تولید سِس از کیلکای دریایی خزر به روش سنتی و صنعتی
با استفاده از آنزیم‌ها و باکتری‌های پروتولیتیک

سهراب میئینی(۱) و اناوشه کوچکان صبور(۲)

dr-s-moini@yahoo.com

۱-دانشکده کشاورزی دانشگاه تهران، کروه علوم و صنایع غذایی، کرج
۲- انسیستو تحقیقات بینالمللی مامیان خاویاری، رشت، صندوق پستی: ۴۱۶۳۶-۳۴۴۴۴
تاریخ دریافت: آبان ۱۳۸۰
تاریخ پذیرش: آبان ۱۳۸۱

چکیده
در این تحقیق تولید سِس از ماهی کیلکا با استفاده از ماهی کامل، ماهی سر زده شکم خالی و ماهی کامل و بخته شده در نمونه‌های سنتی، آنزیمی، باکتریایی و آنزیمی باکتریایی مورد بررسی قرار گرفت. تغییرات pH در مراحل تولید سِس به روش سنتی بین ۷/۵ تا ۵/۶ بود. اما در سِس‌های تولیدی که به کمک آنزیم و باکتری‌ها و آنزیم‌های باکتریایی تولید گردید تغییرات pH بین ۵/۶ تا ۷/۵ بود.

در سِس تولیدی در نمونه سنتی مقدار پروپتین، درصد رطوبت و بتن تریب برای TVN در سِس تولیدی در نمونه‌های بین ۶۲/۱ تا ۷۳/۵ درصد و ۲۰۴/۹ تا ۱۷۱/۵ میلی‌گرم در ۱۰۰ گرم نمونه بود. در نمونه آنزیمی باکتریایی بتن تریب ۱۴ درصد و ۴۶ میلی‌گرم در ۱۰۰ گرم نمونه، در نمونه باکتریایی بتن تریب ۱۲ درصد و ۴۶ میلی‌گرم در ۱۰۰ گرم نمونه و نمونه آنزیمی باکتریایی ۱۳/۴ درصد و ۴۶/۱ میلی‌گرم در ۱۰۰ گرم نمونه بود. مقدار آن نیز در سِس‌ها با توجه به فاصله بین بتن تریب در سِس‌های سنتی با توجه به فاصله بین بتن تریب در سِس‌های تولیدی با کمک آنزیم و باکتری‌ها و باکتری‌های آزمایشی تولید گردیده است.

شمارش کلی میکروبا در تمام نمونه‌ها در بالاترین یک تعداد میکروبا را و در سِس‌های کمتر از بالاترین پاس کرد. در سِس ماهی کامل، بالاترین پاس میکروبا و در سِس ماهی یاک شده در تیمارهای مختلف کمترین‌بنابراین با اکثریت را داشته است.

www.SID.ir
تلیف محسوب گوشی‌های میکروپلاستیک، باکتری، ماهی کیپکا، دریای خزر

مقدمه

تلیف مواد غذایی در حال افزایش است اما بوی دلخواه رشد جمعیت رانندگان تولید مواد غذایی در حال کاهش است. در بیشتر کشورهای در حال توسعه، کمبود پروتئین وجود دارد یعنی بازار مصرفی به ایجاد روش‌هایی جهت تولید مواد غذایی پروتئینی احساس می‌گردد. ماهی در اکثر کشورها خصوصاً کشورهای آسیای جنوب شرقی بعنوان بته‌ترين منبع تأمین پروتئین حیوانی به حساب می‌آید (Amanoc, 1962). محصولات تخمیری با توجه به قیمت ارزان، آماده سازی کم خرج و قابلیت هضم و جذب بالا می‌تواند راه حل خوبی برای جبران پروتئین مورد نیاز باشد. بعنوان مثال در کامبوج حدود 2/5 درصد از مجموع پروتئین خوراکی مردم از نسل ماهی مشتاق شده است (Amanoc, 1962) که میزان قابل توجهی می‌باشد. با توجه به اینکه فرآیند تخمیر یک فرآیند بیوشیمیایی است، بررسی‌های وسیعی صورت بذیرفته تا بر سرعت، کمیت...

