تأثیر قطع سیبلک حسی روی رشد فیل ماهیان جوان (Huso huso)

علیرضا عباسی‌زاده

مجله علمی شیلات

cالمات کلیدی: نیل ماهی، روی، رشد، سیبلک حسی

ذخایر ماهیان خاویاری که جزء آبزیان دریای خزر می‌باشند، در سال‌های اخیر بیش از پیش در معرض نابودی قرار گرفته است. لذا با توجه به اهمیت اکولوژیک و اقتصادی آنها، تکثیر مصنوعی و رهاکرد بیچ ماهیان خاویاری به ورود خانه‌ها در این سال‌ها با جدیت و دقیقت بیشتری صورت گرفته است.

در این راستا همه ساله جهت تعمیم ضریب بازگشت ماهی‌های رها شده و انجام طرح‌های ارزیابی ذخایر، درصدی از بیچ ماهی‌های در حال رها کردن علامت‌گذاری می‌شوند. تا سال 1375 علامت‌گذاری عمده‌ای بصورت پریدن قسمتی از باله سینه‌ای سمت چپ و پس از آن به شکل قطع سیبلک‌ها نیز انجام می‌پذیرد.

مرور اجمالی آن‌ژئوگنی ماهیان خاویاری، نحوه شکل‌گیری و تأثیر گذاری گیرنده‌ها و مراکز حسی مختلف که در ارتباط با جستجوی غذا نشان داده‌اند، نشان می‌دهد که در فاصله زمانی بین مرحله ۳۴ و ۴۵ رشد و نمو جنین در داخل غشاء تخم قادر به جرخت نیست، پس از تشکیل لوله عصبی و بیش از آغاز ضریب قلب، طرح‌های اولیه بخش‌هایی از مغز و بعضی از اندام‌های حسی از جمله کیسه‌های بویایی و لابیرینت‌های غشایی ظاهر می‌شود. تخم گشاپی (Hatching) در مرحله ۳۵ رشد و نمو جنین صورت می‌گیرد و در مرحله ۳۶ است که شکاف حفره بویایی باز می‌شود و این در حالیست که هنوز آثار سیبلک‌ها مشخص نیست. در مرحله ۳۷ دهان شروع به باز شدن می‌کند و در جلوی دهان چهره بر جستگی که آثار اولیه سیبلک‌ها هستند ظاهر می‌شوند (در این مرحله طول لازم تا ماهی
تأثیر قطع سیبیک حسی روی رشد بهبود مامان جوان

عباسعلی زاده

روش به 10/11 میلیمتر می رسید، با رشد و نمو سیبیک‌ها در مرحله 41، زمانی که طول لاروها به 16 میلیمتر می رسید، همزمان با آغاز حركات تنفسی منظم، اولین جوانه‌های چشایی رونده نوک سیبیک‌ها ظاهر می شوند و پس از این مرحله در مرحله 42 میلی‌متر می شود که میزان با قرار گرفتن لاروها در کف حوضچه‌ها (مرحله خواب) افت جوانه‌های چشایی رونده لبه‌ها ظاهر می شوند و پس از این در مرحله 45 رشد و نمو جنینی، دهان توان حركت و گرفتن طمعه را کسب می‌کند و در پی آن تغذیه آغاز می‌شود (Deltlaf et al., 1993).

در واقع سلول‌های بیوبایی اولین گیرنده‌های حسی هستند که طی آنتروژن در ماهی‌های خاویاری ظاهر می شوند و با تمایز گیرنده‌های بیوبایی، بلع و تکامل کل دستگاه بیوبایی آغاز می شود. این روند حداقل 30 روز بطول می‌انجامد و با آغاز مرحله انگشت قد کامل می‌شود و لی در مورد دستگاه چشایی وضعیت فرقی می‌کند و با تمایز راستنگاه گیرنده‌های چشایی، این دستگاه کامل می‌شود و شروع به فعالیت می‌کند (Devtsina & Kazhlayev, 1993). بنا برای این لاروها تاس ماهیان در مرحله تغذیه توأم و تغذیه کاملاً خارجی به جای حس بیوبایی که هنوز کاملاً نشده است، با حس لامس و چشایی (خارج دهانی) و وجود حساسیت الکتروکینی به جستجوی مواد غذایی می‌پردازند و نسبت به غذاهای زندگی، از کلکال حمل نشان می‌دهند. ولی پس از کاملاً دستگاه بیوبایی، این حس بیوبایی است که مهمترین نقش را در جستجوی غذا ایفا می‌کند، بطوریکه بر اساس اطلاعات موجود تاس ماهیان روس و اوزون برون تها، پس از بلع دستگاه بیوبایی است که زندگی در رودخانه را کاملاً باعث درمانی حرکت می‌کند و به جستجوی غذا می‌پردازند (Kasumyant & Kazhlayev, 1993). این مقاله سعی دارد به این پرسش پاسخ دهد که آیا قطع سیبیک در مراحل بعده رشد و نمو گونه

