Mnemiopsis leidyi بررسی محتویات معده شانه‌دار در سواحل ایرانی دریای خزر (آبهای گیلان)

سیامک باقری و جلال سلیم آرا

Sia_Bagheri@yahoo.com

بخش اکولوژی منابع ابی، مرکز تحقیقات ماهیان استخوانی دریای خزر، بندر انزلی، صندوق پستی: 66

تاریخ دریافت: اردیبهشت 1382
تاریخ پذیرش: مهر 1382

چکیده

این مطالعه طی ماهی‌های مورد آن آبیان 1381 در سواحل دریای خزر (ناحیه بندر انزلی) انجام گرفت. بررسی ها نشان داد که تغذیه **Mnemiopsis leidyi** از زئوپلانکتون و 16 درصد از فیتولانکتون بوهد است. بیشترین تغذیه از جنسِ **Copepoda (راسته: Acartia)** از جنس **leidy** با میزان 32 درصد و حداکثر آن از جنس **Cladocera (راسته Podon)** متعلق به راسته **Cladocera** با میزان 75 درصد بوهد است. در محتویات معدع شانه‌دار به میزان 63 درصد تخم ماهی و 30 درصد نرم‌تنان مشاهده شد. حداکثر فیتولانکتون مورد تغذیه **Pyrrhophyta** با میزان 24 درصد و حداکثر فیتولانکتون مورد تغذیه **Chrysophyta** با میزان 13 درصد بوهد. بیشترین زئوپلانکتون و فیتولانکتون شکرده توسط افراد جوان می‌باشند. مشاهدات در آزمایشگاه نشان داد که این شانه‌دار قادر به هضم فیتولانکتون نیست.

لغات کلیدی: شانه‌دار، زئوپلانکتون، فیتولانکتون، دریای خزر

مقدمه

Mnemiopsis leidyi نامی است که به شاخه‌های مدرن دریای اقیانوس Lobata یا راسته Ctenophora می‌شناسند. اطلاعات متعددی در آمریکای شمالی و پراکنش به‌طور گسترده‌ای از ناحیه‌ای تحت تأثیر جاده‌ای تا خلیج چسابیک است. این گونه کنونی با یک دو دریای سیاه در سال 1982 در آبهای ساحل‌های مشاهده شد (Malyshev & Arkhpové, 1993). (Pereladov, 1988).

تصویرت تصادفی از طریق آب موازنة کشتی‌های تجاری سواحل آمریکا به دریای سیاه **M. leidyi**
بررسی محیطیات معدن شاندار در...

راه پیدا کردن و رشد و نمو سیار بالای آن طی سال ۱۹۸۸ در تمام حوضه پخش گردید و در پاییز همان سال زیستوده آن به ۵/۱ کیلوگرم در مترمربع رسید. افزایش آن طی سال ۱۹۸۹ ادامه یافت، بطوریکه وزن آن به یک میلیارد تن بالغ گردید (Vinogroodov et al., 1989). این گونه از ایران سفیر ماهیان آنژوی و سایر ماهیان بالازیک دریای سیاه گذشت (Kidays, 1994). احتمال تهاجم M. leidyi به دریای خزر از طریق آب موازنه کشی توسط Dumont در سال ۱۹۹۵ داده شد به یکی از کارشناسان (حسین پور، مرکز تحقیقات شیلاتی استان گیلان) احتمال ورود این شاندار اعلام گردید.

پس از این شاندار اولین بار در نوامبر ۱۹۹۹ در سواحل شرقی قسمت میانی دریای خزر (ترکمنستان و قزاقستان) مشاهده شد. طی اجرای یک پروژه مشترک بین مؤسسه تحقیقات شیلاتی ایران و دانشگاه متعاون طبیعی و علوم دریایی دانشگاه تربیت مدرس با عنوان شناسایی، بررسی پراکنش و فراوانی در حوضه جنوبی دریای خزر، در سال ۱۳۷۸ طی نمایندگان دیپلمی در یک مطالعه Coelenterata تحقیقات شیلاتی ساحل غازیان (مرکز تحقیقات شیلاتی استان گیلان) و نور برای اولین بار ماهه‌نشه شد (اسماعیلی و همکاران، ۱۳۷۸).

