در Mnemiopsis leidyi

پراکنش و تراکم در سواحل جنوب شرقی دریای خزر

ابوالقاسم روحي (1)؛ احمد کدیش (2) و حسن فضلی (3)

Roohi_ark@yahoo.com

1 - 3- بخش بومشناسی، پژوهشکده اکولوژی دریای خزر، مازندران
2 - استاندارد علم دریایی، دانشگاه تکنولوژی خاورمیانه، اردبیل
3 - ترجمه

تاریخ دریافت: دی 1381
تاریخ پذیرش: شهريور 1382

چکیده

که در اواخر دهه 90 از دریای سیاه به Mnemiopsis leidyi، شاهد افزایش ویژه در آن دریای خزر وارد شد، اثرات منفی روی اکوسیستم دریای خزر پدید آورد. در این مطالعه، پراکنش جغرافیایی و فیزیکی این گونه از مجموع 12 استانگاه که در تراکم (نورآباد، نورآباد و نورآباد) در سواحل جنوب شرقی دریای خزر (استان مازندران) انتخاب شده بودند از این ماه 1380 تا آبان ماه 1381 مورد بررسی قرار گرفت. بیشترین میزان زیستنی به میزان 0.04/05 M. leidyi در ماه خرداد مورد بررسی یافت. در ماه مهر میزان متوسط این گونه در دو ماه اسفند و بهار 0.02/05 M. leidyi بود. در ماه دی مورد بررسی به میزان 0.07/05 M. leidyi در ماه مهر میزان متوسط این گونه در ماه به میزان 0.04/05 M. leidyi 0.06/05 M. leidyi را مشاهده کرد. در ماه مهر میزان متوسط این گونه در ماه به میزان 0.07/05 M. leidyi 0.06/05 M. leidyi را مشاهده کرد. در ماه مهر میزان متوسط این گونه در ماه به میزان 0.07/05 M. leidyi 0.06/05 M. leidyi را مشاهده کرد.

کلمات کلیدی: شاهد، پراکنش، تراکم، دریای خزر Mnemiopsis leidyi
مقاله

طی سالهای ۱۸۸۰ ورود یک گونه جدید از شاخه شانه‌داران به نام Mnemiopsis leidyi با Kideys, 1994 به دریای سیاه سریعاً کل آکوستیسم را تحت تأثیر قرار داد. این گونه مربوط به فیش Engraulis encrasicolus (Vinogradov, 1998) غالب ماهیان دریای سیاه است، داشت. این شانه‌دار دارای رنگ‌های غذایی بر روی زردرنگ‌کننده با ماهیان M. leidyi و از طرفی این شانه‌دار از ناحیه وارو آنجیجو نیز تغذیه می‌کند. شکوفایی یکی از مهم‌ترین دلایل کاهش سریع ماهیان آنجیجو و ذخایر سایر ماهیان پلازیک در دریای سیاه بوده است (Kideys, 1994).

در هنگام زمان اسلام و رود این شانه‌دار به سایر آکوستیسم‌های حساس اطراف خصوصاً دریای خزر تغییر مورد تأکید قرار گرفت (GESAMP, 1997; Dumont, 1999). می‌رفته این شانه‌دار در دریای خزر در تابستان ۱۹۹۹ گزارش گردید (Ivanov et al., 2000). و روحیه (۱۳۷۹).

و همکاران (۲۰۰۰) عقیده داشتند که این شانه‌دار از طریق آب توانزان کشتی‌ها از دریای ماهی‌های گرم سال وجود دارند و عبور کشتی‌ها از طریق کانال ولگا-دن و تخنیان آن در بخش‌های مرکزی و جنوبی دریای خزر به این مناطق راه یافته است. به دلیل خطرات هایی که توسط این جانور در دریای سیاه ماهی‌ها سردر و ماهی‌ها عبورکرده، شکارچی‌گوشاژوار M. leidyi سریع‌تر در دریای خزر نسبت به اثرات منفی آن اتلاف گردیده و زیرا است، که تا کم ماهیان پلازیک را که از زردرنگ‌کننده تغذیه می‌کند تهیه‌کننده می‌کند و هم شکارچیان بزرگتر تغییر (Phoca caspica) و فک دریای خزر (Huso huso) که از این ماهیان تغذیه می‌کنند را می‌توانند در معرض خطر قرار دهد (Kideys et al., 2001).