نتایج کلیدی: آلزایم پروتئین‌های اکثریت میکروپلاستیک، باکتری، ماهی کیپکا، دریای خزر

تیمار و دمای مناسب برای هیدروژن‌آبایر سری‌سازی از پارا‌تروپهای مرموز فرآیند تولید

ماسیب موجه است. بروز نمودن آن‌های خوراکی و میکروپلاستیکی در کوتاه‌ترین زمان ممکن در مرحله شروع است. با توجه به اینکه نمایندگان از TVN تولید شده در هم استفاده باعث آورده، بنابراین مکانیزم تولید شده در سرعت بیشتری و بدون دیگر فساد در فرآورده می‌باشد. آزمایشات بعمل آمده روز آن بیانگر سلامت محصول و عاری از سموم بودن آن می‌باشد.

1 - Spore Forming Bacteria
کیفیت و پردازه عمل تخمیر بیافزاپین و در این راه موفقیت‌هایی نیز حاصل شده است. از طرف دیگر معلوم شده است که میکروارگانیسم‌ها نیز در بهبود طعم و عطر محصول تخمیری نقش دارند و امروزه محققین به‌مناطق میکروارگانیسم‌های تازه می‌گردند. در تولید ماست و یونس‌های مرغوب، میکروارگانیسم‌های مفید مانند بکر گرفته شده‌اند. از مهم‌ترین پروتئین‌های حیوانی تخمیر شده می‌توان به شیر و ماهی تخمیری شده اشاره نمود (شبیگان، ۱۳۷۵).

شکمش ماهن یک منبع برونتین برای مردم کشورهای آسیای جنوب شرقی است که بطور سنتی از اضافه کردن ۱۵ تا ۳۰ درصد و متوسط ۲۰ درصد نمک به انواع ماهی یا با اضافه‌نامودن به اندامهای اضافی آنان تهیه می‌گردد. این فرآورده درازای اساسی متفاوتی در کشورهای مختلف است، مانند باکاسانگ (۱)، نام پلا در تایلند (۲)، نوک مام در ویتنام (۳)، پانیس در فیلیپین (۴) و شیوکا در ژاپن (۵) (Hull, 1992).

گزارش داد که نش ماهی بصورت مابع در بطری فروش می‌رسد و دارای آمیتوزیدهای فراوانی ناشی از هیدرولیز بافت ماهی است که به سهولت هضم می‌شود. امکان مصرف آن در ایران پس از فرموله کردن آن با موادی مانند گوجه، فلفل قرمز، یود سیر و یپا و نزدیک کردن به ذائقه ایرانی وجود دارد (Amanoc, 1962). در مناطق مرطوب و بارانی که امکان خشک کردن ماهی وجود ندارد این فرآورده تهیه می‌شود (Jambae et al., 1996) و به جهت صدای کیلکا و عدم امکان تبدیل همه ماهی صید شده به سایر فرآورده‌ها، امکان تهیه نش ماهی از آن در شهرهای بندری وجود دارد. در این مقاله به مسائلی مانند پایین آوردن زمان تولید و هیدرولیز هره بیشتر پروتئین بقای برای استحصال نش بیشتر و بکارگیری حداکثر درصد نمک برای جلوگیری از شوری محصول و بررسی مسائل بهداشتی و آزمایشات گوناگونی که از برداشت‌های شده است. در ایران اینبو صید وزنی ماهی در دریا خزر را کلکا تشکیل می‌دهد و با توجه به تبدیل این ماهی ارزشمند به پودر ماهی، استفاده غذایی از آن حداقل ۵ تا ۱۰ درصد وزن صد

آن را تشكلی می‌دهد (معینی و سبزبانی بور، ۱۳۷۸).

