تولید سِس از کیلگای دریایی خزر به روش سنی و صععی
با استفاده از آنزیم‌ها و باکتری‌های پروتوزیوتیک

سهراب معینی (1) و انوشه کوچکیان صبور (2)

dr-s-moini@yahoo.com

1- دانشکده کشاورزی دانشگاه تهران. کروه علوم و صنایع غذایی. 
2- انسینتو تحقیقات بین‌المللی مامیان خاویاری، رشت

تاریخ دریافت : آبان 1380 
تاریخ پذیرش : آبان 1381

چکیده

در این تحقیق تولید سِس از ماهی کیلگا با استفاده از ماهی کامل، ماهی سر زده شکم خالی و ماهی کامل و یهشه شده در نمونه‌های سنی‌آزمایی، باکتری‌ای و آنزیمی باکتری‌ای pH مورد بررسی قرار گرفت. تغییرات pH در مراحل تولید سِس به روش سنی بین 6/5 تا 7/5 بود. اما در سِس‌های تولیدی که به مکم آنزیم و باکتری‌ها و آنزیم‌های باکتری‌ای تولید گردید تغییرات pH بین 6/8 تا 7/7 بود.

در سِس تولیدی در نمونه سنی، مقدار پروتئین، درصد رطوبت و بتروبیت برابر TVN در 11/53 درصد، 6/2 درصد و 1/47 میلی‌گرم در 100 گرم نمونه بود. در نمونه‌های آزمایی 12 درصد، 46 درصد و 2/04 میلی‌گرم در 100 گرم نمونه و در نمونه باکتری‌ای بتریب در 12 درصد، 67 درصد و 1/94 میلی‌گرم در 100 گرم نمونه و نمونه آزمایی باکتری‌ای بتریب در 12 درصد، 61/5 درصد و 2/05 میلی‌گرم در 100 گرم نمونه بست‌امد.

شمارش کلی میکروبا در تمام نمونه‌ها در محدوده تعداد میکروبهای قابل قبول بوده که در سِس ماهی کامل، بالاترین بار میکروبا و در سِس ماهی پاک شده در تیمارهای مختلف کمترین بار میکروبا را داشته است.

با انتخاب میانگین نگاری شمارش کلی میکروبا بطور متوسط بین 6/1 تا 6/5 کلینیک

www.SID.ir
تولید مواد غذایی در حالت افزایش است اما با استفاده از میکروبوئی برای بهبود دهنده نرخ رشد جمعیت، راندمان تولید مواد غذایی در حالت کاهش است. در بیشتر کشورهایی در حالت توزیع، کمبود پروتئین وجود دارد یک نیاز محرری به ایجاد روش های جدید تولید مواد غذایی پروتئینی است. ماهی در اکثر کشورهای خصوصاً کشورهای آسیای جنوب شرقی به عنوان بهترین منبع تأمین پروتئین چربیونی به حساب می‌آید. (Amanoc, 1962) محصولات تخمیری با توجه به قیمت ارزان، آماده سازی کم خرج و قابلیت هضم و جذب بالا می‌تواند راه حل خوبی برای جبران پروتئین مورد نیاز باشد. بعنوان مثال در کامیابی حدود 2/15 درصد از مجموع پروتئین خوراکی مردم از سوی ماهی مشتق شده است (Amanoc, 1962) به خصوصی قابل توجهی می‌باشد. با توجه به اینکه فرآیند تخمیر یک ترشمه میکروبی تولید خوراکی است، بررسی های وسیعی صورت بذیرفته تا بر سرعت، کمیت،

1 - Spore Forming Bacteria
کیفیت و بازده عمل تخمیر باف‌زایند و در این راه موفقیت‌هایی نیز حاصل شده است. از طرف دیگر معلوم شده است که میکروارگانیسم‌ها نیز در بهبود طعم و عطر محصول تخمیری نقش دارند و امروزه محققین بدنال میکروارگانیسم‌های تازه می‌گردند. در تولید ماست و یونیرهای مرغوب، میکروارگانیسم‌های مفیدشناسایی و بکار گرفته شده‌اند. از مهم‌ترین بروتونسیون‌های حیوانی تخمیر شده می‌توان به شیر و ماهی تخمیر شده اشاره نمود (شایگان، ۱۳۷۵).