در این مطالعه پراکنش زمانی و مکانی M. leidyi برای کسب اطلاعات از میزان آن و بررسی اکولوژیک این شانه‌دار بمنظور مطالعه اثرات آن روی جوامع پلازیک ساحلی در سواحل جنوب شرقی دریای خزر بررسی شده است.

مواد و روش‌گار

در این مطالعه، پراکنش زمانی و مکانی M. leidyi در طول سه سال خش (ترانسکت) در نواحی نوشهر، بابلسر و امیر آباد در سواحل استان مازندران در جنوب دریای خزر از تیر ماه ۱۳۸۰ تا آبان
ماه ۱۳۸۱ مورد بررسی قرار گرفت. هر ترانسکت دارای ۴ استقایه در اعماق ۰، ۱۰۰، ۲۰۰ و ۵۰۰ متری بود و از قایق موتوری برای نمونه‌برداری استفاده گردید.

درجه حرارت و شوری آب در لایه‌های ۰، ۱۰۰، ۲۰۰ و ۵۰۰ متری ترتیب با ترمومترا برگردان و Secchi Disk شوری سنج دیجیتالی اندازه‌گیری شد. در هر ایستگاه شفافیت آب نیز با استفاده از مورد سنجش قرار گرفت. برای نمونه‌برداری از M. leiidiy از تور پلانکتون ۵۰۰ میکرون با قطر دهانه ۵ سانتی‌متر استفاده گردید. نمونه‌ها بصورت کشش عمودی از کف تا سطح برای کلیه اعماق برداشته شدند (شکل ۱ و جدول ۱).

![지도 شکل ۱: مناطق نمونه‌برداری در سواحل جنوبی شرقی دریای خزر](تصویر زمینه)

جدول ۱: مناطق نمونه‌برداری در سواحل جنوبی شرقی دریای خزر

<table>
<thead>
<tr>
<th>امیرآباد</th>
<th>طول جغرافیایی</th>
<th>عرض جغرافیایی</th>
<th>عمق</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰ ۵۰۰۲۱۰۰۰۰</td>
<td>۱۰۱.۹۸۱۵۰</td>
<td>۵۲.۳۸۹۵۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۵۰ ۵۰۰۲۱۰۰۰۰</td>
<td>۱۰۱.۹۸۱۵۰</td>
<td>۵۲.۳۸۹۵۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>۵۰ ۵۰۰۲۱۰۰۰۰</td>
<td>۱۰۱.۹۸۱۵۰</td>
<td>۵۲.۳۸۹۵۰</td>
<td>۲۰</td>
</tr>
<tr>
<td>۵۰ ۵۰۰۲۱۰۰۰۰</td>
<td>۱۰۱.۹۸۱۵۰</td>
<td>۵۲.۳۸۹۵۰</td>
<td>۵۰</td>
</tr>
</tbody>
</table>

www.SID.ir
در پایان هر کشش تور با آب اضافی از بیرون شستشو گردیده و محتویات جمع آوری شده در ظرفی ریخته می‌شده که برای شمارش در نظر گرفته شده بود. تراکم (M. leidyi) بر حسب تعداد در متر مربع و متر مکعب) از طریق مساحت ده‌ها تور و عمق نمونه برداری محاسبه می‌گردد.

اندازه شانه‌دار نمونه از طولی ۷ تا ۱۵ میلی‌متر و ... برای M. leidyi اندازه شانه‌دار مناسب طول و وزن بیشتری دارد. در مجموع ۱۸۶ نمونه جمع آوری شده که براساس گروه‌های طولی فوق مربی شدند. برای تعیین زیتوده از رابطه طول و وزن استفاده گردید. با استناد وزن شانه‌دار از طریق طول آن محاسبه شد (با اندازه گیری ۱۱۹ نمونه). طول نمونه‌ها از طریق خط کش (با اندازه گیری لب تا لب شانه‌دار) و سنجه وزن با استفاده از ترازوی دیجیتال (با حساسیت ۰۰۱ گرم) در تریمه ۱۲۸ صورت گرفت. تعیین زیتوده براساس گروه‌های طولی و با استفاده از فرمول