1 - Bakasang 2 - Num Pata 3 - Nuc Mam 4 - Patis 5 - Shiokara
مواد و روش‌ها

ماهی بعنوان مواد خام در این پژوهش به سه روش مورد استفاده قرار گرفت: ماهی کامل، ماهی کامل یخچالی و ماهی یک پاک کرده (سرزده دمک خالی). مقدار ۲۰ کیلوگرم از هر یک از اشکال ماهی در چهار نمونه تیم مشارکتی به قرار زیر عمل اوری گردید:

۱- ماهی و نمک (سنتی) ۲- ماهی، نمک و آنزیم (آنیزیمی) ۳- ماهی، نمک و سوش میکروپی (میکروپی) و ۴- ماهی، نمک و آنزیم و میکروپ (آنیزیمی - میکروپی)

درصد وزن ماهی نمک استفاده شده و ۱۲۰ شیشه (شیشه سیب) به نرخی ۴۰ گرم ماهی استفاده گردید که در نمونه‌های نیم تولید شده (۹۰ شیشه) در ۲ اکटوبتر با دمای نسبی درجه سانتی‌گراد قرار داده شدند و پس از گذشت یک هفته انجم آمادیشات میکروپی - شیمیایی روی آنها آغاز گردید و بطور ماهانه میزان درجه هیدروپلیز نمونه‌ها با مشاهدات فیزیکی یادداشت شد و پس از گذشت یک ماه اولین استحصال شناسی از نمونه‌ها با موافق‌تیپ انجام گردید.
مدت ۳۰ دقیقه با استوریزه گرددند.

آنژیم پروتامکس در یاکت آلومینومی درب بسته به صورت پودر خشک سفید خردداری گردید. طبق مقدار بیشتری کارخانه سازنده، ۱ گرم آنژیم برای یک کیلوگرم ماهی استفاده شد. لذا برای ۱۰۰ گرم ماهی ۴ گرم آنژیم مصرف شد که این مقدار قبلاً توسط ترازوی دقيق وزن شده و در ته کاغذهای کوچک به شکوه گردید.

مخلوط آنتی‌فیت‌های پروتامکس (ب) و فلوروزیم (ف) به بیشتری حاوی نمونه بطور نصف از هر کدام (ب + ۲/۵ گرم + ف/۵ گرم) افزوده شد. آنژیم فلوروزیم ۲ گرم آنژیم برای یک کیلوگرم ماهی بوده است. سوسپنسریون پدیوکوکس در یک ارلن و سوسپنسریون میکروب لاکتوپاسیلوس در یک ارلن دیگر از قبل تهیه شده و پس از انکوباسیون به آزمایشگاه منتقل گردید و لذا با توجه به آماده بودن نمونه‌ها و باز بودن درب شهره‌های حاوی نمونه بوسیله پیپت ۵۰۰ ریخته شد. از هر یک از محتوای کشت‌های حاوی لاکتوپاسیلوس و پدیوکوکس در داخل هر شهره مجموعاً ۱۰۵ ریخته شد و سپس با تکان دادن شهره و هم زدن محتویات نمونه سعی در پخش نمونه‌ها به همه قسمت‌ها گردید. مخلوط کردن میکروب در نمونه‌ها همه در یک روز انجام گردید. با توجه به مشاورای که قبل با سازمان یژوهش‌های علمی و صنعتی شهره بود و با توجه به تجربیات قبلی، سوسپنسریون باکتری حاوی تعداد لاکم باکتری برای تأیید گردیداری در تخمیر بر روی ماهی می‌باشد. برای کشت و شمارش و نگهداری این باکتری از محیط‌های اختصاصی آگار آنها استفاده گردید که در مورد پدیوکوکس آگار سدیم استات مدل په و برای لاکتوپاسیلوس MRS بود.

