تولید سنس از کیلکای دریای خزر به روش سنتی و صنعتی با استفاده از آنزیمها و باکتری‌های پروتئولیتیک

سهراب معینی (1) و امیرشکوه کرچکیان صبور (2)

dr-s-moini@yahoo.com

1-دانشکده کشاورزی دانشگاه تهران، کروه علوم و منابع غذایی، کرج
2-انستیتو تحقیقات بین‌المللی مامیان خاویاری، رشت، پندار پستی: ۴۲۶۱۴۱۲۳۵-۳۴۴۰
تاریخ دریافت: آبان ۱۳۸۰، تاریخ پذیرش: آبان ۱۳۸۱

چکیده

در این تحقیق تولید سنس از ماهی کیلکا با استفاده از ماهی کامل، ماهی سر زده شکم خالی و ماهی کامل و یک هزار در نمونه‌های سننی آنزیمی، باکتری‌ای و آنزیمی باکتری‌ای pH مورد بررسی قرار گرفت. تغییرات pH در مراحل تولید سنس به روش سنی بین ۴/۱ تا ۷/۳ و pH بود اما در شرایط تولیدی که به کمک آنزیم و باکتری‌ها و آنزیم‌های باکتری‌ای تولید گردید تغییرات pH بین برتاریت ۵/۷، ۷ و ۸ بود.

در سنس تولیدی در نمونه سننی، مقدار پروتئین، درصد رطوبت و برتاریت برابر TVN با سنس سنی درصد، مقدار و ۲۰۰ میلی‌گرم در ۱۰۰ گرم نمونه بود. در نمونه آنزیمی ۱/۲ درصد، ۴۶ میلی‌گرم در ۱۰۰ گرم نمونه بود و در نمونه باکتری‌ای برتاریت ۱۲ درصد، ۳۲ میلی‌گرم در ۱۰۰ گرم نمونه و نمونه آنزیمی باکتری‌ای درصد و ۲۰۰ میلی‌گرم در ۱۰۰ گرم نمونه بود. در بعضی از موارد، کمترین بار میکرو‌بی‌ها ۲/۳ کلونی بالاترین میانگین نگاریم شمارش کلی میکرو‌بی‌ها بطور متوسط بین ۳/۲ تا ۴/۵ کلونی
مقدمه

تولید مواد غذایی در حال افزایش است اما بویژه نرخ رشد جمعیت، راندمان تولید مواد غذایی در حال کاهش است. در بیشتر کشورهای در حال توسعه، کمبود بروئنتیون وجود دارد یک نیاز محوری به ایجاد روشهای جدید افزایش تولید مواد غذایی بروئنتی آمیختگی می‌گردد. ماهی در اکثر کشورهای خصوصاً کشورهای اسیای جنوب شرقی بعنوان بهترین منبع تأمین بروئنتی، حیوانی به حساب می‌آید (Amanoc, 1962). محصولات تخمیری با توجه به قیمت ارزان، آماده سازی کم خرج و قابلیت هضم و جذب بالا می‌تواند راه حل خوبی برای چربی بروئنتی مورد نیاز باشد. بعنوان مثال در کامبوج حدود 715 درصد از مجموع بروئنتی خواص مرم در مصرف ماهی مشتاق شده است (Amanoc, 1962). که میزان قابل توجهی می‌باشند. با توجه به اینکه فن آینده تخمیر یک فرآیند بیوشیمیایی است، بررسی‌های وسیعی صورت بذیرفته تا بر سرعت کمیت.
کیفیت و بازده عمل تخمیر بیافزا زنده و در این راه موفقیت‌هایی نیز حاصل شده است. از طرف دیگر معلوم شده است که میکروارگانیسم‌ها نیز در بهبود طعم و عطر محصول تخمیری نقش دارند و امروزه محققین بدنام میکروارگانیسم‌های تازه می‌گردند. در تولید ماس و پنیرهای مرغوب میکروارگانیسم‌های مفید شناسایی و بکار گرفته شده‌اند. از مهم‌ترین پروتئین‌های حیوانی تخمیر شده می‌توان به شیر و ماهی تخمیر شده اشاره نمود (شایگان، 1375).

