بررسی تغییرات بیوماس و تراکم سیانوفیتی در فصول مختلف در حوضه جنوبی دریای خزر

آسه مخلوط و حسن نصرالله‌زاده ساروی

asieh_makhlough@yahoo.com

پخش اکولوژی پروتئن‌کده اکولوژی دریای خزر، ساری. صندوق پستی: 961 تاریخ دریافت: 1380/01/13 تاریخ پذیرش: 1381

چکیده

هدف از این مطالعه بررسی تغییرات جمعیت و بیوماس سیانوفیتی با توجه به تغییرات فصلی (دمایی) در حوضه جنوبی دریای خزر بود. در این بررسی از نواحی مختلف حوضه جنوبی دریای خزر در دوره مطالعاتی در سال‌های 1376 و 1378 تا آن مجموعاً 342 نمونه، از 18 ایستگاه دارای جدایک بیش از 10 پر، جمع‌آوری گردید و سپس مورد آنالیز و کمیت قرار گرفت. نتایج بدست آمده در سال‌های 1375 نشان می‌دهد که از مجموع 881 گونه فیتولکترنکنی که گونه (G) درصد) متعلق به شاخه سیانوفیتی بوده است. در فصول گرم (بیار و تابستان) حداکثر بیوماس و تراکم سیانوفیتی در منطقه غربی بوده است. در فصول سرد (پاییز و زمستان) حداکثر میزان بیوماس و تراکم در منطقه شرقی مشاهده گردیده است (0/3 میلی گرم عدد در متر مکعب). در حالت که در 16/5 عدد در متر مکعب و 6/5 عدد در متر مکعب). حداکثر درجه حارث طی سال (جیز پاییز) در منطقه غربی و حداکثر آن در منطقه شرقی و با مارکزی بوده است. در ماه‌های 1379/9 و 1379/10 از تعداد کل 160 گونه فیتولکترنکنی 25 گونه (15 درصد) سایانوفیتی تشکیل داده شده است. حداکثر بیوماس و تراکم در بیار و تابستان در هر سه منطقه بطور پراکنده دیده شده است (0/8 میلی گرم عدد در متر مکعب و 6 عدد در متر مکعب). در پاییز و زمستان حداکثر سیانوفیتی و تراکم همانند سال 1375 در منطقه شرقی مشاهده گردیده است (0/5 میلی گرم بر متر مکعب و 2 عدد در متر مکعب). حداکثر درجه حارث طی سال (جیز پاییز) در منطقه غربی بوده و حداکثر تراکم سیانوفیتی در تابستان که می‌تواند مربوط به افزایش درجه حارث و میزان روش‌شایی باشد. نتایج بدست آمده از آنالیز آماری غیر پایرامتریک نشان می‌دهد که بین فصول مختلف در سال‌های 1376 و 1378 تراکم و بیوماس سیانوفیتی اختلاف میانگین داری نداشته است (P>0/05). نتایج در نواحی مختلف (غربی، شرقی و مرکزی) نیز مشابه قبول بوده است. این نتایج جمعیت سیانوفیتی بر اثر تاثیر ترکیبی خاصی از عوامل محیطی است تا ارتباط مستقیم بین عوامل محیطی (از قبیل دما) و سیانوفیتی.

لیست جزئی: سیانوفیتی، تغییرات فصلی، بیوماس، تراکم، دریای خزر، ایران

www.SID.ir
مقدمه

پیوند شناختی از عناصر اصلی و مهم محیطهای آبی محصور می‌شوند، زیرا در اولین هر اثر زنجیره غذايي آبوسیستم آبی جاي دارند. آنها شامل چندین شاخه می‌باشند که یکی از آنها سیالونتا (جلبک‌های سبز آبی) است، که به آنها می‌تواند بیش از ۳ میلیون سال پيش می‌رسد. جلبک‌های سبز آبی از جنبه‌های مختلف نظر رشت‌ها و غیررشته‌ها بوده، توانایی تثبیت نیتروژن و استفاده با عوامل اکولوژیک (منابع غذایی، شوری، دما، pH) می‌توانند مورد بررسی قرار گیرند (Sze, 1986).