در این پژوهش می‌پایه ۱۲ تیمار مورد بررسی قرار گیرد. بدلیل آزمایشات میکروبی - شیمیایی و فیزیکی که لاکم بود روي نمونه‌ها انجام گردید، می‌پایست برای هر تیمار نمونه کافی محاسبه گردد تا بتوان به راحتی این آزمایشات را متوالی‌اً انجام داد. لذا برای هر نمونه یا تیمار ۱۰ تکرار در نظر گرفته شد.
نمودار ۱: مراحل تهیه شمس از ماهی کیلکا به روش سنتی، آنزیمی-میکروپی

www.SID.ir
درب شیشه‌های حاوی نمونه پس از آمادسازی توسط پنبه استریل و کاغذ استریل پوشانده شد و با ناخ به شیشه گره زده شد و سپس کاغذ آلومینیوم به صورت آزاد بر روی آن قرار گرفت. شرایط شیشه‌های حاوی نمونه در هر حال هوایی بود.

زمان رسیدگی از زمانی آغاز می‌گردد که محتویات شیشه کاملاً دو فاصله شده است. پس از عمل فیلتراسیون تفاهیای خمیری شکل برخی‌های مانند که به آن گفته می‌شود که این نیز مانند نسبت، جدایگانه بسته‌بندی و به مصرف انناسی می‌رسد.

اندازه‌گیری pH، وزن مخصوص، درصد نمک، عصاره خشک، پروتئین کل، TN و TVN با استفاده از روش پرسون در سال ۱۹۹۸ انجام شد. آزمایش‌های میکروبی بر اساس روش Adams & Moss در سال ۱۹۹۷ صورت گرفت و آزمایش‌های ارگانولوژیک با استفاده از روش Chayonvan, 1993 بر روی نمونه‌ها انجام گرفت.

نتایج

نتایج آزمایش‌های ارگانولوژیکی روی سنس تهیه شده از ماهی کیلکا بر روی نمونه‌های سنس تهیه شده به روش میکروبی، آنزیمی و میکروپویی و سنتی انجام پذیرفت که در جدول ۱ آورده شده است.

طبق بررسی‌های انجام گرفته راندمان تولید سنس از ماهی کیلکا ۴۰ تا ۵۰ درصد وزن ماهی و خمیر بسته آمدی برابر ۲۵ تا ۳۵ درصد وزن ماهی بوده است. زمان تهیه سنس از ماهی کیلکا ۶ ماه بود.

این تحقیق نشان داد که مرحله رسیدگی ماهی کیلکا اثر مستقیمی در مقدار سنس تولید شده از آن دارد. بطوریکه در زمان رسیدگی کامل ماهی میزان سنس بسته آمد ۶۰ درصد از کل وزن ماهی می‌باشد. در جدول ۲ نتایج آزمایش‌های فیزیکی و شیمیایی که بر روی تیمارهای مختلف انجام گردید نشان داده شده است.
جدول 1: نتایج آزمایش‌های ارگانولیپیدی بر روی نمونه‌های سم‌ماهی کیلکا

<table>
<thead>
<tr>
<th>شوری</th>
<th>تخم</th>
<th>رنگ</th>
<th>امتیاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمونه‌های منهایی</td>
<td>ماه اول</td>
<td>نمونه‌های میکروبی</td>
<td>نمونه‌های رئیسی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2: شاخص‌های فیزیکی و شیمیایی سم‌ماهی کیلکا در تیمارهای مختلف