شک ماهی یک منبع بروتئین برای مردم کشورهای آسیای جنوب شرقی است که بطور سنتی از اضافه کردن 15 تا 30 درصد و متوسط 20 درصد نمک به انواع ماهی یا اضافه نمودن به اندازه‌ای اضافی آنان تهیه می‌گردد. این فرآورده دارای اساسي مفتوحات در کشورهای مختلف است، مانند باکاسانگ (1)، نام پالم در نیلند (2)، نوك مام در ویتنام (3)، بانیس در فیلیپین (4) و شیوکارا در زاین (5).

گزارش داده که شک ماهی بصورت مابین در بطری به فروش می‌رسد و دارای آمیوزاده‌های فراوان ناشی از هیدرولیز بافت ماهی است که به سهولت هضم می‌شود. امکان مصرف آن در ایران پس از فرموله کردن آن با موادی مانند گوجه، فلفل قرمز، یودر سیر و بیا و نزدیک کردن به ذائقه ایرانی وجود دارد (Amanoc، 1962). در مناطق مرطوب و بارانی که امکان خشک کردن ماهی وجود ندارد، این فرآورده تهیه می‌شود (Janbae et al.، 1996) و به جهت صيد زیاد کیلکا و عدم امکان تبدیل همه ماهی صید شده به سایر فرآورده‌ها، امکان تهیه شک ماهی از آن در شهرهای بندري وجود دارد. در این مقاله به مسائلی مانند یاباین آوردن زمان تولید و هیدرولیز هر بیشتر پروتئین بافر باید استحصال شک بیشتر و بکارگیری حداکثر درصد نمک برای جلوگیری از شوری محصول و بررسی مسائل بهداشتی و آزمایشات کنترل کیفی برداخته شده است. در ایران انبیه صید وزنی ماهی در دریای خزر را کیلکا تشکیل می‌دهد و با توجه به تبدیل این ماهی ارزشمند به پودر ماهی، استفاده غذایی از آن حداقل 5 تا 10 درصد وزن صید آن را تشکیل می‌دهد (معینی و سبنجی‌پور، 1378).
مباحث کیلکا بدلیل ظرفیت بودن و کوتاه بودن مدت ماندگاری آن در صورت بهره‌برداری صحیح می‌تواند یکی از منابع تأمین کننده بخشی از پروتئین‌های اساسی در کشور باشد. با توجه به بکارگیری مقدار زیادی از کیلکا همراه با نمک برای تخمیر، اینه خویش براى نهیه نس از این ماهی وجود دارد. البته روایتی حرارتی، درصد نمک مصرفی، مدت زمان تخمیر و استفاده از آنزیمها و میکروبهای خوراکی می‌تواند در مدت زمان تهیه، طعم، مزه، رنگ و تسريع در تخمیر سهم بسزایی داشته باشد (میکی و هاردي، 1371).

این محصول اثر درمانی روی بعضی عفونت‌های روده‌ای داشته و برای افراد مrippی که نمی‌توانند غذا را خوب چرب کنند مفید است زیرا مولکول‌های پروتئینی آن کوچکتر از مولکول‌های مشابه در ماهی تازه می‌باشد. هدف از این تحقیق مشخص کردن نحوه تولید، مدت نگهداری و بررسی فاکتورهای تغذیه‌ای و کنترل کیفی آن جهت مصرف انسانی می‌باشد.

