۲	۳۱۵/۱۱۲
۱۲	۳۸۵	انحراف معیار در تلالاب انزلی	۳۸۵/۱۱۲	۳۸۵/۱۱۲	۳۸۵/۱۱۲
<table>
<thead>
<tr>
<th>ماه</th>
<th>روز</th>
<th>آمار</th>
<th>ماه</th>
<th>روز</th>
<th>آمار</th>
<th>ماه</th>
<th>روز</th>
<th>آمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
</tr>
<tr>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
</tr>
<tr>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
</tr>
<tr>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
</tr>
<tr>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
</tr>
<tr>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
<td>۱۰۰۳</td>
</tr>
</tbody>
</table>
بحث

نتایج حاصل از تجزیه نمونه‌های آب در 18 استانگاه مختلف در بخش‌های شرقی، غربی، جنوبی، مرکزی و همچنین در روستاهای (آب‌راه‌های خروجی) تالاب انزلی با بانک آنتی‌آنتی‌کمره که حداکثر میزان عنصر کروم، روی، سرب، نیکل و وانادیوم در آب‌های انتلی رودگا (ایستگاه شماره 13) تجمع یافته و بطریب 20، 50، 150 و 5 میکروگرم در لیتر می‌باشد. حداکثر میزان عنصر سنگین به ترتیب در آب‌های استیگه کلکس و سیاه درویشان بوده و میانگین کلی این عنصر در آب‌های تالاب انزلی گویای Cr<Pb<Ni<V<Zn می‌باشد. بیشترین میانگین میزان سرب و کروم در آب‌های بخش شرقی تالاب و کمترین میانگین میزان آن در بخش مرکزی تالاب مشاهده گردیده، که باتوجه به فعالیت‌های مختلف انسانی و توزیع و استقرار صنایع مختلف (از قبیل نساجی گیلان، باتری سازی پارس خزر و...) در محدوده بخش شرقی تالاب، می‌توان منبع اصلی آلودگی و عوامل مؤثر برافراش سرب و کروم در این ناحیه را بدلیل ورود غیرمستقیم فاضلاب‌های صنعتی دانست. بیشترین میانگین میزان عنصر روی، نیکل و وانادیوم در آب‌راه‌های خروجی تالاب (ایستگاه‌های 13 و 14) با میانگین بطریب 18 و 5 میکروگرم در لیتر می‌باشد، که در این انتفاش در آب‌های این ناحیه می‌تواند، تاثیر گذاری روی و حجم زیاد آلانه‌ها در آن تا حدی آلودگی بهبودی و تسرد خودروها در نزدیکی این منطقه و همچنین تردید قایق‌ها و کشتی‌های تجاری به بند انزلی و آب‌های محدوده آن و ورود و افزایش بخشی عنصر سنگین در این منطقه باشد (نوروز‌اله، 1372). از طرفی چون عنصر کروم و سرب (مختصاً کروم) از حلالیت کمتری نسبت به دیگر عنصر برخوردار می‌باشد (Bowen، 1979)، میزان آنها به صورت محلول در آب‌های تالاب انزلی نیز پایینتر بوده و چون عنصر روی در پوسته زمین زیاد است و از حلالیت نسبتاً خوبی نیز برخوردار می‌باشد، میزان آنها در آب‌های تالاب نسبت به دیگر عنصر بیشتر می‌باشد. مقایسه میانگین میزان عنصر سرب، کروم، روی و وانادیوم در آب‌های تالاب انزلی با استانداردهای ارائه شده توسط سازمان بهداشت جهانی و مؤسسه استاندارد ایران نشان می‌دهد که آب‌های تالاب انزلی برای مصرف شرب انسان مناسب نبوده و اما می‌تواند در امر کشاورزی، آبزی‌پروری و توزیع صنعتی مورد استفاده قرار

www.SID.ir
سنجهز میزان عناصر سنگین در... پایداری و همکاران

گیره.