فیل ماهی (Huso huso) (Tأثر منفی خواهد داشت یا خیر؟

برای این منظره 120 فیل ماهی جوان با سن بالاتر از پک سال (++) و با وزن متوسط 7/6/5/61 گرم و طول متوسط 19/6/3/31 سانتی‌متر انتخاب شدند و در قالب یک طرح اسه‌ال نت‌پات (چیزی به، 1370) در 12 وان فاپیرگاس با منشا هر یک 3/7 متر مربع و ارتفاع 5/0 متر توزیع شدند و آزمایش رشد طی مدت 6 هفته (اثرات چهار تیمار هر یک با شاهکار) روی آنها بروز می‌گردد. تیمار اول ماهی‌های را شامل می‌شد که فقط یکی از سیبیک‌های منت‌راستهان
قطع شده بود، تیمار دوم، ماهیهایی را در می‌گرفت که در سیلک سمت راستشان قطع شده بود. تیمار سوم، از افرادی تشکیل شده بود که در سیلک سمت راست و یک سیلک سمت چپشان قطع شده بود ولی به‌دست آمده است. آب مورد استفاده در جاهایی بود که در حالت آن با مدت آزمایش ۱۳/۰۷/۶ درصد وزن آنها در روز نیز سانتی‌گراد و مقدار خوراک مورد مصرف (شفاف‌کی، ۱۳۷۵) ۶/۷ درصد وزن آنها در روز بود. خوراکی مورد استفاده خمیری و مرکب از ۰۵ درصد کنسانتره (خاص ماهیان خاویاری ساخت کارخانه جینه با پرتوئین خام ۲۹/۰ درصد و بی‌خانم خام ۱۳ درصد و NFE ۲۳/۵ درصد بر حسب ماده خشک) و ۷/۶ درصد گوشت ماهی کیلک که پخته شده و چربی کرده، ۵ درصد آرد گندم پخته شده و ۳ درصد ترکیب ویتا‌ماین بود. غذاهایی به‌صورت در روز انجام می‌گرفت و هر دو هفته یک بار به همراه ماهی‌های زیست سنجی می‌شدند. نتایج بست آمده با روش تجزیه واریانس (آنالیس) تایید آن در آمده از ۰/۵ هفته آزمایش رشد نشان دادن که وزن متوسط تیمار شماره ۱ با ۵۶/۱۲±۱/۴ گرم درصد افزایش به ۵/۰ با ۱۱۹/۳±۳/۷ گرم، شماره ۲ با ۵/۰۵ درصد افزایش به ۷/۹±۱/۷۶ گرم، تیمار شماره ۳ با ۰/۵۹ درصد افزایش به ۸/۳۰±۱/۱۳ گرم و تیمار شماره ۴ با ۲/۲۶ درصد افزایش به ۱۱۷۶±۲/۲۶ گرم رشد است (نمودار ۱).
تاثیر قطع سیکل حسی روی رضایت بیماران جوان

عباسعلیزاده

بررسی اطلاعات بدست آمده از تجزیه واریانس، اختلاف معنی داری (0.05) بین وزن متوسط چهار تیمار مورد بررسی طی مدت آزمایش وجود ندارد (جدول 1). نسبت ضریب تغییرات طول در کلیه تیمارها و طی تمام مراحل آزمایش همواره بین 0.81 تا 0.81 بوده است (جدول 2). تجزیه واریانس نشان می دهد که مقادیر SGR برای تیمارهای مختلف اختلاف معنی داری (0.05) با یکدیگر ندارند (نمودار 2).