مواد و روش‌ها

مباحث بعنوان مواد خام در این پژوهش به سه عامل مورد استفاده قرار گرفت: ماهی کامل، ماهی کامل یکه و ماهی یاک کرده (سروش شکم خالی). مقدار 20 کیلوگرم از هر یک از اشکال ماهی در چهار نمونه یک متریک به قرار زیر عمل (آوری گردید:

1- ماهی و نمک (سنتی)، 2- ماهی، نمک و آنزیم (آنزیمی)، 3- ماهی، نمک و میکروبهای میکروپتی (آنزیمی - میکروپتی) و 4- ماهی، نمک و آنزیم و میکروبهای میکروپتی (آنزیمی - میکروپتی).

درصد وزن ماهی نمک استفاده شد و 120 شیشه (شیشه شیر) به ظرفیت 400 گرم ماهی استفاده گردید که در نمودار (1) مراحل تهیه سس نشان داده شده است. تمام نمونه‌های تهیه شده (120 شیشه) در 5 انکوباتور با دمای تابث 2 درجه سانتی‌گراد قرار داده شدند و پس از گذشت یک هفته‌انجام آزمایشات میکروپتی- بی‌کدوهای روز آغاز گردید و بطور ماه‌های میزان درجه هیدرولوژی نمونه‌ها با مشاهدات فیزیکی یادداشت شد و پس از گذشت یک ماه اولین استحصال سس از نمونه‌ها و موفقیت انجام گردید.

شیشه‌های حاوی سس پس از گذشتن از صافی، در درجه حرارت 80 درجه سانتی‌گراد به

www.SID.ir
مدت ۵ دقیقه باستوریزه گردیدند.

آنژیم پروتامکس در یکتا آلولامینوم درب بسته به صورت پویا در خشک سفید خریداری گردد. طبق مقدار پیشنهادی کارخانه سازنده، ۲ گرم آنژیم برای یک کیلوگرم ماهی استفاده شد.

لذا برای ۲۰۰ گرم ماهی ۲/۰ گرم آنژیم مصرف شده که این مقدار قبلا توسط ترازوی دقيق وزن شده و در تکه کاغذساز کوچک بسته بندی گردد.

مخلوط آنزیم‌های پروتامکس (پ) و قلی و رزیم (ف) به شیشه‌های حاوی نمونه بطور نصف از هر کدام (ب + ۸/۰ گرم + ف ۸/۰ گرم) افزوده شد. آنزیم فلیورزیم ۲ کیلو گرم آنژیم برای یک کیلوگرم ماهی، بوده است. سوپراپریون پیدیوکوس در یک ارلن و سوپرپریون میکروب لاکتوپاسیلوس در یک ارلن دیگر از قبیل تهیه شده و پس از انکوباسیون به آزمایشگاه منتقل گردد و لذا با توجه به آماده بودن نمونه‌ها و باز بودن درب شیشه‌های حاوی نمونه بوسیله پیچت ۵۰۰ ریخته شد. از هر یک از محبوب کشت‌های حاوی لاکتوپاسیلوس و پیدیوکوس در داخل هر شیشه مجموعاً ۱۵۰ ریخته شد و سپس با تکان دادن شیشه و همزمان محتویات نمونه سعی در نخش نمونه‌ها به هم قسمت‌ها گردید. مخلوط کردن میکروب در نمونه‌ها همه در یک روز انجام گرددی. با توجه به مشاوره‌ای که قبلاً با سازمان پژوهش‌های علمی و صنعتی شده بود و با توجه به تجربیات قبلی، سوپریسین باکتری حاوی تعداد لاکتوپاسیلوس و یا تایژن‌ها در تخمیر بر روی ماهی می‌باشد.

برای کشت و شمارش نگهداری این باکتری از محبوبیت اختصاصی آگار آنها استفاده گردد.