شک ماهی یک منبع بروتونسی برای مردم کشورهای آسیای جنوب شرقی است که بطور سنتی از اضافه کردن ۱۵ تا ۳۰ درصد و متوسط ۲۰ درصد نمک به انواع ماهی یا اضافه نمودن به اندامه‌های اضافی آنان تهیه می‌گردد. این فرآورده دارای اسما متفاوت در کشورهای مختلف است، مانند باکاسانگ (۱)، نام پلا در تایلند (۲)، نوک مام در ویتنام (۳)، پانیس در فیلیپین (۴) و شیوکارا در ژاپن (۵) (Hull, ۱۹۹۲).

در سال ۱۹۹۲ گزارش داد که شک ماهی بصورت مابع در بطری به فروش می‌رسد و دارای آمينواسیده‌های فراوان ناشی از هیدروژن بافت ماهی است که به سهولت هضم می‌شود. امکان مصرف آن در ایران پس از فرموله کردن آن با موادی مانند گوجه، فلفل قرمز، یودر سیر و پیاز و نزدیک کردن به ذائقه ایرانی وجود دارد (Amanoc, ۱۹۶۲) در مناطق مرطوب و بارانی که امکان خشک کردن ماهی وجود ندارد این فرآورده تهیه می‌شود (Janbae et al., ۱۹۹۶) و به جهت صید زیاد کیلکا و عدم امکان تبدیل همه ماهی صید شده به سایر فرآورده‌ها، امکان تهیه شک ماهی از آن در شهرهای بندري وجود دارد. در این مقاله به مسائلی مانند پایین آوردن زمان تولید و هیدروژن هر چه بیشتر بروتونسی باتری استحصال شک بیشتر و با کارگیری حداکثر درصد نمک برای جلوگیری از شوری محصول و بررسی مسائل بهداشتی و آزمایشات کنترل کیفی پرداخته شده است. در ایران انتخاب وزنی ماهی در دریا خار راکیلکا تشکیل می‌دهد و با توجه به تبادل این ماهی ارزشمند به پودر ماهی، استفاده غذایی از آن چاکثر ۵ تا ۱۰ درصد وزن صید آن را تشکیل می‌دهد (معینی و سبجعیان، ۱۳۷۸).
مولتی نسخ از کیلکای دربای خر به...

معنی و لغت‌گیان صورت

ماهی کیلکا بدلین ظرفیه بودن و کوتاه بودن مدت ماندگاری آن در صورت بهره‌برداری صحیح می‌تواند یکی از منابع تأمین کننده ارجاعی از پروتئینهای پروتئین‌های این بیماری، تاثیرات این بیماری دارد. این بیماری به کارگیری مقدار زیادی از کیلکا همراه با نمک برای تخمیر، ایندیه خربب یا تهیه نسخ از این ماهی وجود دارد. این فرآیند حرفه‌ای در سه‌شنبه نمک مصرفی مدت زمان تخمیر و استفاده از آن‌بی‌یا و میکره‌یا خرگوشی می‌تواند در مدت زمان تعیین شده، طعم، ماهی رنگ و تسريع در تخمیر سهم بسیاری داشته باشد. (میکرویی و هاردی، ۱۳۷۱)

این محصول اثر درمانی روی بعضی عفونت‌های رویه‌ای داشته و برای افراد مریضی که نمی‌توانند غذا را خوب گذب کنند مفید است. زیرا مولکول‌های پروتئینهای آنان کوچکتر از مولکول‌های مشابه ذخیره‌ی می‌باشد. هدف از این تحقیق مشخص کردن نحوه تولید، مدت تغذیه و روند فاکتورهای تغذیه‌ای و کنترل کیفیت آن جهت مصرف انسانی می‌باشد.