درجه حرارت یکی از عوامل اصلی محیط آبی است که تأثیری بر کل فعالیت و انتقالات موجودات زنده مؤثر است. هر گونه آبیان قابلیت زندگی در محدوده حرارتی معینی را دارند، در نتیجه درجه حرارت نسبتاً محصور نیز محدود کننده داشته و هم به عوامل عامل اصلی مورد نیاز موجودات محصور می‌گردد. اگرچه پیوند شناختیها، پاک‌کننده و انتشار در ارتباط با دمای آب یکنواعت نیمی باشد (قاسم‌اف، 1994).

منطقه مورد مطالعه در این پژوهش، حوضه جنوبی دریای خزر (سواحل ایران) بوده که از نظر خاصیت‌های فیزیکی - شیمیایی و جغرافیایی به سه بخش شرقی‌غربی و مرکزی تقسیم است (کاتونی، 1374).

سیالونتای در کلیه مناطق دریای خزر برآمدگان‌اند، اما بیشتر گونه‌های آنها در خزر شمالی زندگی می‌کنند. ۹۰ گونه در خزر شمالی، ۱۰ گونه در خزر میانی و ۱۰ گونه در خزر جنوبی) و بیشترین تنوع آن در خزر شمالی در دوره تابستانی بازی به مشاهده می‌شود (مجانی و میلینی، 1985) و همچنین طبق نظر قاسم‌اف و باقری (1983)، در خزر جنوبی از ۲۱۹ گونه پیوند شناختی ۲۲ گونه (۳۲ درصد) آن را سیالونتای تشکیل می‌دهند.

قسمت غربی خزر جنوبی (متصل به سواحل روسیه) بخصوص تا اکنون ۵ متری از لحاظ وجود جلبک‌های غنی است (قاسم‌اف، 1987) که می‌تواند به علت غنی بودن آنها از مواد بیوتیک باشد که از طریق آب‌های شمال غربی و چه از اعماق اثر چنگال‌های آبی‌ای به کنفی حاصل می‌شود (سالمانوف، 1987). از طرفی در قسمت شرقی در فصل زمستان رشد و نمای جلبک‌ها بیشتر از قسمت غربی است زیرا درجه حرارت آب در ناحیه شرقی بالاتر است (قاسم‌اف، 1987).
هدف از این مطالعه بررسی تغییرات سیانوفیتا با توجه به تغییرات فصلی (دمایی) در حوضه
جنوبی دریای خزر می‌باشد.

مواد و روش‌کار
برای بررسی حوضه جنوبی دریای خزر (از آسترا تا بندترکم) تعداد 18 مقطع عموم بر ساحل
(ترانسکت) در نظر گرفته شد که این 18 مقطع به سه ناحیه قابل تقسیم می‌باشد:
1- ناحیه غربی: از نیم خیز 1 تا 7
2- ناحیه مرکزی: از نیم خیز 8 تا 13
3- ناحیه شرقی: از نیم خیز 14 تا 18

هر نیم خیز در فاصله مطالعاتی سال 1375 شامل 4 استگاه با حداقل عمق های 40، 60، 80 و 100
متر بوده است. ویژه در مطالعه سال 1379-1378 این نیم خیزها دارای سه استگاه با حداقل
عمق های 0 و 5 و 10 متر بوده این مطالعه براساس داده‌های استگاه‌های دارای حداقل عمق 10 متر
نوشتار شده است (شکل 1).

نمونه برداری بصورت فصلی و اندازه‌گیری درجه حرارت بوسیله دمسانس برگردن زاینده و
آللمانی انجام شده است.