MRS

که در مورد پیدیوکوس، آگار سیدم استات میکروبی بود. در این پژوهش می‌باشد ۰ تیم مور بررسی شد. نتیجه‌آزمایشات میکروبی - شیمیایی و فیزیکی که لازم بود روي نمونه‌ها انجام گردید، می‌باشد برای هر تیم مور نمونه کافی محاسبه گردید تا بتوان به راحتی این آزمایشات را متوالی‌اً انجام داد تا برای هر نمونه یا تیم ۱۰ تکرار در نظر گرفته شود.
نمودار ۱: مراحل تهیه شکر از ماهی کیلکای به روش سنتی، آنزیمی-میکرووی
پژوهشی درباره شیشه‌های حاوی نمونه پش از آماده‌سازی توسط پنبه استریل و کاغذ استریل‌پوشانده شد و با ناحیه شیشه گره زده شد و سپس کاغذ آلومینیوم به صورت آزاد بر روی آن قرار گرفت.

شرايط شیشه حاوی نمونه در هر حال هوازي بود.

زمان رسیدگی از زمانی آشکار می‌گردد که محتویات شیشه کاملاً دوما فاز شده است. پس از عمل فیلتراسیون تفاهیای خمیری شکل پرچای می‌ماند که به آن گفته می‌شود که این نیز مانند نس، جداگانه بسته‌بندی و به مصرف انسانی می‌رسد.

اندازه‌گیری pH، وزن مخصوص، درصد نمک، عصاره خشک، برونتین کل، و TN با TVN استفاده از روش پیرسون در سال ۱۹۹۸ انجام شد. آزمایش‌های میکروبی بر اساس روش در سال ۱۹۹۷ صورت گرفت و آزمایش‌های ارگانولیتیک با استفاده از روش Adams & Moss بر روی نمونه‌ها انجام گرفت.

Chayonvan, 1993

نتایج

نتایج آزمایش‌های ارگانولیتیکی روی ماهی کیلکا بر روی نمونه‌های ماهی تهیه شده از ماهی کیلکا بر روی نمونه‌های ماهی تهیه شده به روش میکروبی، آنژیوی و میکروبی و سنتی انجام پذیرفت که در جدول ۱ آورده شده است.

طبق بررسی‌های انجام گرفته راندمان تولید نس ۴۰ تا ۵۰ درصد وزن ماهی و خمیر برست آمده برابر ۳۵ تا ۶۵ درصد وزن ماهی بوده است. زمان تهیه نس از ماهی کیلکا ۶ ماه بود.

این تحقیق نشان داد که مرحله رسیدگی ماهی کیلکا اثر مستقیمی در مقدار نس تولید شده از آن دارد. بطوریکه در زمان رسیدگی کامل ماهی میزان نس به دست آمده ۶۰ درصد از کل وزن ماهی می‌باشد.

در جدول ۲ نتایج آزمایش‌های فیزیکی و شیمیایی که بر روی تیمارهای مختلف انجام گردید نشان داده شده است.
جدول 1: نتایج آزمایش‌های ارگانولپتیک بر روی نمونه‌های شش ماهی کیلکا

<table>
<thead>
<tr>
<th>شوری</th>
<th>بر</th>
<th>طعم</th>
<th>رنگ</th>
<th>امتیاز</th>
<th>نمونه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۴۳۲۱۰</td>
<td>۲۴۳۲۱۰</td>
<td>۲۴۳۲۱۰</td>
<td>۲۴۳۲۱۰</td>
<td>۲۴۳۲۱۰</td>
<td>ماه اول</td>
</tr>
<tr>
<td>اول</td>
<td>ماه</td>
<td>دوم</td>
<td>ماه</td>
<td>ششم</td>
<td>ماه</td>
</tr>
<tr>
<td>نمونه‌های میکروبی</td>
<td>نمونه‌های آنژیمی</td>
<td>نمونه‌های میکروبی</td>
<td>نمونه‌های ششم</td>
<td>نمونه‌های میکروبی</td>
<td>نمونه‌های ششم</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

* : غیرقابل قبول
1 : رضایت‌بخش نیست
2 : نسبتاً رضایت‌بخش
3 : رضایت‌بخش
4 : خوب

5 : خیلی خوب

جدول 2: شاخص‌های فیزیکی و شیمیایی شش ماهی کیلکا در تیمارهای مختلف

| نمونه‌ها | وزن درصد | pH | TN | TVN | درصد عصاره | درصد مخصوص | شکر | مخصوص | نمک | شکر | م]|[www.SID.ir]
در آزمایش‌های شیمیایی همان‌طور که در نمودار ۲ مشاهده می‌گردد در طول فرآیند تخمير، میزان ازت کل (TN) ابتدا بهره و بندی درد افزایش نشان می‌دهد و در انتهای فرآیند ثابت می‌ماند.