مواد و روشهای

ماهی به عنوان مواد ماده در این پروژه به سه روش مورد استفاده قرار گرفت: ماهی کامل، ماهی کامل بخش کرده و ماهی گاو کرده، (سرزده شکم خالی). مقدار ۴۰ کیلوگرم از هر یک از اشكال ماهی در چهار نمونه تیم مشترک به قرار زیر عمل آوری گردید:

۱- ماهی و نمک (سمتی)، ۲- ماهی، نمک و آنزیم (انزیمی)، ۳- ماهی، نمک و سوش میکرویی (میکرویی)، و ۴- ماهی، نمک و آنزیم و میکروب (انزیمی-میکروبی). درصد وزن ماهی نمک استفاده شده و ۱۲ گرم (شیشه شیر) به ظرفیت ۴۰ گرم ماهی استفاده گردیده که در نمودار (۱) مراحل تهیه نسخ‌شناس نشان داده شده است.

شده (۴۰ گرم) در ۶ اتمسفر پا در دمای نسبی ۲۳ درجه سانتی‌گراد قرار داده شدند و بس از گذشت یک هفته انجام آزمایشات میکرویی-شیمیایی روی آن‌ها آغاز گردید و بطور ماهانه میزان درجه هیدروپلاژ نمونه‌ها با مشاهدات فیزیکی پایداری شد و بس از گذشت یک ماه اولین استحصال نسخ از نمونه‌ها به موجبیت انجام گردید. نسخ‌های جالی نسخ به‌کمک از گذشته‌اند از صافی، در درجه حرارت ۸۰ درجه سانتی‌گراد به www.SID.ir
مدت ۳۰ دقیقه با استوریزه گردیدند.

آنژیم پروتامکس در یاکت آلومینیومی درب بسته به صورت پودر خشک سفید خردداری گردید. طبق مقدار بهینه‌ای کارخانه سازند. ۱ گرم آنژیم برای یک کیلوگرم ماهی استفاده شد.

لذا برای ۴۰۰ گرم ماهی ۴ گرم آنژیم مصرف شده که این مقدار قبل از توزیع دقیق وزن شده و در تکه کاغذهای کوچک بسته نمود گردید.

مخلوط آنزیم‌های پروتامکس (ب) و قلی ورژین (ف) به شیشه‌های حاوی نمونه بطور نصف از هر کدام (ب + ۲/۰ گرم + ف ۴/۰ گرم) افزوده شد. آنزیم فلیوزیم ۲ گرم آنژیم برای یک کیلوگرم ماهی بوده است. سوسپنژیون پدیوکوس در یک ارلن و سوسپنژیون میکروب لاکتوپاسیلوس در یک ارلن دیگر از قبیل تهیه شده و پس از انکوباسیون به آزمایشگاه منتقل گردید ولی با توجه به آماده بودن نمونه‌ها و باز بودن درب شیشه‌های حاوی نمونه بوسیله پیپت ۵۰۰ ریخته شد. از هر یک از محیط کشت‌های حاوی لاکتوپاسیلوس و پدیوکوس در داخل هر شیشه مجموعاً ۱۰۰۰ ریخته شد و سپس با تکان دادن شیشه و هم زدن محتویات نمونه سعی در یک نمونه‌ها به هم قسمت‌ها گردید. مخلوط کردن میکروب در نمونه‌ها همراه در یک روز انجام گردید. با توجه به مشاوره‌ای که قبلی با سازمان ژووهشهاي علمی و صنعتی شده بود و با توجه به تجربیات قبلی، سوسپنژیون باکتری حاوی تعداد لازم باکتری برای تأیید گرداناری در تخمیر بر روی ماهی می‌باشد.

برای کشت و شمارش نگهداری این باکتری از محیط‌های اختصاصی آگار آنها استفاده گردید MRS بود.