توسط آب موازنه کشی از دریای آزوف با دریای سیاه (این اتفاق در ماهه‌ای گرم سال افتاد) از چنین مشاهده شد به نواحی مارکزی و جنوبی راه یافت (Ivanov et al., 2000). دریای خزر بخصوص نواحی جنوبی بدلیل موقعیت مطلوب در تمام طول سال بهترین محیط برای رشد M. leidyi محصول می‌شود، از اینرو در تمام طول سال در منطقه حضور داشته و این در حالتی است که در شمال دریای خزر، در فصل زمستان کاملاً ناپایدار می‌گردد (Shiganova, 2002).

بررسی روش‌های غذایی M. leidyi توسط محققین زیادی در دنیا انجام گردیده است، از جمله Purcell و همکاران در سال ۲۰۰۱ و Mutlu معروف ترین آنها در سال ۱۹۹۹ و در دریای سیاه و دریای آطلسیک بودند. اولین مطالعه روز تغذیه شاندار در قبیل پروژه کارشناسی ارشد در سواحل جنوبی دریای خزر سال ۱۳۷۹ در دانشگاه تربیت مدرس انجام شد (طلاش، ۱۳۸۰).

بحث اکلیک در آبهای ایران از ۸۵ هزار تن در سال ۱۳۷۸ (عبدالمالکی، ۱۳۸۱) به حدود ۲۰ هزار
مواد و روش‌کار

این بررسی در اعماق ۵ تا ۱۰ متر با مختصات جغرافیایی ۱٣٨٦ ۲۰/۲۷ عرض شمالی و ۴۹/۳۳ طول شرقی در سواحل بندر انزلی انجام شد. نمونه‌برداری طی ماه‌های مورد تا آبان سال ۱۳۸۱ با استفاده از قایق با قدرت ۴۸ اسب انجام گردید. برداشت M. leidy با استفاده از نمونه‌بردار METU net با چشم‌های ۵۵ میکرون و قطر ۵ سانتی‌متر و محفظه مناسب برای برداشت شاهد انجام شد. روش برداشت نمونه به مدت ۵ دقیقه بصورت کشاورزی از لب‌های مختلف ستون آب بود. نمونه‌ها بعد از صبح وارد ظرفی ۱۵ لیتری شدند و سپس شاهد را در مدت کمی از ۱۵ دقیقه بصورت زنده به آزمایشگاه منتقل نموده و با استفاده از خط کش، طول گل هر یک از آنها اندازه گرفته شد. در مرحله بعد شناسایی محصولات معدود ۲۶۷ شاهد انجام برپایه استفاده از میکروسکوپ ایستورت و کلید شناسایی اطلاعی به مهارت دریای خزر (پیرشین، ۱۹۶۸) انجام شد. از زنوپلانکتون‌های موجود در لوله‌گوارش توسط دوربین تجزیه و تحلیل داده‌ها و ترسیم نمودار از نرم‌افزار Excel و SAS استفاده شد.

نتایج

بررسی محصولات معدود M. leidy با استفاده از فیتولانکتون تغذیه نموده است (نمودار ۱).
نمودار ۱: نسبت درصد پلانکتون‌های تغذیه شده در محتویات معده
(آب‌های سواحل گیلان سال ۱۳۸۱)

Copepoda زئوپلانکتون تغذیه شده توسط M. leidyi شامل، جنس Acartia و ناپلی آن از راسته Cirripedia (درج ۱۷/۸۶ درصد)، تخم Copepoda (درج ۲۳/۷۵ درصد)، جنس Balanus از راسته Cladocera (درج ۷/۸۵ درصد)، دوکه‌ایها از راسته Podon (درج ۴/۲۵ درصد)، جنس Rotatoria از راسته Rotatoria (درج ۴۹/۰۵ درصد)، تخم Brachionus (درج ۷۵/۵ درصد)، جنس Daigest درصد)، تخم ماهی (درج ۵/۶۶ درصد) و ۲۰۰۰ (درج ۶۷/۷۵ درصد) بردند (نمودار ۲).