نمونه‌های پانل‌کنون بوسیله تور روزنر جمع آوری شدند. برای تعبیه بیوماس و فراوانی نیز از
روش سانتریفیوز استفاده شد به این ترتیب که 50 سی سی آب نمونه برداری شده را بر فرمول 6
درصد تثبیت نموده و در ظرف شیشه‌ای به آزمایشگاه متنقل شدند (سلمانوف؛ 1987). در این روش نمونه‌ها به مدت 10 روز در تاریکی تگرگ‌دار گرددند تا کامل‌اً رسوب نماید.
سپس سیفون و سانتریفیوز شدند و با میکروسکوپ با بزرگنمایی X100 و X200 مورد شناسایی و
شمارش قرار گرفتند (Vollenweider, 1974; Clesceret et al., 1976; Newell, 1977; Shumarsh, 1978 و Habit, 1976 و Prescott, 1962 شناسایی تربک که رای گونه‌ها و پهللوانکون یا از کلیدهای شناسایی: 1951 استفاده گردید. پژوه‌ی آналیز داده‌ها از
Ffany & Britton, 1971) استفاده گردید. جهت آنالیز داده‌ها از
SPSS و Excel 98, Foxpro نرم‌افزار استفاده شد.
مخلوق و نصرت..زاده ساروی

دریای خزر
نتایج
بررسی فصلی سیانوفیتا در سال 1375 نشان می‌دهد که در بیشتر تراکم و بیوماس در منطقه غربی وجود دارد، در حالی که بیشتر تراکم و بیوماس در فصل پاییز و زمستان به منطقه شرکی کشیده شده است (جدول 1). بطور کلی در سال 1375 میزان انتشار سیانوفیتا پایین بوده و در بسیاری از نیم خطي‌ها اصلاً دیده نشد است (جدول 2). بیشترین تراکم و بیوماس به مربوط به فصول تابستان و بهار بوده است، بطوریکه مجموع تراکم در فصل تابستان به میزان 71/6/1/1000000 میلی‌گرم در متر مربع رسیده است (جدول 3)، که در این فصول مجموع تراکم و بیوماس کل فیتوپلانت‌کنون به ترتیب 86/1/1000000 و 289/2 میلی‌گرم در متر مربع بوده است.

در پاییز تمامی گونه‌ها رشدی‌ای بودند اما در سه فصل دیگر تنها نیمی از آنها رشدی‌ای بودند (نمودار 1). حداقل درجه حرارت در همه فصول (به‌جز پاییز) در منطقه غربی و حداکثر درجه حرارت در بخش شرقی و مرکزی بوده است (جدول 1). تغییرات دمایی در نیم خط‌های مختلف در سه فصل تابستان، پاییز و زمستان کمتر از 4 درجه است در حالیکه در بیشترین فصول این تغییرات به 7 درجه سانتی‌گراد می‌رسد.

جدول 1: میانگین تراکم، بیوماس و درجه حرارت در فصول و نواحی مختلف حوضه جنوبی دریای خزر (سالهای 1378-1379)
جدول ۲: چگونگی انتشار سیانوفیتا در فصول و مقاطع مختلف در حوضه جنوبی دریای خزر (سال‌های ۱۳۶۷-۹ ۷۹ - ۱۳۷۸)

فصل	۱۸	۱۷	۱۶	۱۵	۱۴	۱۳	۱۲	۱۱	۱۰	۹	۸	۷	۶	۵	۴	۳	۲	۱	مال	سال		
بهار	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
تابستان	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+
پاییز	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
زمستان	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

* نمونه در خاک صورت نگرفت.
نمودار ۱: تعداد کل گونه‌های سیانوفیتا در فصول مختلف جنوبی دریای خزر (سال‌های ۱۳۷۵ و ۷۸ تا ۱۳۷۹)

جدول ۳: مجموع کل تراکم و بیوماس سیانوفیتا و متوسط درجه حرارت در فصول مختلف در حوضه جنوبی دریای خزر (سال‌های ۱۳۷۵ و ۷۸ تا ۱۳۷۹)