که در مورد پدیوکوس آگار سدیم استات مسیم و برای لاکتوپاسیلوس -

در این پژوهش می‌باشد ۱۲ تیمار مورد بررسی قرار گرفت. بدلیل آزمایشات میکروبی -

شیمیایی و فیزیکی که لازم بود روز نمونه‌ها انجام گیرد، می‌باشد برای هر تیمار نمونه کافی

محاسبه گردند تا بتوان به راحتی این آزمایشات را متوالی انجام داد لذا برای هر نمونه یا تیمار ۱۰ تکرار در نظر گرفته شد.
نمودار 1: مراحل تهیه سنس از ماهی کیلکا به روش سنتی، آنزیمی-میکرووی
در بیش از نهایی نمایه پس از آماده‌سازی توسط پنجم استریل و کاغذ استریل پوشانده شد و با ناخ بیشتر گره زده شد و سپس کاغذ آلومینیوم به صورت آزاد بر روی آن گزار گرفت.

شرايط بخش دوم نمایه در هر حال هوازي بود.

زمان رسیدگی از زمانی تا زمانی که می‌گوید که محتوای بیشتری کاملاً دو باز شده است. پس از 
عمل فیلتراسیون تفتالهای خفیف‌تری شکل برچمی می‌ماند که به آن 
سئ گفته می‌شود که این 
نیز مانند نس، جداگانه بسته‌بندی و به مصرف انسانی می‌رسد.

اندازه‌گیری pH، وزن مخصوص، درصد نمک، عصاره خشک، بروتين کل، TN و TVN با

استفاده از روش پیرسون در سال 1998 انجام شد. آزمایش‌های میکروپی بر اساس روش 
در سال 1997 صورت گرفت و آزمایش‌های ارگانولوژیک با استفاده از روش 
Adams & Moss

بر روی نمونه‌ها انجام گرفت.

Chayonvan, 1993

نتایج

ناتایج آزمایش‌های ارگانولوژیک روی نسین تهیه شده از ماهی کیلکا بر روی نمونه‌های نس

تهیه شده به روش میکروپی، آنزیمی و میکروپی و سنتی انجام پذیرفت که در جدول 1 آورده شده 

است.

طبق بررسی‌های انجام گرفته راندمان تولید نسین از ماهی کیلکا ۴۰ تا ۵۰ درصد وزن ماهی و

خمیر بسته آمده برای ۳۵ تا ۴۵ درصد وزن ماهی بوده است. زمان تهیه نسین از ماهی کیلکا ۶

ماه بود.

این تحقیق نشان داد که مرحله رسیدگی ماهی کیلکا اثر مستقیمی در مقدار نسین تولید شده 

از آن دارد. بطوریکه در زمان رسیدگی کامل ماهی، میزان نس بسته آمده ۴۰ درصد از کل وزن 

ماهی می‌باشد.

در جدول ۲ نتایج آزمایش‌های فیزیکی و شیمیایی که بر روی تیمار‌های مختلف انجام گردید

نشان داده شده است.
جدول ۱: تناوب آزمایش‌های ارگانولپیگی بر روی نمونه‌های سرشماری کیلکا

<table>
<thead>
<tr>
<th>شوری</th>
<th>بر</th>
<th>طعم</th>
<th>رنگ</th>
<th>امتیاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>محصول</td>
<td>نمونه</td>
<td>نمونه میکروبوی</td>
<td>نمونه آنتیزیمی</td>
<td>نمونه آنتیزیمی میکروبوی</td>
</tr>
<tr>
<td>ماه اول</td>
<td>۵۴</td>
<td>۳۱</td>
<td>۵۵</td>
<td>۵۵</td>
</tr>
<tr>
<td>ماه دوم</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
</tr>
<tr>
<td>ماه ششم</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
<td>۵۵</td>
</tr>
</tbody>
</table>