جدول 1: تجزیه واریانس مقادیر مختلف وزن متوسط در تیمارهای مورد آزمایش

<table>
<thead>
<tr>
<th>FS</th>
<th>MS</th>
<th>SS</th>
<th>درجات آزادی</th>
<th>نماین تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>94655</td>
<td>94655</td>
<td>1875</td>
<td>2</td>
<td>Rکرار</td>
</tr>
<tr>
<td>88430</td>
<td>88430</td>
<td>2550</td>
<td>3</td>
<td>Aواریته</td>
</tr>
<tr>
<td></td>
<td></td>
<td>594</td>
<td>6</td>
<td>RA،خطای (b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>817</td>
<td>11</td>
<td>بالاتر اصلی</td>
</tr>
<tr>
<td>61444</td>
<td>61444</td>
<td>126</td>
<td>3</td>
<td>Bبرداشت</td>
</tr>
<tr>
<td>88888</td>
<td>88888</td>
<td>2897</td>
<td>9</td>
<td>AB،اثر منافع</td>
</tr>
<tr>
<td>4090</td>
<td>4090</td>
<td>105</td>
<td>6</td>
<td>RB،اثر منافع</td>
</tr>
<tr>
<td>8550</td>
<td>8550</td>
<td>1162</td>
<td>18</td>
<td>RAB،خطای (b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11685</td>
<td>36</td>
<td>بالاتر فرعی</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116152</td>
<td>27</td>
<td>کل</td>
</tr>
</tbody>
</table>

SS (Sums of squares) مجموع مربعات
MS (mean of squares) میانگین مربعات
FS میانگین مربعات
<table>
<thead>
<tr>
<th>سال دوازدهم / شماره 3 / میلادی 1382</th>
</tr>
</thead>
<tbody>
<tr>
<td>پنجمین مجامع علمی کوتاه</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SGR</th>
<th>CVI</th>
<th>CVI/W</th>
<th>فعالیت نتیجه‌گیری</th>
<th>فنی</th>
<th>نمونه</th>
<th>نتیجه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>مدارک</td>
<td>مدارک</td>
<td>دستی</td>
<td>دستی</td>
</tr>
</tbody>
</table>

*Note: The image contains Persian text and a table with numerical data.*
نمودار ۲: وضعیت SGR تیمارهای مختلف طی مدت آزمایش

نتایج بدست آمده از این بررسی نشان می‌دهند که وضعیت رشد طولی و رشد وزنی تیمارهای مختلف از شرایط نسبتاً مشابه برخوردارند (نمودارهای ۱ و ۳). کاهش رشد وزنی در هفته دوم به علت بیکیفت نامطلوب خوراک مصری و وضعیت خاص آب و رودی بوده که برای همه تیمارها یکسان و با بهبود شرایط مذکور در هفته سوم در حال جبران بوده است. براساس اطلاعات بدست آمده از تجزیه واریانس (جدول ۱ و ۳) در طول آزمایش اختلاف معنی‌داری بین تیمارهای مختلف از نظر وزن متوسط و رشد وجود نداشته است (۰/۰<0). جدول ۲ نشان می‌دهد که نسبت ضرایب تغییرات وزن به طول در حد ۰/۳۷۵/۱۷/۲۰۰۲ بوده است که این موضوع موجب وجود شرایط مطلوب در محیط‌های بروزش می‌باشد (شفجکو، ۱۳۷۵). این بررسی نشان می‌دهد که قطع سیبلک‌ها در فیل ماهی‌های جوان با وزن متوسط ۰۳/۱۵ گرم تأثیری در جستجوی خوراک و در نهایت رشد نداشت.
جدول ۳: تجزیه واریانس مقادیر تیمارهای مختلف SGR