بدست آمده طول و وزن محاسبه گردید (شکل ۲).
نتایج
تغییرات میانگین درجه حرارت مناطق مطالعه طی زمان بررسی در نمودار ۱ نشان داده شده است. نوسانات درجه حرارت بین ۲/۰ درجه سانتیگراد در مرداد ماه تا ۷/۵ درجه سانتیگراد در اسفند ماه می‌باشد. تغییرات شوری نیز از ۱۲/۰ ppt (در عمق ۱ متر) تا ۵۰/۰ ppt (در عمق ۵ متر) با میزان متوسط ۱۵/۵ نیز در هنگام مناطق قابل ملاحظه می‌باشد. میزان شفافیت نیز از ۲/۰ تا ۱۰ متر طی زمان مطالعه در حوضه جنوب شرقی دربیای خزر متغیر بوده است (نمودار ۲).
معادله روابط طول و وزن می‌باشد: موز M. leidyi که برای محاسبه وزن تر (زیتونه) مورد استفاده قرار گرفته است بصورت زیر می‌باشد (نمودار ۳):
\[W(g) = 0.0013 \times L(mm)^{2.33} \]
\[n = 269 \quad R^2 = 0.96 \]
نمودار ۳: رابطه بین طول و وزن M. leidyi در دریای خزر

نری دارای نوسانات گسترده‌ای بود. با طول ۱۷/۲گرم بر مترمی سه در سه ماه تا پیش از ۱۰۰گرم بر مترمی در شهریور ماه در حوضه جنوب شرقی دریای خزر متغیر بود و در طی ماههای سرد سال (برای مثال دی تا اسفند) بسیار اندک و در ماههای گرم بود. جمعیت این شانه‌دار طی ماههای مرداد تا شهریور ۱۳۸۰ نیز افزایش ناگهانی داشت و سپس کاهش می‌یافت و مجدداً طی همین ماهه در سال ۱۳۸۱ افزایش داشت و در اوایل پاییز ماههای گرم می‌یافت و مجدداً طی سالهای ۱۳۸۱ و ۱۳۸۲ نشان داد که زیبوده آن تقریباً یک یک ساله‌دار در حالی بود به جمعیت آن افزوده شده است. بیشترین میزان زیبوده این شانه‌دار نیز در شهریور-مهر ۱۳۸۰ و شهریور ۱۳۸۱ مشاهده شده است (نمودارهای ۴ و ۶).

بر اساس عملکرد زیبوده M. leidyi در اعماق مختلف حوضه جنوب شرقی دریای خزر در نمودار ۵ نشان داده شده است. بیشترین میزان زیبوده این جانور بجای در فصل زمستان در عمق ۲۰ متری مشاهده می‌شود و حداقل زیبوده این شانه‌دار در تمام فصول در عمق ۵ متری بوده است. از این نمودار چنین برخی آید که عملکرد زیبوده M. leidyi در فصل پاییز نسبت به ماههای دیگر بیشتر است و کمترین میزان زیبوده این جانور در زمستان قابل مشاهده است.

www.SID.ir
نمودار 4: تغییرات جمعیت و زیستگی در زمانهای مختلف نمونه برداری در منطقه جنوب شرقی دریای خزر در سال 1380-81

نمودار 5: پراکنش عمودی M. leidyi در نوار ساحلی جنوب شرقی دریای خزر در سال 1380-81
نمودار ۶: تغییرات فصلی نمودار ۷: متوسط زیوته و تراکم در تراکم‌های نوشهر، بابلسر و امیرآباد طی سال‌های ۱۳۸۰-۱۳۸۱

نرخ زیوته و تراکم در نواحی ساحلی جنوب شرقی در سال ۸۱-۸۸

ملاحظه: بهتر است که تعداد نمونه و محدودیت‌های آماری برای هر ایستگاه به‌روزرسانی شود.
میزان تغییرات درجه حرارت نیز در فصول مختلف از تیر ماه ۱۳۸۰ تا آبان ماه ۱۳۸۱ در نمودار ۸ آمده است. لذا همانطوریکه مشاهده می‌شود طی فصول زمستان و بهار هیچگونه ترمولوژی (شکست حرارتی) مشاهده نمی‌شود، در حالیکه طی فصل تابستان و تا حدودی در فصل پاییز در عمق‌های ۳۰ و ۴۰ متری وجود شکست حرارتی به اثبات رسیده است.