<table>
<thead>
<tr>
<th>دما (درجه سانتی‌گراد)</th>
<th>بیوماس (میلی‌گرم در متر مکعب)</th>
<th>تراکم (تعداد در متر مکعب)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۷/۹</td>
<td>۸/۱/۳۱</td>
<td>۸/۱/۹ × ۱۰^{۵}</td>
</tr>
<tr>
<td>۱۷/۲</td>
<td>۸/۱/۶۴</td>
<td>۸/۱/۵ × ۱۰^{۵}</td>
</tr>
<tr>
<td>۱۷/۸</td>
<td>۸/۱/۲۴</td>
<td>۸/۱/۴ × ۱۰^{۵}</td>
</tr>
<tr>
<td>۱۶/۸</td>
<td>۸/۱/۳۶</td>
<td>۸/۱/۹ × ۱۰^{۵}</td>
</tr>
<tr>
<td>۱۵/۸</td>
<td>۸/۱/۵۴</td>
<td>۸/۱/۶ × ۱۰^{۵}</td>
</tr>
<tr>
<td>۱۴/۸</td>
<td>۸/۱/۷۲</td>
<td>۸/۱/۷ × ۱۰^{۵}</td>
</tr>
</tbody>
</table>

در سال ۱۳۷۹ ۱۳۷۸-۸۱ حاکمتر تراکم و بیوماس سیانوفیتا در بهار در منطقه مرکزی و در پاییز و زمستان در منطقه شرقی مشاهده شده است و در تابستان علاوه بر شرق در غرب نیز دیده شده است.
بررسی تغییرات بیوماس و نرمکت سیانوفیت‌ها در... مخلوط و نصرت... زاده ساروی

(جدول ۱). بیش از ۵۰ درصد از گونه‌های مشاهده شده در همه فصول رشته‌ای بویدند (نمونه ۲). بیشترین انتشار سیانوفیت‌ها در سال ۱۳۷۹ در فصل پاییز بوده است (جدول ۳). مجموع تراکم و بیوماس در فصل پاییز به میزان ۲۳۵ گرم در مترمکعب و ۳۲۶ میلی‌گرم در مترمکعب بوده است (جدول ۳). در این فصل مجموع تراکم و بیوماس کل فیتوپلانکتون برابر است. حداقل درجه حرازت در پیشرفت فصول در منطقه غربی و حداکثر درجه حرازت نیز غالباً در منطقه شرقی اندامگاه گیری شده است (جدول ۱).

از سال ۱۳۷۵ تا سال ۱۳۷۸ تعداد گونه‌های سیانوفیت مشاهده شده در همه فصول جز بهار، افزایش داشته است (نمونه ۳)، چنان‌که جدول ۴ نشان‌گر افزایش تعداد گونه‌های سیانوفیت‌ها در سال ۱۳۷۹-۱۳۷۸ می‌باشد. نمونه ۴ تعداد کل گونه‌های فیتوپلانکتون را در سالهای مورد مطالعه نشان می‌دهد.
جدول ۲: مقایسه حضور گونه‌های مختلف سیانوفیتا در فصول مختلف حوزه جنوبی دریای خزر

<table>
<thead>
<tr>
<th></th>
<th>زمستان</th>
<th>پاییز</th>
<th>تابستان</th>
<th>بهار</th>
<th>Cyanophyta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v8</td>
<td>v9</td>
<td>v6</td>
<td>v5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Aphanothece sp.</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Microcystis sp.</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Microcystis aeruginosa</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Microcystis pulvrea</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaenopsis cunningtonii</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaenopsis nadsonii</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaenopsis raciborski</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaenopsis Arnoldii</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaenopsis sp.</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Oscillatoria limosa</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Oscillatoria geminata</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Oscillatoria sp.</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Oscillatoria chalybea</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaena spiroides</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaena tenuis</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaena bergii</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaena aphanizomenides</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaena subcylinariae</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaena sp.</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Anabaena kisselevii</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Merismopedia punctata</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Merismopedia minima</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Spirulina laxissima</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Gleocapsa sp.</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Aphanizominon elabens</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Aphanizominon issatschenko</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>Tolipotrix sp.</td>
</tr>
</tbody>
</table>