<table>
<thead>
<tr>
<th>FS</th>
<th>MS</th>
<th>SS</th>
<th>درجه آزادی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲</td>
</tr>
<tr>
<td>۱/۲۸</td>
<td>۲/۱۳۵</td>
<td>۰/۲۴۷</td>
<td>۲/۱۱۲۷</td>
<td>تکرار،</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲/۲۲۹</td>
</tr>
<tr>
<td>۱/۳۷۱</td>
<td>۰/۶۸۷</td>
<td>۰/۶۲۰۹</td>
<td>۰/۲۴۰۹</td>
<td>خطا (b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۶/۰۴۲۹</td>
</tr>
<tr>
<td>۲/۳۷۱</td>
<td>۲/۶۳۵</td>
<td>۱۰/۱۱۲</td>
<td>۲۱/۲۷</td>
<td>پلتاهای اصلی</td>
</tr>
<tr>
<td>۱/۳۷۱</td>
<td>۰/۴۲۴</td>
<td>۰/۲۸۵۱</td>
<td>۶/۱۷۳۱</td>
<td>برداشت،</td>
</tr>
<tr>
<td>۱/۳۷۱</td>
<td>۰/۸۲</td>
<td>۰/۳۲۴۲</td>
<td>۴/۸۰۱</td>
<td>اثر متقابل،</td>
</tr>
<tr>
<td>۱/۳۷۱</td>
<td>۰/۸۲</td>
<td>۰/۳۲۴۲</td>
<td>۴/۸۰۱</td>
<td>اثر M،</td>
</tr>
<tr>
<td>۱/۳۷۱</td>
<td>۰/۸۲</td>
<td>۰/۳۲۴۲</td>
<td>۴/۸۰۱</td>
<td>RAB(h)</td>
</tr>
<tr>
<td>۱/۳۷۱</td>
<td>۰/۲۸۵</td>
<td>۰/۸۲</td>
<td>۱۲/۳۲۴</td>
<td>خطا (b)</td>
</tr>
<tr>
<td>۱/۳۷۱</td>
<td>۰/۲۸۵</td>
<td>۰/۸۲</td>
<td>۱۲/۳۲۴</td>
<td></td>
</tr>
<tr>
<td>۱/۳۷۱</td>
<td>۰/۲۸۵</td>
<td>۰/۸۲</td>
<td>۱۲/۳۲۴</td>
<td></td>
</tr>
<tr>
<td>۲۰/۷۲</td>
<td>۲۴/۷۲</td>
<td>۲۴/۷۲</td>
<td>۲۴/۷۲</td>
<td>پلتاهای فرعی</td>
</tr>
<tr>
<td>۲۰/۷۲</td>
<td>۲۴/۷۲</td>
<td>۲۴/۷۲</td>
<td>۲۴/۷۲</td>
<td></td>
</tr>
</tbody>
</table>

SS (Sums of squares) مجموع مربعات
MS (mean of squares) میانگین مربعات
FS مجموع مربعات (میانگین مربعات)
تأثیر تقطع سیبلک حسی روی رشد بدن تاس ماهیان جوان

در ماهیهای خاویاری برخلاف بسیاری از ماهیهای شکارچی نظر کوش و قزل آلا؛ بینایی تأثیر زیادی در جستجوی غذا وارد و در این حین تسویه چندانی پیدا نکرده است. فقط آنها را قادر می‌سازد که تغییرات سرعی روش‌نگی و حرکات شخصی و نیز اشیاء را که ابتدا تایب می‌کند تشخیص دهد. لذا آنها با استفاده از بینایی قادر به جهت پایی نیستند.

بررسی‌های بعمل آمده روی تاس ماهیان روسی و اوزون بر در روش‌نگی مشخصی کرده است که در روزهای آغازین زندگی، سیستم بینایی اتسل گسترش می‌دهد (Kasumyan & Kazhlayev, 1993)

شناخت و هناك به‌عنوان که سیستم بینایی در فیل ماهیهای جوان کامل شده است و نیز به واسطه وجود گیرنده‌های الکتریکی و جوانه‌های بچه‌ای موجود در اطراف و داخل دهان برای نطق سیبلک‌ها جستجو و پاکت نمی‌گذرد.

منابع

- بصیری، ع.، ۱۳۷۰. طرح جهاد آماری در علوم کشاورزی. انتشارات دانشگاه شیراز. ۵۹ صفحه.
- شفنجکی، ون.، ۱۳۷۵. تکنولوژی پرورش گوشتی تاس ماهیان ایرانی (فرودنی). در واسهی فاپایگلار با استفاده از ارغاله‌های مصنوعی. ترجمه سیدهادی صدری. معاونت تکنیک و پرورش آبزیان شیلات ایران. ۴۰ صفحه.