پتی خود پتی پلانکتون تغذیه شده توسط شاندار از شاخه Chrysophyta (درج ۹/۹۶ درصد) و ۲۰۰۰ (درج ۰/۷۵ درصد) دارد توسط Shale (درج ۰/۷۵ درصد) باشد از شاخه Euglenophyta و ۲۰۰۰ (درج ۴/۵ درصد) از Shale Thalassionema و ۲۰۰۰ (درج ۲/۵ درصد) از Shale Pyrophyta و ۲۰۰۰ (درج ۳/۷۵ درصد) از Shale Phacus و ۲۰۰۰ (درج ۷/۵ درصد) از Shale Chlorophyta

نمودار ۲: درصد پلانکتون‌های تغذیه شده در محتویات معده
(آب‌های سواحل گیلان سال ۱۳۸۱)
نمودار 3: درصد نیتوپیلاتونهای تغذیه شده در محتوای معدن

(آبهای ساحل گیلان سال 1381)

حداکثر و حداقل میانگین تعداد طعمه‌های شکار شده توسط M. leidy

به میزان 1/8 و 1/36 توسط M. leidy

عدد برتیب در گروه‌های طولی 0 تا 5 میلی متر و 6 تا 15 میلی متر مشاهده شد (نمودار 4).

نتایج نشان داد، حداکثر نیتوپیلاتون تغذیه شده توسط M. leidy در ماه مرداد با میانگین (Rotatoria egg) و حداقل نیتوپیلاتون تغذیه شده (دوبکه‌ای) با میانگین میانگین 1/6 عدد در سطح روده ماه میانگین 1 عدد در شهروی ماه پیشترین تغذیه (Rotatoria egg) با میانگین میانگین 4/3 عدد در ماه میانگین 6 عدد در ماه M. leidy مشاهده گردید. حداکثر نیتوپیلاتون خورده شده (Rotatoria egg) با میانگین میانگین 9 عدد در ماه M. leidy تخم ماهی با تعداد میانگین 5/4 عدد مشاهده شد (نمودار 5).

نمودار 4: میانگین تعداد طعمه‌های شکار شده توسط گروه‌های مختلف طولی

(آبهای ساحل گیلان سال 1381)
نمودار ۵: میانگین تعداد زئوپلانکتون شکار شده توسط M. leidyi در ماههای مختلف (آب‌های سواحل گیلان سال ۱۳۸۱)

مشاوهات متعدد دستگاه گوارش این آبی در زیر میکروسکوپ نشان داد، معدن شانه‌دار به آسانی قادر به هضم زئوپلانکتون بوده و آن را از طریق لولا گوارش جذب می‌نماید. اما زئوپلانکتون را بعد از بلعدن و عبور دادن از دستگاه گوارش به صورت زنده پیرون از دهان خود رها می‌سازد.

طمعه‌های شکار شده در دستگاه گوارش شانه‌دار در شکل‌های ۱ و ۲ آمده است.
شکل 1: زنیولانکونهای شکار شده در دستگاه گوارش شانه‌دار

M. leidyi یا Acartia (الف) تخم
Acartia و Acartia (ب)
Balanus (د) نابلی
Digest zoo (ج)
شکل ۲: زندگی‌نامه‌ای شکار از سهمه در دستگاه گوارش شانه‌دار Brachionus (الف) Naupli Acartia (الف)
بحث

با توجه به اطلاعات حاصله می توان نتیجه گرفت که M. leidyi قادر به انتخاب طعمه خود نبوده و هر چه از راکه به قسمت بیشتری دهانش تماس یافته، می بلند. به همین دلیل در رژیم غذایی شانه دار، زئوپلانکتون و فیتوپلانکتون مشاهده می شود.

هر چه راکه در آب باشد از جلبک Mnemiopsis Harbison گرفته تا ناخ و لارو ماهی می خورد و قادر به انتخاب طعمه خود نمی باشد. یک مکروفاور است و توانایی خوردن طعمه با اندازه های بزرگ (در حدود 1 میلی متر) را دارد، و حتی افراد جوان هم جنس و لارو مدور تغذیه می کند (1993).