* نمایش نسبت میانگین رضاپذیری بدون نسبت تفاوت مشاهده‌ای بین نمونه‌ها

جدول ۲: شاخص‌های فیزیکی و شیمیایی سرشماری کیلکا در تیمارهای مختلف

<table>
<thead>
<tr>
<th>نمونه‌ها</th>
<th>درصد پروتئین</th>
<th>TN</th>
<th>TVN</th>
<th>pH</th>
<th>وزن درصد</th>
<th>عصاره</th>
<th>مخصوص نمک</th>
<th>شکر</th>
<th>خشک</th>
</tr>
</thead>
<tbody>
<tr>
<td>سنتی</td>
<td>۵/۴</td>
<td>۱/۱</td>
<td>۱/۱</td>
<td>۱۹/۲</td>
<td>۱/۲</td>
<td>۱۹/۵</td>
<td>۲۰۰/۳</td>
<td>۶/۳</td>
<td>۱۹/۵</td>
</tr>
<tr>
<td>آنتیزیمی</td>
<td>۷/۲</td>
<td>۲/۴</td>
<td>۳/۱</td>
<td>۹/۵</td>
<td>۴/۳</td>
<td>۴/۲</td>
<td>۱۲۵/۲</td>
<td>۵/۶</td>
<td>۱۹/۵</td>
</tr>
<tr>
<td>پاک‌ترکه‌ای</td>
<td>۳/۵</td>
<td>۱/۲</td>
<td>۱/۲</td>
<td>۱۸/۴</td>
<td>۶/۵</td>
<td>۶/۵</td>
<td>۱۲۵/۲</td>
<td>۵/۶</td>
<td>۱۹/۵</td>
</tr>
<tr>
<td>آنتیزیمی‌پاک‌ترکه‌ای</td>
<td>۱/۱</td>
<td>۲/۴</td>
<td>۳/۱</td>
<td>۱۸/۵</td>
<td>۶/۵</td>
<td>۶/۵</td>
<td>۱۲۵/۲</td>
<td>۵/۶</td>
<td>۱۹/۵</td>
</tr>
</tbody>
</table>
در آزمایش‌های شیمیایی همانتور که در نمونه‌‌های ۲ مشاهده می‌گردد در طول فرآیند تخمیر، میزان ازت کل (TN) ابتدا کم بوده و بندیچدن افزایش نشان می‌دهد و در انتهای فرآیند ثابت می‌ماند.

مطالعه نمونه‌‌های ۲ که تغییرات TVN را در طول فرآیند نشان می‌دهد، بیانگر این نکته است که در ابتدا بعلت کمبی فعالیت‌های بیوشیمیایی و باکتری‌ها هیدرولیز مواد ازت دار آهسته بوده و در نتیجه مقدار تولید TVN در ابتدا کم بوده و با پیشروی زمان و افزایش فعالیت‌های شیمیایی و بیوشیمیایی افزایش می‌باشد و در نهایت ثابت می‌گردد. نتایج آزمایش‌های میکروبی انجام شده بر روی ۴ تیمار، تولید نسبی از ماهی کیلکا در نمونه‌های ۴ و ۵ ارده شده است. هم‌مانوری که از نمونه‌ها مشاهده می‌گردد در ابتدا تولید نسبی، تعداد میکروگانیسم‌ها بطور طبیعی بالا می‌باشد. اما پس از گذشت زمان و جذب تدریجی نمک، تعداد باکتریها به حالت می‌کند. غلظت بالایی نمک در محیط، شرایط مناسب برای رشد باکتری‌های نمک دوست را می‌گذارد که باعث افزایش مجدد تعداد باکتریها می‌گردد. با جذب پیشتر نمک توسط پروتوکل و در نتیجه نسبت

مصرف نمک آن توسط باکتری‌های نمک دوست، تعداد این باکتری‌ها کم می‌شود. علت کاهش باکتری‌ها در طول عمل تخمیر و زمان نگهداری نسبت تهیه شده را می‌توان به مقدار بالای نمک

(۱۷ تا ۱۹/۴ درصد نمک) (جدول ۲) در نمودی تولید شده از کیلکا نسبت داد.