مطالعه نمودار ۳ که تغییرات TVN را در طول فرآیند نشان می‌دهد، بیانگر این نکته است که در ابتدا بعلت کمی فعالیت‌های بیوشیمیایی و باکتری‌ها هیدرولیز مواد ازت دار آهسته بوده و در نتیجه مقدار تولید TVN در ابتدا کم بوده و با پیشرفت زمان و افزایش فعالیت‌های شیمیایی و بیوشیمیایی افزایش می‌یابد و در نهایت ثابت می‌گردد. نتایج آزمایش‌های میکرو‌پی انجام شده بر روی ۳ تیمار، تولید نس از ماهی کیلکا در نمودارهای ۴ و ۵ از این نشان می‌دهد. همان‌طوری که در نمودارها مشاهده می‌گردد در ابتدا تولید نس، تعداد میکرو‌گانیسم‌ها بطور طبیعی بالا می‌یابد. اما پس از گذشته زمان و جذب تدريجي نمک، تعداد باکتریها بيشت می‌کند. غلظت بالایی نمک در محیط، شرایط مناسب برای رشد باکتری‌ها نمک دوست را به‌طور هم‌اکنون که باعث افزایش مجدد تعداد باکتری‌ها می‌گردد. با جذب بيشتر نمک توسط پروتئین و در نتیجه غيرقابل مصرف شدن آن توسط باکتری‌ها نمک دوست، تعداد این باکتری‌ها کم می‌شود. علت کاهش باکتری‌ها در طول عمل تخمير و زمان نگهداري نس تهيه شده را می‌توان به مقدار بالایی نمک (۱۷ تا ۱۹/۴ درصد نمک) (جدول ۲) در نس تولید شده از کیلکا نسبت داد.
نمودار 3: میانگین TVN در نمونه‌های مورد بررسی بر حسب ماه

نمودار 4: میانگین شمارش کلی میکروبی در نمونه‌های بیولوژیکا بر حسب نوع
بحث

نتایج این تحقیق برای تولید نس در ماهی کیلکا نشان داد که بازده تولید نس در هر چهار فرآوری بستگی به بیشتری عمل تخمیر و هیدروپروتئز ماهی دارد. از طرف دیگر سرعت هیدروپروتئز ماهی تنگه از عواملی مانند: چگونگی آماده سازی نمونه‌ها، مقدار نمک اضافه شده، باکتری و آنزیم می‌باشد. لذا با اگر یا استرتره‌ای مانند آنزیم پروتامکس و قلی و رزین و سوش میکروبی در تسهیل عمل تخمیر اثر جنگ وی داشتند. مثلاً نس تهیه شده توسط اضافه کردن آنزیم و مخلوط آنزیم و میکروب به ماهی کیلکا کامل و ماهی کیلکا کافی، شده باعث گردید که پس از یک ماه نس تولید شود و قابل بهره‌برداری باشد. در این دو نمونه از 400 گرم ماهی بطور متوسط 175 سانتی‌مترمکعب نس و 150 گرم تفاله ماهی بدست آمد. در صورتی که برای تهیه نس از ماهی کامل و یکه شده که به آن آنزیم اضافه گردیده بود، برای انجام عمل تخمیر می‌باشد. چهار ماه صور نمود و پس از آن امکان فیلتر کردن نمونه و بدست آوردن نس وجود داشت.