<table>
<thead>
<tr>
<th>نمونه‌ها</th>
<th>درصد پروتئین</th>
<th>TN</th>
<th>TVN</th>
<th>وزن درصد عصاره</th>
<th>pH</th>
<th>STS</th>
<th>STS</th>
<th>ویژه‌ای</th>
<th>ویژه‌ای</th>
<th>ویژه‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل رطوبت</td>
<td></td>
</tr>
<tr>
<td>56/2</td>
<td>1/7</td>
<td>18/3</td>
<td>3/2</td>
<td>3/7</td>
<td>4/7</td>
<td>2/1</td>
<td>7/4</td>
<td>7/4</td>
<td>7/4</td>
<td>7/4</td>
</tr>
<tr>
<td>56/2</td>
<td>1/7</td>
<td>18/3</td>
<td>3/2</td>
<td>3/7</td>
<td>4/7</td>
<td>2/1</td>
<td>7/4</td>
<td>7/4</td>
<td>7/4</td>
<td>7/4</td>
</tr>
<tr>
<td>56/2</td>
<td>1/7</td>
<td>18/3</td>
<td>3/2</td>
<td>3/7</td>
<td>4/7</td>
<td>2/1</td>
<td>7/4</td>
<td>7/4</td>
<td>7/4</td>
<td>7/4</td>
</tr>
</tbody>
</table>
در آزمایش‌های شیمیایی همان‌طور که در نمونه‌گیری در طول فاصله‌ای مرتفع، میزان ازت کل (TN) ابتدا کم بوده و بسیاری افزایش نشان می‌دهد و در انتهای فرآیند ثابت می‌ماند.

مطالعه نمونه‌ای ۳۰ که تغییرات TVN را در طول فرآیند نشان می‌دهد، بیانگر این نکته است که در ابتدا بعلت کمی فعالیت‌های بیوشیمیایی و باکتری‌ها هیدرولیز مواد ازت دار آماده بوده و در نتیجه مقدار تولید TVN در ابتدا کم بوده و با پیشرفت زمان و افزایش فعالیت‌های شیمیایی و بیوشیمیایی افزایش می‌یابد و در نهایت ثابت می‌گردد. نتایج آزمایش‌های میکرو‌بی‌انجام شده بر روی ۳ تیمار، تولید نس خشک ماهی کیلکا در نمونه‌های ۳ و ۵ اورده شده است. همان‌طوری که از نمونه‌ها مشاهده می‌گردد در ابتدا تولید نس، تعداد میکروگانیم‌ها بطور طبیعی بالا می‌یابد. اما پس از گذشت زمان و جذب تدریجی نمک، تعداد باکتری‌ها به‌دست‌افت می‌کند. غلظت بالایی نمک در محیط، شرایط مناسب برای رشد باکتری‌ها نمک دوست را مهیا نموده که باعث افزایش مجدد تعداد باکتری‌ها می‌گردد. با جذب بیشتر نمک توسط پروتئین و در نتیجه غیرقابل مصرف شدن آن توسط باکتری‌ها نمک دوست تعداد این باکتری‌ها کم می‌شود. علت کاهش باکتریها در طول عمل تخمیر و زمان نگهداری نس تشیه شده را می‌توان به مقدار بالای نمک (۱۷ تا ۱۹/۴ درصد نمک) (جدول ۲) در نس تولید شده از کیلکا نسبت داد.
نمودار 3: میانگین TVN در نمونه‌های مورد بررسی به‌حسب ماه

نمودار 4: میانگین شمارش کلی میکروبی در ۴ سنس ماهی کیلکا بر حسب نوع
بحث
نتایج این تحقیق برای تولید سنس از ماهی کیلکا ناشان داد که بازده تولید سنس در هر چهار فرآوری بستگی به بیشترتی عمل تخمر و هیدرولیز ماهی دارد. از طرف دیگر سرعت هیدرولیز ماهی تابعی از عوامل مانند: چگونگی آماده سازی نمونه‌ها، مقدار نمک اضافه شده، باکتری و آنزیم می‌باشد. لذا بنا بر کارگیری استراتژی‌های مانند آنزیم بروتامیکس و فلوروزیم و سواش میکروبی در تسهیل عمل تخمر اثر چشمگیری داشتند. مثالاً سنس تهیه شده توسط اضافه کردن آنزیم و مخلوط آنزیم و میکروب به ماهی کیلکای کامل و ماهی کیلکای پاک شده باعث گردید که پس از یک ماه سنس تولید شود و قابل بهره برداری باشد. در این دو دمومه از 400 گرم ماهی بطور متوسط 175 سانتیمتر مکعب سنس و 150 گرم تلفاه ماهی بدست آمد. در صورتی که برای تهیه سنس از ماهی کامل و یک ماه نمود و پس از آن امکان فیلتر کردن نمونه و پدست آوردن سنس وجود داشت، ماه صبر نمود و پس از آن امکان فیلتر کردن نمونه و پدست آوردن سنس وجود داشت. و همکاران در سال 1989 یا بکار بردن سنس سوبای و آنزیم بارای تهیه سنس از ماهیان ریز Soo Kyo
بته تایبیدی نزدیک به نتایج بدست آمده در این بررسی دست یافته‌ایم.