نمودار ۸: تغییرات فصلی درجه حرارت (درجه سانتی‌گراد) در عمیق ترین استفاده، نمونه‌برداری (عمق ۵۰ متری) امیرآباد.

همچنین فراوانی طولی ماهانه M. leidyi در آب‌های سواحل استان مازندران در نمودار ۹ نشان داده شده است. همانطوریکه مشاهده می‌شود نمونه‌های کوچک شامل دار (کمتر از ۵ میلی‌متر) در کلیه اعماق گسترده و نزدیک ۱۰ درصد شانه‌دار به این گروه تعلق دارند.
نمودار 9: نواحی طولی ماهانه‌ی M. leidyi در آبهای سواحل استان مازندران طی سال‌های 1381-1380 میلادی

تفاوت‌ها داخلی حیرت‌آور این این نواحی طولی ماهانه‌ی M. leidyi در آبهای سواحل استان مازندران نيز در نمودار 16 آمده است. طبق نمودار شماره 10 بین مینیکین طول و وزن کننده این زمان‌دار طی ماه‌های مختلف نرمال برداشته و در سال‌های 1380 و 1381 ارتباط نزدیکی وجود دارد. با این حال، متوسط وزن تر و متوسط طول شان‌های در دو ماه 1380 ملاحظه می‌گردد و اندیشه این جانور بعد از این اختیار بانند و در مرداد ماه 1381 به بالاترین مقدار (20 میلی‌متر) رسیده است. از طرفی مقایسه میزان مینیکین تراکم (تعداد در نمونه) و وزن تر شان‌های (میلی‌گرم) طی سال‌های 1380 و 1381 نشان می‌دهد که متوسط تراکم این شان‌های دار کم‌چکر شده در حالیکه بر تراکم آن تا حدودی اضافه شده است.
نمودار ۱۰: تغییرات میانگین انتدازه طولی در آهای سواحل استان مازندران طی سال‌های ۱۳۸۰–۱۳۸۱

الف) میانگین وزن تر.

ب) میانگین تعداد

مجله علمی شبکه ایران
سال دوازدهم / شماره ۳ / بهمن ۱۳۸۲

www.SID.ir
بحث

تنوع و تغییرات زیوتوژده M. leidyi در دریای خزر بنظر می‌رسد که طی ماه‌های مختلف به درجه حرارت بستگی دارد و در دریای سیاه نیز این امر به اثبات رسیده است (Shiganova, 1998). تولید مثل این گونه در آب‌های ساحلی جنوبی دریای خزر نیز در فصل بادبادن می‌روند و ماه اگر آنها، معنایی دارد که نسبت به دریای خزر بدلیل تفاوت درجه حرارت اندکی دیرتر شروع شده و در آب‌های نیز بدلیل افت شدید دما میزان M. leidyi سریعاً کاهش می‌یابد (Shiganova, 1998).

(Bogdanovo & Konsoulov, 1993; Vinogradov, 1990)

براساس نتایج مطالعه حاضر، نمونه‌های کوچک این گونه (کمتر از 5 میلی‌متر)، حدود 90 درصد از کل جمعیت این شانه‌دار را در سال ت تشکیل می‌دهند و متوسط طول هر شانه‌دار نیز از 30 تا ۴۰ میلی‌متر است. در دریای سیاه نیز نمونه‌های جوانتر (کمتر از 10 میلی‌متر) در فصل تابستان بدلیل افزایش تولید مثل غلب می‌شوند و از طرفی فرآیند نمایدگی در دسترس نیز نتش می‌رسد. در تولید مثل این شانه‌دار اینفیش می‌شوند و Multu و همکارانش (1993) و Vinogradov & Shushkina (1994) تغییرات مشابهی را در دریای سیاه در ترکیب ساختار اندام این ماهی پذیرفته. از این رو تولید مثل تابستانه این شانه‌دار ممکن است تحت تأثیر هم‌زمان میزان گذاری بی‌کیفیت‌تر باشد. اندامی جوانی نیز ماهی‌سالیای در دریای سیاه گاهی طی فصول زمستان و بهار هم‌زمان با افزایشان درجه حرارت بین ماه‌های بهمن تا خرداد افزایش
یافته‌که این امر بدلیل افزایش رشد سوماتیکی (رویشی) می‌باشد.