Malyshov & Arkhipov, در سال 2000 اظهار داشتند که M. leidyi در سال 1999 در دریاچه ای سیاه نشان داد می تواند غذاهای بلعیده شده توسط M. leidyi از کوچه پوش، روتانوپلاست، بخار ماهیان، کلادوسرا، و نرمتنان بود. از بین این زئوپلانکتونها کوچه پوها بهترین درصد رژیم غذایی را تشکیل می دادند. در سواحل دریاچه آتالیبوئیکه از M. leidyi Melysu بررسی های فوق با نتایج بدست آمده از رژیم غذایی شانه دار در سواحل دریای خزر مطابقت دارد. گروه های طولی کوچکتر از 15 میلی متر شدت تغذیه بیشتری نسبت به سایر گروه های طولی M. leidyi تاریخ D.M. Romanova و Kideys در سال 2001 بیان داشتند که گروه های کوچکتر شانه دار به جهت متانولیسم بیشتر، نیاز غذایی بالاتری دارند. از آنجا که بیش از 94 درصد گروه طولی شانه دار را در دریای خزر نمونه های کوچکتر از 5 میلی متر تشکیل می دهد، از این رو سینیتر می توانند باعث کاهش شدید ذخایر زئوپلانکتون گردند (2002).

Bagheri & Kideys, در محتوای معدنی دریای خزر بیش از 84 درصد از انواع زئوپلانکتون از جمله لارو M. leidyi در مهار جانوران کوچه پوهای کلادوسرا، سریبدیا، بخار ماهی و ... در طول ماههای بررسی موجود بود. بررسی ها در نواحی مختلف دریای خزر نشان داد، فراوانی و زیاد توده زئوپلانکتون و مروپلانکتون در همه مناطق دریای خزر به دلیل تغذیه شدید M. leidyi کاهش یافته است، بطوریکه در نواحی میانی به نصف و در جنوب به یک سوم تقلیل یافته است (2002). شیگانوفا (2002) منابع در دریای خزر نشان می دهد که در دریای خزر (آباهای کیلین) نشان می دهد که راسته های کوچه پوهای (Acartia)
کالادوسرا و شاخه روتاتوریا طی ماههای مهر تا اسفند ماه می‌توانند زیستاژی شده
M. leidyi کاهش شدید داشته باشند. همکاران در سال 1990 اظهار داشتند که رژیم
در آب‌های ساحلی دریای سیاه از کویپودا، تخم ماهی، لارد ماهی، بادوآر، M. leidyi
یافته و (Paracalamus parvus) زیست‌پاتخواری کرده، بطوریکه در بافت‌های 1989 گونه‌های
ماده با کویپودا و Centropages ponticus تقریباً تا ماه‌های (1990) همچنین بررسی‌های
ماده کیکلاکا (Chupeonella) در سواحل آبهای گیلان نشان داد، تغذیه اصلی کیکلاکا از کویپودا و
سرپرستی است، نشان دهنده تقاضای غذایی M. leidyi با کیکلاکا عامل مهم در کاهش شدید ذخایر ماهیان
پلازیک دریای خزر باشد (باقری و همکاران منتشر نشده).

تشکر و قدردانی
از همکاران متحصن بخش اکولوژی آقایان مصطفی صیاد رحم، یعقوب حمیدی، ام‌سی‌علی
یوسف‌زاد و محرم ایرانی‌پور به جهت کمک‌هایی بسیاری به نموداری کمیال تشکر را داریم.

منابع
اسماعیلی، ع.؛ خداوندی، ص.؛ ابطحی، ب.؛ سیف‌آبادی، ج.و ارشاد، ه.، 1387. گزارش مشاهده
اولین مورد از شاهدزنان دریای خزر در سال 1378، مجله پژوهش علوم و تکنولوژی
محیط زیست. دانشگاه آزاد اسلامی واحد علوم و تحقیقات.
باقری، س.؛ سیف‌آبادی، ج.و صیاد‌رحم، م.، 1381. بررسی پراکنش شاهدان دریای خزر، زیست‌پاتخواری و رژیم
غذایی کیکلاکا ماهیان در سواحل دریای خزر (آبهای گیلان). منتشر شده.
بیروتشین، بیا.ا.، 1368. اطلس بی‌مهرگان دریای خزر. ترجمه: لودمیلا دلی‌نام و فضه نظری، 1379.
موسسه تحقیقات شیلات ایران. تهران. صفحات 127 تا 280.
عبدالملکی، ش.، 1381. نگرشه ی بر وضعیت کیکلاکا در دریای خزر. نخستین همایش ملی شاهدان
دریای خزر. 30 صفحه.

Shiganova, T., 2002. Environmental impact assessment including risk assessment regarding a proposed introduction of *Beroe ovata* to the Caspian Sea. Institute of Oceanology RAS, Russia, pp.1-45.