و همکاران در سال ۱۹۹۶ با هدف سرعت بخشیدن به عمل تخمیر ماهیان ریز و تولید Janbae نس در زمان کوتاه‌تر، با بکار بردن انواع روش‌های نمونه‌برداری، اضافه نمودن انرژی‌های پروتونولیتیک و باکتری‌های نمک دوست و بکار بردن مقادیر مختلف نمک، قادر به تولید نس از ماهیان ریز پلاژک مثل ساردن و آنچه در مدت سه ماه گردند. بررسی به روش مقدار پروتئین موجود در نس‌های بدست آمده از ماهی کیلکا نشان داد که نس تولید شده در مدت یک ماه، از نظر پروتئین نسبتاً فقیر بوده و مقدار آن ۸ درصد می‌باشد. ولی نس تولید شده توسط و همکاران در سال ۱۹۹۶ دارای ۱۲ تا ۱۱ درصد پروتئین بود. اما اگر زمان لازم برای کامل شدن عمل تخمیر حداقل شش ماه در نظر گرفته شود، مقدار پروتئین نس بدست آمده از کیلکا بین ۱۲۵۳ تا ۱۲۶۵ درصد خواهد بود.

تحقیقات

tولید مقدار آمینواسید در نس تولید شده از ماهیان آنجویی اثر مهمی دارد بطوریکه مقدار آمینواسیدها در ماه اول از ۱۹۹۷ به ۱۴۶۵ میلی‌گرم در ۱۰۰ میلی‌لیتر از سپس از ۱۲ ماه افزایش یافته. مقدار TVN در ماه‌های نازه مورد استفاده برای تولید نس از ۱۲ ماه ۱۰۰ میلی‌گرم در ۱۵ میلی‌لیتر افزایش یافته. مقدار TVN در نس ماهی با گذشته زمان رو به افزایش گذاشته بطوریکه پس از ۹ ماه گرم بود. پس از یک ماه که از عمل تخمیر گذشته مقدار آن به ۵۵ میلی‌گرم در ۱۰۰ گرم رسید.

افزایش مقدار TVN در سپس ماهی با گذشته زمان رو به افزایش گذاشته بطوریکه پس از ۹ ماه مقدار آن به ۲۵۰ گرم در ۱۰۰ گرم رسید و سپس مقدار آن ثابت ماند. مقدار Brای TVN ماه ماهی تا به شده به روش سنتی، آنزیمی، باکتری و آنزیمی - باکتری بترتیب ۱۷/۶، ۱۹/۸ و ۲۰/۶ میلی‌گرم در صد گرم از نمونه می‌باشد. مقایسه نتایج این دو تحقیق با هم‌دیگر نشان می‌دهد که تولید مقدار نسبتاً بالایی TVN در نس ماهی نمی‌تواند به‌علت آن تلقی شود.