رسوبات بستر عمدته تینه بخش دیگرنده و در واقع ذخیره کننده آلاینده‌های مختلف مخصوصاً عناصر سنگین در اکوسیستم‌های آبی می‌باشند. روند تجمیع فلزات در رسوبات انزیلم طبق نتایج بدست آمده به ترتیب عبارت است از: Ni<Pb<Cr<V<Zn

و بدلیل تراکم فعالیتهای کشاورزی، شهری و صنعتی در محدوده شرقی تالاب، میزان آنها در رسوبات بخش شرقی آن و سپس با قرار گرفتن در فرآیند تنفسی مواد معلق، میانگین میزان آنها در بخش شمالی یا آبواهای خروجی تالاب (ایستگاههای 13 تا 18) نسبت به دیگر مناطق افزایش یافته است. حداکثر میزان سرب و روح در رسوبات ایستگاه شماره 13 (انزیلم رودا) و حداقل آنها در رسوبات محل تلاقی رودخانه‌های جنوبی به تالاب تجمع یافته است. در عین حالی که بیشترین میزان سرب و روح در رسوبات انزیلم رودا تجمع یافته، اما کمترین میزان نیکل در این ایستگاه مشاهده می‌گردد و در رودخانه پسخان که دارای حداکثر میزان وانادیوم در رسوبات می‌باشد، حداقل میزان روح در این ایستگاه وجود دارد که این خود، بیانگر عدم همبستگی این عناصر به یکدیگر و عدم داشتن منبع یکسان آنهاست. حتی رسوبات منطقه سیاه کنیم (ایستگاه شماره 9) که یک منطقه حفاظت شده می‌باشد، نیز دارای مقدار نسبتاً بالایی از عناصر کروم، روح، سرب و وانادیوم بوده و با عنصر موجود در رسوبات منطقه شمالي آن (بخش مکزیک) تفاوت چندانی ندارد، اما در شمالي‌ترین بخش تالاب انزیلم، میزان عناصر در رسوبات بستر رگها مخصوصاً در انزیلم رودا و پری‌بازار رودا به حداکثر میزان خود می‌رسد، که دلیل عمدته آن فعالیتهای مختلف انسانی در آن محدوده و تاثیرگذاری جریان‌های خروجی تالاب و جریانها و امواج ساحلی خزر بر یکدیگر و در نتیجه تجمع عناصر در رسوبات این منطقه می‌باشد. البته نتایج حاصل از تجزیه رسوبات بستر تالاب انزیلم در مقایسه با استاندارد ارائه شده برای رسوبات که مناسب با شرایط محیطی کنفیزیان می‌باشد، نشان داده است که میزان برخی عناصر موجود در رسوبات تالاب انزیلم قدری بیش از میزان و حد قابل قبول برای زندگی کنفیزیان می‌باشد، اما خوشبختانه میزان آلودگی (عناصر سنگین) در آنها به حد غیر قابل تحمیل و کشنده‌ای برای کنفیزیان نرسیده است.
در ضمن نتایج حاصل از تجزیه نمونه‌های آب و رسوبات بستر در ایستگاه‌ها و یا در بخش‌ها و قسمت‌های مختلف تالاب انزلی، بیانگر همبستگی مناسب و رابطه مستقیم بین این دو فاصله است و عدم‌اش در اکثر مناطق با افزایش عناصر سنگین در آب، افزایش میزان آنها در رسوبات مشاهده می‌گردد.