نمودار ۲: میانگین ازت کل در نمونه‌های مورد بررسی بر حسب ماه
نمودار 3: میانگین TVN در نمونه‌های مورد بررسی بر حسب ماه

نمودار 4: میانگین شمارش کلی میکروبی در شش ماهه کلیکا بر حسب نوع
بحث
نتایج این تحقیق برای تولید نس از ماهی کیلکا نشان داد که باید نسل دیگر نس در هر چهار نهایی تابعی از عواملی مانند: چگونگی آماده سازی نمونه‌ها، مقدار نمک اضافه شده، باکتری و آنزیم می‌باشد. لذا بکارگیری استراتژی‌های مانند آنزیم بروتاماسک و قدیمی ورزم و سوپر میکروپی در تسريع عمل تخمیر اثر جذابی‌تر داشتند. مثلاً نس بهبود شده به تواتر اضافه کردن آنزیم و مخلوط آنزیم و میکروب به ماهی کیلکا کامل و ماهی کیلکای یک شده باعث گردید که این نس آن‌پزشکی و یره‌بارداری باشد. در این دو نمونه از ۴۰۰ گرم ماهی بطور متوسط ۱۷۵ سانتی‌متر مکعب نس و ۱۵۰ گرم تلفه ماهی بدست آمد. در صورتی که برای تهیه نس از ماهی کامل و یک‌نیک شده که به آن آنزیم اضافه گردد، بود برای انجام عمل تخمیر می‌پایست. چهار ماه صرب نمود و یک از آن امکان فیلتر کردن نمونه و بدست آوردن نس وجود داشت.

مهم‌کردن در سال ۱۹۸۹ با بکار بردن نس سوپر و آنزیم برای تهیه نس از ماهیان ریز Soo Kyo و www.SID.ir
به نتایجی نزدیک به نتایج بدست آمده در این بررسی دست یافته‌ایم.

و همکاران در سال 1998 با هدف سرعتی بخشیدن به عمل تخمیر ماهیان ریز و تولید Janbae

نسل در زمان کوچک‌تر، با بکار بردن اندو روش‌های نمونه‌سازی، اضافه نمودن آنزیم‌های پروتئولیتیک و باکتری‌ها نمک دوست و بکار بردن مقدار مختلف نمک، قادر به تولید نسل از ماهیان ریز پلاژیک مثل ساردن و آنچه در مدت سه ماه گرددیشد. بررسی به روش مقدار پروتئین موجود در نسل‌های بدست آمده از ماهی کیکلا نشان داد که نسل تولید شده در مدت یک ماه، از نظر پروتئین نسبتاً فقیر بوده و مقدار آن 8 درصد می‌باشد. ولی نسل تولید شده توسط

و همکاران در سال 1996 دارای 10 تا 11 درصد پروتئین بود. اما اگر زمان لازم برای کامل شدن عمل تخمیر حداقل شش ماه در نظر گرفته شود، مقدار پروتئین نسل بدست آمده از کیکلا بین 11/53 تا 12/64 درصد خواهد بود.

تحقیقات در سال 1982 نشان داد که طول زمان تخمیر، در هیدرولیز پروتئین و در تولید مقدار آمینواسید در نسل تولید شده از ماهیان آنچه‌ای اثر مهمی دارد. بطریقه مقدار آمینواسیدها در ماه اول آر 1246/6 میلی‌گرم در 150 میلی‌لیتر از سپ از 12 ماه

افراش یافت. مقدار TVN در ماهیان تازه مورد استفاده برای تولید نسل 15 میلی‌گرم در 100 گرم بود. پس از یک ماه که از عمل تخمیر گذشته مقدار آن به 55 میلی‌گرم در 100 گرم رسید.