ماه صور نمود و پس از آن امکان فیلتر کردن نمونه و بدست آوردن نس وجود داشت. و همکاران در سال 1989 با بکار بردن نس سویا و آنزیم براز تهیه نس از ماهیان ریز Soo Kyo
توییب سنس از کیلگیا دربهای خزر به...
معینی و کوچکیان صبور

به نتایجی نزدیک به نتایج بدست آمده در این بررسی دست یافتند.

و همکاران در سال 1996 با هدف سرعت بخشیدن به عمل تخمیر ماهیان ریز و تولید Janbae نش در زمان کوتاهتر، با بکار بردن انواع روش‌های نمونه‌سازی، اضافه نمودن آنزیم‌های پروتئولیتیک و باکتری‌های نمک دوست و بکار بردن مقادیر مختلف نمک، قادر به تولید نش سنس در ماهیان ریز بلافاصله مثل ساردنین و آنجوی در مدت سه ماه گردیدند. بررسی به روش مقدار پروتئین موجود در سنس‌های بدست آمده از ماهی کیلگیا نشان داد که نش تولید شده در مدت یک ماه، از نظر پروتئین نسبتاً فقیر بوده و مقدار آن 8 درصد می‌باشد. ولی نش تولید شده توسط Janbae و همکاران در سال 1994 دارای 10 تا 11 درصد پروتئین بود. اما اگر زمان لازم برای کاملاً عمل تخمیر حداقل شش ماه در نظر گرفته شود، مقدار پروتئین نش بدست آمده از کیلگیا بین 11/53 تا 12/56 درصد خواهد بود.

تحقیقات در سال 1982 نشان داد که طول زمان تخمیر، در هیدرولیز پروتئین و در تولید مقدار آمینواسید در نش تولید شده از ماهیان آنجوی اثر مهمی دارد بطوریکه مقدار آمینواسیدها در ماه اول ذا 1446 میلی گرم در 100 ملی لیتر از سس پس از 12 ماه افزایش یافته. مقدار مقدار TVN در ماهیان تازه مورد استفاده برای تولید نش سنس در 15 میلی گرم در 100 گرم و بود. پس از یک ماه که از عمل تخمیر گذشته مقدار آن به 5 میلی گرم در 100 گرم رسید. افزایش مقدار TVN در سنس ماهی بگذشته زمان رو به افزایش گذشته بطوریکه پس از 9 ماه مقدار آن به میلی گرم در 100 گرم رسید و سپس مقدار آن ثابت ماند. مقدار برای TVN سنس تهیه شده به روش سنتی آنزیمی، باکتری و آنزیمی- باکتری بترتیب 170، 164، 148/7، 206 و 205/4 میلی گرم در صد گرم در نمونه می‌باشد. مقایسه نتایج این دو تحقیق با هم در نشان معینی و سیحانی، 1988 که بر روی ماهی نمک سود تحقیق نموده‌اند از بالای Sheik & Shah, 1974, Mustafa, 1966, Proctor & Lahiry, 1955, محققین دیگری مانند, 1965, Shewan, 1965 رفت مقدار TVN در این فرآورده گزارش داده‌اند. آنالیز معتقدنده که عمل اصلی بالا رفتن TVN در این فرآورده، شکسته شدن پروتئین در اثر حرارت به مولکول‌های کوچک آمیانو اسید و نیز وجود ازتهای غیرپروتئینی می‌باشد. در تولید نش هم بعلت عمل تخمیر، www.SID.ir
نتایج این بررسی روز فلور میکروبی نمایش داده شده از ماهی کیلکا نشان می‌دهد که باکتری‌های بیدیکوکوس، لاکتوبراسیلوس و استافیلواکوس در ابتدا شروع تخمیر در محيط وجود داشته و در سرعت بخشیدن به عمل تخمیر مؤثرند. اما بعد از یک هفته باکتری لاکتوبراسیلوس از تعداد زیادی از نمونه ناپدید گردید. احتمالاً چنین علت آن‌ها می‌توان هالوفیلی نبودن باکتری دانست.
باکتری پدیکوکوس و استافیلواکوس عملاً دو باکتری دائمی در محيط سیستم بودند. نتایج شمارش میکروبی نشان داد که تعداد باکتری استافیلواکوس در تمام نمونه‌ها از شمارش پیش‌تری نسبت به باکتری پدیکوکوس بستگی دارد. با این چگونگی در شمارش میکروبی با افزایش زمان، تعداد باکتریا به 10^5 در 15 درصد می‌رسد. این نشان‌دهنده این است که در مدت زمان نمودن تعداد باکتریا در امکان نیست.
نتایج حاکی از این است که تعداد باکتریا در هر گرم در ماهی تا 10^6 گرده و بمایه به وجود آمد و با افزایش زمان محدودیت شد.
در سال 1950 تصویبی که روی فلور میکروبی نمایش داده شده، نتایج حاکی از این است که تعداد باکتریا در هر گرم در ماهی تا 10^6 گرده و بمایه به وجود آمد و با افزایش زمان محدودیت شد.
در سال 1979 بر روی فلور میکروبی نمایش داده شده، نتایج حاکی از این است که تعداد باکتریا در هر گرم در ماهی تا 10^6 گرده و بمایه به وجود آمد و با افزایش زمان محدودیت شد.