Sheikh & Shah, 1974, Mustafa, 1966, Proctor & Lahiry, 1955, محققین دیگری مانند ۱۹۵۰/۴، Shewan, 1۰۵۵، معینی و می‌سیبانی، ۸۱۳ که بر روی ماهی نمک سود تحقیق نموده‌اند از بالا TVN رفتن مقدار TVN در این فراوردگی را داده‌اند. آنان معتقدند که عامل اصلی بالا رفتن TVN در این فراوردگی شبکه‌شنafd نری پروتئین در اثر حرارت به مولکولهای کوچک آماده است و نیز وجود ازتهای غیرپروتئینی می‌باشد. در تولید نس هم بعلت عمل تخمیر، TVN
نتایج این بررسی روی فلور میکروبی سنس تهیه شده از ماهی کیلکا نشان می‌دهد که باکتری‌های بی‌پدیکوکوس، لاکتوپاسیلوس و استافیلوکوک در ابتدا شروع تخمیر در محیط وجود داشته و در سرعت بخشیدن به عمل تخمیر مؤثرند. اما بعد از یک هفته باکتری‌های لاکتوپاسیلوس از تعداد زیادی از نمونه ناپیدا گردید. احتمالاً علت آن را می‌توان هالوفیل نبودن این باکتری‌های دانست.
باکتری‌های بی‌پدیکوکوس و استافیلوکوک عملاً دو باکتری دائمی در محیط سنس بودند. نتایج شمارش میکروبی نشان داد که تعداد باکتری استافیلوکوک در تمام نمونه‌ها از شمارش بیشتری نسبت به باکتری بی‌پدیکوکوس برخوردار بود. بالاترین شمارش میکروبی، در هفته هشتم مشاهده شد. پس از آن تعداد باکتریها به تدریج کم گردیده و بالاخره در هفته دوازدهم به بعث تعداد آنها ثابت و نزدیک به 10^4 در میلی‌لیتر رسید.
نتایج تحقیقاتی روی فلور میکروبی سنس ماهی در مراحل مختلف تخمیر ماهی در فیلیپین انجام دادند. نتایج نشان داد که تعداد باکتری‌ها در هر گرم در ماهی تازه 10^6 بود و با فاصله به اضافه نمودن 18 تا 10^4 درصد نمک، تعداد باکتری‌ها به 10^9 و پس از یک هفته به بیشترین تعداد 10^2 پس از هفته تعداد باکتری‌ها ثابت و به 10^2 تعداد در گرم رسید. آنها نتیجه گرفتند که بیشتر باکتری‌های فاسد کننده در ماهی بعلت درصد بالای نمک در محیط سنس از بین رفته و فقط باکتری‌های اسنتروپاتی نمک، در محیط باقی ماند. در بررسی دیگر، که توسط Amonrntiparat در سال 1979 بر روی فلور میکروبی سنس ماهی انجام شد، نتایج آن بیانگر این نکات هستند که تعداد باکتری‌ها از روز سوم تخمیر شروع به ازدیاد نمودند و در سیزدهمین روز تعداد آنها به بیشترین رقم 10^5 باکتری در گرم رسید. باکتری‌های نشان‌آورنده شده در این مرحله عبارت بودند از بی‌پدیکوکوس (Staphylococcus Spp) و استافیلوکوک (Pediococcus halophilus) در این سنس تعداد باکتری بی‌پدیکوکوس فلور غالب میکروبی گزارش شده است. مقایسه نتایج بدست آمده در موردخور و Hamm & Clague 1950 بیانگر این موضوع است که مقدار 10^5 درصد نمک موجود در
محيط تخمير ماهی از فعالیتهای باکتریایی فاسد کننده و مضر جلوگیری نموده و در نهایت باعث از بین رفتن آنها می‌گردد و در نتیجه باکتریهای نمک‌دومست در محيط رشد نموده و پس از رسیدن تعدادشان به حدیکر و تعادل در این سه نمونه از سوست ماهی متفاوت و بوده، مثلاً در سوست Armonrntiparat, Hamm & Clague, 1950 و 1979 به ترتیب پس از زیک هفته و سه‌هزار و سه‌هزار و سه‌هزار و سه‌هزار و سه‌هزار و سه‌هزار هفته تهیه شده توسط و سیزده روز و سه‌هزار و سه‌تزیس و سه‌هزار و سه‌ه‌مزایی‌ی بین

۹۴

www.SID.ir