افراش مقدار TVN در نسل ماهی با گذشته زمان رو به افزایش گذشت بطریقه پس از 9 ماه

برای TVN مقدار آن به 250 میلی‌گرم در 100 گرم رسید و سپس مقدار آن ثابت ماند. مقدار برای

نسل نهایی شده به روش سنتری، آنزیمی، باکتری و آنزیمی - باکتری بتریک ثبت 15/6، 17/6، 20/6 و 19/6 بود. در صدد گرم از نمونه می‌باشد. مقایسه نتایج این دو تحقیق با هندی گر نشان می‌دهد که تولید مقدار نسبتاً بالایی TVN در نسل ماهی تمام توانست بعثت آن تلقی شود.


معینی و سیحانی، 1987 که بر روی ماهی نمک سود تحقیق نموده‌اند از بالا TVN رفت. مقدار TVN در این فرآورده گزارش داده‌اند. آنان معتقدند که عمل اصلی بالا رفت‌ت

در این فرآورده، شکسته شدن پروتئین در اثر حرارت به مولکولاها کوچک آدنان اسید و نیز وجود آنته‌ای غیرپروتئینی می‌باشد. در تولید نسل هم بعلت عمل تخمیر، نیز در سال Howgate

www.SID.ir
نتایج این بررسی روی فلور میکروبی سیستم تهیه شده از ماهی کیلکا نشان می‌دهد که باکتری‌های پدیوکوکوس، لاکتوپاسیلوس و استافیلوکوک در ابتدا شروع تخمیر در محیط وجود داشته و در سرعت بیشتری به عمل تخمیر مؤثرند. اما بعد از یک هفته باکتری لاکتوپاسیلوس از تعداد زیادی از نمونه ناپایدار گردید. احتمالاً علت آن ارتفاع نفوذی نبوده و باکتری دانست. باکتری پدیوکوکوس و استافیلوکوک عملاً در باکتری دانیش در محیط نسیم بودند. نتایج شمارش میکروبی نشان داد که تعداد باکتری استافیلوکوک در تمام نمونه‌ها از شمارش بیشتری نسبت به باکتری پدیوکوکوس برخوردار بود. بالاترین شمارش میکروبی، در هفته هشتم مشاهده شد. پس از آن تعداد باکتریها بندیژیت کم گردیده و با افزایش در هفته دوازدهم به نسبت به هفته‌های قبلی حداقل به دو برابر می‌رسید. در سال 1950 تحقیقاتی روی فلور میکروبی نشان ماهی در مراحل مختلف تخمیر ماهی در فیلیپین انجام دادند. نتایج بررسی آمده نشان داد که تعداد باکتری‌ها در هر گرم در ماهی تازه 1/5 × 6/7 بود و با افزایش در هفته دوازدهم به بیش از دو برابر تعداد نمونه‌های 18 تا 20 درصد نمک، تعداد باکتری‌ها به 2/5/10 × 6/7/10 و پس از یک هفته به بیشترین تعداد 4/5/10 مشاهده شد. در مدل نمک دوست در محیط باقی ماند. در بررسی دیگری که توسط Amonrntiparat در سال 1979 بر روی فلور میکروبی سیستم انجام شد، نتایج آن بیانگر این نکته هستند که تعداد باکتری‌ها از روز سوم تخمیر شروع به افزایش نمودند و در سیزدهمین روز تعداد آنها به بیشترین رقم 9/7/10 باکتری در گرم رسید. باکتری‌های استافیلوکوک (Staphylococcus Spp) و استافیلوکوک (Pediococcus halophilus) با دستگاهی به دو برابرین شده عبارت بودند از پدیوکوکوس نشان‌گر این و نشان‌گر این موضوع است که مقدار 18 تا 20 درصد نمک موجود در این ماهی کم است. در یک هفته باکتری پدیوکوکوس فلور غلاف میکروبی گزارش شده است. مقایسه نتایج بدست آمده در مورد فلور میکروبی سیستم تهیه شده از ماهی کیلکا با سیستم تهیه شده توسط Hamm & Clague 1950 نشان‌گر این این موضوع است که مقدار 18 تا 20 درصد نمک موجود در
بازتاب از بین رفتن آنها می‌گردد و در نتیجه باکتری‌های نمک‌دوست در محیط رشد نموده و پس از رسیدن تعدادشان به حداقل و تعادل در این سه نمونه از سنس ماهی متداول بوده، مثلاً در سنس Armonrntiparat, 1950 و Hamm & Clague, 1979 تهیه شده توسط و سپس روز و سه هفته و سه ماه می‌باشد. اما در سنس تهیه شده از ماهی کیلکا بیشترین شمارش میکروبی در هفته هشتم مشاهده گردید و مرحله تعادل از هفته دوازدهم شروع گردید. علت این اختلافات را می‌توان در گونه ماهی، مقدار نمک، درجه حرارت مورد استفاده برای عمل تخمیر و محیط دانست، اما بصورت کلی در هر سه فراوری فراوری مراحل سه گانه گزارش pH همچنان شده مشابه می‌باشد.