جهت اطمینان بیشتر 12 عدد نمونه از سنس تهیه شده از ماهی کیلکا به آزمایشگاه کنتل مواد غذایی و داروی وزارت بهداشت، درمان و آموزش پزشکی جهت بررسی سم انتقال یافته.
پس از انجام آزمایش‌ها اعلام گردید که مصرف انسانی سنس ماهی کیلکا بلامانع است.
نتایج آزمایش‌های ارگانولوژیکی نشان داد که تمام سنس‌ها از نظر رنگ، دارای رنگ زرد روشن تا زرد متمایل به قهوه‌ای بودند و تفاوت معنی‌داری بین آنها مشاهده نشد. از نظر طعم و مزه، همه نمونه‌ها شور و بدون طعم ماهی بودند.
فقط می‌توان گفت که طعم سنس حاصل از فراوری با تیمار میکروبی، دارای طعم ملایمتر از سابیر سنس‌ها بود. طبق بررسی 1967 رنگ زرد سنس ماهی بعلت واکنش غیراتزیمی بین آمینواسیدها و ریبوس و طعم خاص بعلت تغییراتی است که عمل تخمیر در آمینواسیدها بوجود می‌آورد. در مجموع چنین می‌توان نتیجه گرفت که سنس تهیه شده از ماهی کیلکا از نظر رنگ، طعم و مزه با دیگر سنس‌های نهایی شده در کشورهایی مثل ویتنام، تایلند، اندونزی، زایم، مالزی و فیلیپین فرقی ندارد. سنس ماهی در بطری‌های دربی، بسته‌بندی و بردند 12 ماه قابل مصرف است. سنس ماهی بصورت چاشنی همراه با غذا مصرف می‌شود و طبق بررسی در سال Amanoc 1962 مقدار 7/5 درصد از پروتئین روزانه مردم کشورهای مذکور را تأمین می‌کند.
شناسائی میکروارگانیسم غالب. باقلان نامه کارشناسی ارشد صنایع غذایی، انتخاب مختلف ایران، صفحات ۴۶ تا ۶۴.

معینی، س. و سبحانی پور، ن. ف.، ۱۳۷۸. آماده کردن میکس دئیپی و نتایج آن در شیمی شده. مجله علوم کشاورزی ایران. دانشگاه تهران. جلد ۳۶، شماره ۴، صفحات ۲۲۱ تا ۲۸۱.

میکی، ام و هاردي، آر. ۱۳۷۱. فرآوری تخمیر شده ماهی. ترجمه: مارینا هوشگر. انتشارات جهاد سازندگی، شماره ۵، صفحات ۱۵ تا ۲۰.