رشته‌ای

** غيررشته‌ای

www.SID.ir
بحث

سیانوفیتا درجات حرارت بالا (پیش از 20 درجه) را جهت رشد خود ترجیح می‌دهند (Tang et al., 1997). لذا در بهار و تابستان که متوسط درجه حرارت مناسب جهت رشد ندارند، در نتیجه در این فصول تنش عوامل دیگر بر میزان تراکم و بیوماس سیانوفیتا بیشتر می‌گردد. به این ترتیب می‌توان گفت که افزایش تراکم و بیوماس آنها در این دو فصل در منطقه غربی می‌تواند به۱ و ۰۰/۸۰ آب و هوای رو به‌روش خانه ای غنی از مواد غذایی باشد (سلمانوف، ۱۹۸۷). در حالی که در سرمای زمستان، درجه حرارت تنش بارزتری می‌یابد تا بنابراین عمده حرارت بالاتری نسبت به غرب است که که در قبیل جرخه‌های عمده آب و کاهش علف‌خواری زئولامیناکوئنها (Davis, 1955) و مقیاسه خانه‌های می‌گردد. زمینه‌های مناسبی جهت انتشار بیشتر سیانوفیتا فراهم می‌گردد.

مقایسه میانگین‌های تراکم و بیوماس در فصول مختلف (درجه حرارت‌های متفاوت) با استفاده از آزمون کروسکال والپس نشان می‌دهد که نتایج اختلاف معنی‌دار نداشته است (که اختلاف معنی‌دار بوده است (P ≤ 0.05). در همین بررسی آماری نشان داده شده است که

نمودار ۳: تعداد کل گونه‌های زئوپلاستون در فصول مختلف حوضه جنوبی دریای خزر (سالهای ۱۳۷۵ و ۷۸ تا ۱۳۷۹)
بیوماس سیانوفیتا در سال‌های ۱۳۷۹–۱۳۸۲ به مقدار ده برای سنت به سال‌های ۱۳۷۵ افزایش یافته است.

(۱) در صورتی که تراکم آن تقریباً به برای افزایش نشان داده است (P<0.001). بنابراین به‌هوسی در سال‌های ۱۳۷۹–۱۳۸۲ در تمامی مراکز، گونه‌ها با میانگین وزنی بیشتر گزارش شده است. چنانچه این تفاوت با آنها در میان سیانوفیتا دارای وزن بیشتری هستند، افزایش یافته‌اند.

اکنون در بررسی سالانه نیز بیشتر می‌خورده، به این ترتیب که در تابستان تراکم تا ۷۸% کاهش یافته‌است، چنان‌که در سال‌های اخیر وزن بیشتر تراکم گونه‌های سیانوفیتا است، پژوهش‌کنندگان و در زمستان‌های اخیر نیز وزن بیشتری گونه‌های سیانوفیتا به‌دست آمده‌اند.

برخی از مشاهدات محیطی نشان می‌دهد که به‌دست آمده، این افزایش به‌طور فصلی به‌دست می‌آید، که با دوماکتیل می‌شود و توانایی گونه‌ها و شکوفه‌های فیتوپلانکتون‌ها در دریاها و میله‌های غلیظ به‌دلیل تغذیه گما کنترل می‌شود (ر.ماس. ۱۳۷۹).

در این تحقیق با توجه به نتایج بدست آمده، می‌توان حضور سیانوفیتا را در درجاری مختلف حرارتی مشاهده نمود. بمارتی درجه حرارت اثر تعیین کننده بر وجود یا عدم وجود آنها می‌باشد. چنان‌که در درجه حرارت‌های زمستان، تراکم نیز تراکم از آنها دیده شده (نیم خیاط ۶ در زمستان ۱۳۷۹)، اما بالاترین تراکم آنها در گرمایهای تابستان مشاهده شده است. افزایش تراکم فیل سیانوفیتا (در نیم Lewicz و Zmijews ۲۰۰۰ می‌گویند با علت کاهش درجه حرارت در تابستان، تراکم سیانوفیتا کاهش یافته که در شرق این کشور مشاهده می‌شود.