نتایج حاصل از تجزیه پوسته و عضله نمونه‌های شاه میگو در اندازه و وزنهای مختلف در تالاب انزلی و سد ارس، می‌بیند عدم تأثیر گذاری اندازه و وزن شاه میگو بر میزان تجمع عناصر کروم، رودی، سرب، نیکل و وانادیوم در عضله و پوسته این گونه می‌باشد. مقایسه میزان جذب و تجمیع عناصر سنگین در پوسته و عضله شاه میگوهای تالاب انزلی و سد ارس بیانگر حداکثر میزان عناصر سنگین در شاه میگوهای تالاب انزلی و حداقل میزان آنها در شاه میگوهای سد ارس می‌باشد. ضمن اینکه میزان میزان جذب و تجمیع عناصر سنگین در پوسته شاه میگوهای تالاب انزلی و داده‌های میزان آنها در شاه میگوهای سد ارس می‌باشد، ضمن اینکه میزان میزان جذب و تجمیع عناصر سنگین در پوسته شاه میگو به عضله آن می‌باشد. همچنین تجمع بیش از حد روند نسبته به دیگر عناصر در آب و رسوبات بستر منطقه مورد مطالعه و حلالیت مناسب این عنصر می‌تواند از عواملی که کنده محسوب شود. چنین نتیجه‌گیری قدری نیز در مورد اماع و احشاء ماهیان تالاب انزلی در سال 1372 توسط بورنگی در صفحه‌ای سواحل مکزیک (Mierzykowski & Carr, 1999-1998) و در درکه‌های ماساچوست در سال (Martin et al., 2000) پدید آمده است. نتایج حاصل از تجزیه نمونه‌های شاه میگو تالاب انزلی و جذب و تجمیع عناصر در پوسته و عضله آنها؛ نشان داده است که میزان آلودگی در ایستگاه‌های نمونه‌برداری (ورودی رودخانه‌های مورد نظر به تالاب) و در پوسته و عضله شاه میگو از بخش شرقی به جنوب و جنوب غربی، روند نزولی داشته و بیشترین میزان جذب و تجمیع عناصر در پوسته و عضله شاه میگوهای بخش شرقی تالاب انزلی می‌باشد، که دلیل آن ضعف وجود فعالیت‌های مختلف شهری، صنعتی و کشاورزی در این تابعه و تاثیر گذاری آن بر اکوسیستم آن با اکوسیستم آبی این ناحیه و مخصوصاً آبیان آن با تأکید بر کنترل باند شاه میگو باشد. چنین نتیجه‌گیری قدری توسط دیگر محققین کوویمبو و Martin et al., 1998-99; Mierzykowski & Carr, 2000; Batley, 1999; 1377 و Blevins & Pancorbo, 1986 نیز به اثبات رسیده است. میزان رشد طولی و وزنی شاه میگو با آنچه که در سال 1377 توسط کوویمبو و حسین بور؛ گزارش گردیده، تفاوت چندانی
ندارد، ولی آنچه مسلم است شاه میگویی موجود در سد ارس از وزن و طول بیشتری نسبت به شاه میگوی تالاب انزلی بخوردارند. ضمناً هیچگونه همبستگی بین اندازه وزن و میزان جذب و تجمع عناصر سنگین در پوسته و عضله آنها وجود ندارد. چنین نتیجه گیری توسط دیگر محققین (Martin et al., 1999-2001) نیز به اثبات رسیده است. میزان عناصر سنگین در عضله شاه میگوی منطقه تحقیقاتی با استاندارد سازمان غذایی و دارویی آمریکا بیانگر آن است که غلظت عناصر سنگین در شاه میگوی آب شیرین منطقه مورد مطالعه در حد قابل قبولی بوده و برای مصرف انسان مناسب می‌باشد.

منابع
امین نژاد، ب.؛ امیدی، م.؛ حسینی، س. ح. و صادقی، الیف، 1373. بررسی خواص فیزیکی و شیمیایی آب و رسوبات تالاب انزلی. فصلنامه دریای خزر، شماره 12، صفحات 31 تا 39.
امین رنجی، غ. 1373. بررسی میزان تجمع فلزات سنگین (رو، سن، نیکل، سرب، کادمیوم) در رسوبات سطحی تالاب انزلی. مجله علمی شیلات ایران، شماره 3، صفحات 5 تا 27.
برادران نیویو، ش. و. 1372. بررسی پراکنش شاه میگو در دریای خزر (منطقه بندر انزلی). مجله علمی شیلات ایران، شماره 3، صفحات 13 تا 22.
بی نام. 1371. استاندارد خروجی فاضلابها. سازمان حفاظت از محیط زیست، دفتر آموزش زیست محیطی، تهران. 15 صفحه.
پورنگ، ن. و. حسینی پور، ن. 1372. بررسی تجمع زیستی فلزات سنگین در نقاط مختلف دوگونه از منابع غلیب تالاب انزلی با توجه به چاپی‌های تقیبی آنها در زنجیره و شرایط زیست محیطی. پایان‌نامه کارشناسی ارشد شیلات، دانشگاه جهانی تهران. 87 صفحه.
کرمی‌ور، م. و حسینی پور، ن. 1377. بررسی پراکنش درباره شاه میگو آب شیرین تالاب انزلی. مجله علمی شیلات ایران، سال نهم، شماره 1، بهار 1379، صفحات 69 تا 64.
میرزا جانی، ع.؛ یوسف زاده، ال. و قنعان، الیف، 1377. کنفدراسیون میوه تالاب‌های ایران و ارتباط

www.SID.ir