جهت اطمینان بیشتر 12 عدد نمونه از سنس تهیه شده از ماهی کیلکا به آزمایشگاه کنترل مواد غذایی و دارویی وزارت بهداشت، درمان و آموزش پزشکی جهت بررسی سم انتقال بایافت.

پس از انجام آزمایش‌ها اعلام گردید که مصرف انسانی سنس ماهی کیلکا بلامانع است.

نتایج آزمایش‌های ارگانولوژیکی نشان داد که تمام سنس‌ها از نظر رنگ، دارای رنگ زرد روشن تا زرد متمایل به قهوه‌ای بودند و تفاوت معنی‌داری بین آنها مشاهده نشد. از نظر طعم و مزه، همه نمونه‌ها شور و بدون طعم ماهی بودند.

فقط می‌توان گفت که طعم سنس حاصل از فراوری با تیمار میکروبی، دارای طعم ملایمتر از سایر سنس‌ها بود. طبق بررسی 1967 رنگ زرد سنس ماهی بعلت واکنش غیرانتزیعی بین آمینواسیدها و ریزون و طعم خاص بعلت تغییراتی است که عمل تخمیر در آمینواسیدها بوجود می‌آورد. در مجموع چنین می‌توان نتیجه گرفت که سنس تهیه شده از ماهی کیلکا از نظر رنگ، طعم و مزه با دیگر سنس‌های تهیه شده در کشورهای مثل وینتام، تایلند، اندونزی، زاین، مالزی و فیلیپین فرقی ندارد. سنس ماهی در پرتغالی در بهداز، پشتندی و بندن 9 ماه قابل مصرف است. سنس ماهی بصورت چاشنی همراه با گذا مصرف می‌شود و طبق بررسی Amanoc در سال 1962 مقدار 7/5 درصد از پروتئین روانه مرمک کشورهای مذكور را تأمین می‌کند.

منابع
- شایگان، و. 1375. بررسی اثر تخمیر بر ارزش تغذیه‌ای غذاهای سنتی استان فارس با تأکید بر
شناسایی میکروگانیسم غالب. بايان نامه کارشناسی ارشد صنایع غذایی، انتسیتو تغذیه ایران، صفحات 26 تا 44.

معینی، س. و سبحانی پور، ن. ف. ، 1378. اثر فرآیند حارته و مدت انبارداری روی تغییرات و پراکسید در کیلکی آنجوی نمک سود شده. مجله علوم کشاورزی ایران. دانشگاه تهران. جلد 2، شماره 4، صفحات 271 تا 281.

میکی ام و هاردي، آر. ، 1371. فرآورده تخمیر شده ماهی. ترجمه: مارینا هوشگر. انتشارات جهاد سازندگی، شماره 5، صفحات 15 تا 20.