در سال ۱۹۹۸ به‌دلیل تغییرات منفی در محیط سرمایه که ممکن است بتواند نسبت به فرضیه (Tang et al., ۱۹۹۷) نیز استبداد نمود. طبق این فرضیه سیانوفیتا در مناطق سرد همچنان حضور دارد و تغذیه می‌کند ولی از رشد و تکثیر چندان بالایی برخوردار نیستند. در مجموع به این ترتیب تا ۷۸% بنویم که دینامیکا جمعیت سیانوفیتا بیشتر تحت تأثیر ترکیب خاصی از عوامل محیطی است و ارتباط مستقیم بین عوامل محیطی (از قبیل دما) و سیانوفیتا کمتر
تشریح و قدردانی

از همکاری ریاست محترم مرکز تحقیقات شیلاتی استان مازندران و معاون متخمر تحقیقاتی مرکز در تهیه این مقاله و نیز از پرسنل محترم کشی تحقیقاتی گیلان و نیز پرسنل بخش بوم‌شناسی (آب‌شناسی و بیولوژی) مراکز تحقیقاتی مازندران و گیلان برای جمع آوری نمونه‌ها و آنالیز آن و نیز از آقای مهندس فضیل جهت آنالیز آماری و سرکار خانم نیروی جهت تابیت سیاست‌گذاری و قدردانی می‌گردد.
منابع

رحبی م.ر. ۱۳۷۹. فیتوفلانکتون. انتشارات شهر سبز. ترجمه کتاب: Dounald Boney نوشته.

داستان‌های حیاتی، ج. ۱۳۷۷. بی‌پره‌پنج‌پره. دانشگاه الزهرا. تهران. صفحه ۲۲۲.

زابلی‌نیا، م.؛ کسیف، ا.؛ پیروشکنیا، ا.؛ آذری، آ.؛ و شیشکوک، م.؛ و شیشکوک، اس. ان. ۱۳۵۱.

جلیقه‌های دیاتومهای، انتشارات دولتی علوم شورای (سکو). جابه‌جایی، ۱۵۰ صفحه.

سالمان‌نیا، م.؛ و سلیمان‌نیا، م.؛ ۱۳۸۷. نشان‌دهنده، و فیتوفلانکتون‌ها در پروسه‌های تولیدی دریای خزر. ترجمه: ابوالقاسم شربیعتی، مرکز آموزش عالی و صنایع شیلاتی میرزا کوچک خان، رشت. صفحه ۳۷.

قاسم‌اف، گ.؛ ۱۳۸۷. دریای خزر. لنینگرد. ترجمه: بویو علیدی، انتشارات مرکز تحقیقات شیلاتی استان گیلان. صفحه ۸.

قاسم‌اف، گ.؛ ۱۹۹۴. اکولوژی دریای خزر. انتشارات نافرما - باکو. ترجمه: ابوالقاسم شربیعتی، موسه تحقیقات شیلاتی ایران. صفحه ۲۲۹.

کاتون‌نیا، د.؛ ۱۳۸۳. گزارش پروژه‌های هیبریدولوژی و هیدروپلیژی حوضه جنوبی دریای خزر. انتشارات مرکز تحقیقات شیلاتی استان مازندران. صفحه ۳۸۹.

ماناتی سیبو، پ.؛ و فیلاتوا، ز.؛ ۱۹۸۵. جانوران و تولیدات زیستی دریای خزر. ترجمه: ابوالقاسم شربیعتی، موسه تحقیقات شیلاتی استان گیلان. صفحه ۴۵.

Wade, D.C., 1984. Factor affecting development of a summer, Cyanophyta dominated phytoplankton community in a mainstem Tennessee reservoir, USA, 138 P.