(Purcell et al., 2001) مقایسه زیتوده M. leidyی در میان مناطق مختلف نشان داده است که منطقه امیرآباد نسبت به مناطق دیگر دارای زیتوده پیشتر می‌باشد. بنظر می‌رسد برای هر بسته حفره (وجود نیروگاه‌ها) و وجود رودخانه تجربه نشان دهنده این منطقه، و شبیه ملایم (بسته تقریباً صاف) سبب وجود آمدن چنین وضعیتی است، زیرا در دریاچه‌های نیز ورود مواد از طریق رودخانه‌های منظر رود کاهشی (Danube) سبب افزایش مواد غذایی و پلانونکرونا شده و این امر ممکن است تأثیر افزایش ناگهانی M. leidyی بصورت افزایش جمعیت در دریاچه‌های باشد (1999).

Shiganova توضیح می‌دهد که از زمان شروع پراکنش M. leidyی تا سال 1400 در دو دارای خزر (تاریخ‌های 2000-2005) نشان داده که بیشترین میزان آن در خزر جنوبی و میان در این منطقه زیستندگان گرافی می‌باشد، مشاهده می‌شود و طی ماه‌های دسامبر تا مارس به علت افت شدید درجه حرارت (با توجه به دمای شریکی) جمعیت آن M. leidyی سریعاً کاهش می‌یابد. طی زمان‌ اندازه حاصل می‌باشد که در طی خوز جنوبی تولید مثل می‌نامید. سپس در ذرخ شلیکی (M. leidyی) با وجود سرد شدن درجه حرارت در فصل زمستان (درجه سانتی‌گراد) در سواحل ایران در دی‌وی زیست در خزر قادیر به جزئی بوده و بعد از گرم شدن درجه حرارت آب به قابلیت تاپسانی می‌پردازد. در زمان‌ این در دی‌وی شریکی (M. leidyی) در دریاچه‌های خزر به دلیل شرایط لازم از گذشته (1400-1401) حداقل میزان متوسط سالیانه و زیستگاه یافته‌ست در حالت کارخانه حاضرهای شریکی می‌باشد. این حاصل می‌باشد که نسبت به سال گذشته (1381-1382) اندکی کمتر شده (به نسبت 188 همکنون برابر 13 1/5/13200/21 1/11 1/20 بر متر مربع) و بر جمعیت این جانور. نیز افزوده شده است (به نسبت 187 همکنون برابر 11 1/124 1/21 1/41 1/1200 بر متر مربع). با توجه به وجود تعداد زیاد این شرایط در سواحل ایران طولی کمتر از 5 میلی‌متر مشخص می‌گردد که این گونه فیثی ماه‌های (300-1381) رونده در حوضه جنوبی دریاچه خزر داشته است.
تشکر و قدردانی

این مقاله در راستای اجرای پروژه بررسی پایش شانه‌دار دریای خزر در پژوهشگاه اکولوژی دریای خزر در حال انجام می‌باشد. از این رو از کلیه مدیران شیلاتی کشور، آزمایشگاهی و مهندسین، عضو مدیریت، مدیران مباحث و مهندسین عضو انجمن شیلاتی ایران، مدیران مباحث و مهندسین عضو انجمن نفت و گاز، همکاران محقق در بخش پژوهش‌های آزمایشگاهی، کمیته‌های فناوری، و همچنین ذخیره‌گاه‌های این مقاله و اجرای پروژه فوق باری نمودن سپاسگزاری و تشکر می‌گردد.

منابع

روحی، ا. مقدمه‌ای بر شانه‌دار دریای خزر، شامل نحوه ورود به دریا، سیا و دریا خزر، مورفولوژی، نمونه‌برداری و مبارزه پیلولزیک. مرکز تحقیقات شیلاتی استان مازندران، 2001 صفحه.

