تعیین ترکیبات شیمیایی و بیوشیمیایی بوسته‌

(Artemia urmiana)

و استخراج کیتین از آن

یوسفعلی اسدپور(۱), سیدعباس شجاع السادات(۲), احمد غرقو(۳), محمدرضا کلباسی(۴),

و علی‌اصغر خسروشامی(۵)

asadpo_y@modares.ac.ir

۱ - اداره کل منابع طبیعی و امور دام جهاد استان اذربایجان غربی, ارومیه صندوق پستی: 061-961355
۲ - دانشکده فنی مهندسی دانشگاه تربیت مدرس, تهران صندوق پستی: 111-14155-14155
۳ - مؤسسه تحقیقات شیلات ایران, تهران صندوق پستی: 617-14155-14155
۴ - کرو دانشکده علوم دریایی, دانشگاه تربیت مدرس, تهران صندوق پستی: 141-350-1442
۵ - دانشکده صنایع غذایی دانشگاه ارومیه, صندوق پستی: 145-145-57159-14155

تاریخ دریافت: آبان ۱۳۸۱
تاریخ پذیرش: اردیبهشت ۱۳۸۲

چکیده
پروتئین‌های سیست آرتمیا دریاچه ارومیه به منظور استخراج کیتین طی مامایی دی و
به‌عنوان ۱۲۸۸ آزمایش رشکان و بزرگراه جمع‌آوری شده‌اند. با واکنش سری و خشک گردیدن، در
مرحله اول آنالیز ترکیب شیمیایی و بیوشیمیایی پوسته با روش استاندارد
(A.O.A.C.-1995) (۱) تعیین شد. براساس نتایج بدست آمده، پوسته‌های سیست آرتمیا
ارومیان دارای ۵/۸±۴ درصد چربی، ۱±۵/۵ درصد رطوبت و ۲±۰ درصد مواد
پروتئینی، ۲/۰±۵/۰ درصد مواد رنگی و ۲۰/۶±۵/۰ درصد خاکستر خالص می‌باشد.
نوع ترکیب و درصد عناصر بیشتری تشکیل دهنده آن با روش
(۲) تعیین گردید. بر این
اساس پوسته سیست آرتمیا دارای ۵/۵±۵/۵ CaO، ۴/۰±۶/۰ Fe2O3، ۱/۰±۱/۰ Zn، ۱/۵±۵/۰ Mo، ۱/۶۰±۱/۵۵ MgO، ۱/۱۰±۱/۵۰ Cl، ۳/۲۰±۳/۵۲ K2O، ۱/۱۰±۱/۵۰ Na2O و ۱/۱۰±۱/۵۰ So3 می‌باشد.

استخراج کیتین از بوسته با انجام تغییرات در روش‌های مرسوم شیمیایی طی چهار مرحله

1- Association of Official Analytical Chemists
2- X-Ray fluorescence diffraction
تعیین ترکیبات شیمیایی و بیوشیمیایی پوسته سیست آرتمیا اورمنیا و...

اسدبور و همکاران

کاکی کرمنی، حذف مواد پروتئینی، لیپیدی و مواد رنگی انجام شد. تخلیه مواد حاصل با محلول کلرید سدیم و اسید استیک بود. براساس نتایج حاصله پوسته سیست آرتمیا دارای ۲۸±۳ درصد کیتی سنت، شناسایی و تعیین ساختار مولکولی کیتی حاصله با روش‌های FTIR و نزدیکی عضوی (C.H.N.O- analysis) درستی شد. سپس به منظور ماسه کیتین بست آمده، طیف‌های حاصله از آن با طیف استاندارد سیگما و طیف دو نوع کیتین وارداتی از کشور رسانه و چین مورد مطالعه و بررسی قرار گرفت. نتایج نزدیکی عضوی نشان داد که کیتین استخراج شده از پوسته سیست آرتمیا اورمنیا دارای ۷/۶ درصد نیتروژن و ۳۶/۸ درصد کربن است. براساس این نتایج فرمول تجربی واحد کیتین حاصله (C۷H۶NO۵۰۲) تعیین شد.

لنزات کلیدی: آرتمیا اورمنیا، کیتین، سیست

مقدمه

آرتمیا اورمنیا سختی بوستی از رده آبی‌پاکان و از گونه‌های مهم آرتمیاهای شناخته شده دنیا است. (Sorgeloos et al., 1997) زیستگاه اصلی آن در شمال آمریکا به مساحت ۵۰۰۰۰۰ کیلومتر مربع واقع در موقعیت جغرافیایی ۷۵ درجه شرقی و ۵۰ درجه شمالی ایران است. سیست‌های آرتمیاهای دریایی که از طول سال طی دور مارحله زنده‌گی این سختی بوستی به فرم‌های زمستانه تخم‌گذار (Ooviviparous) و نابیستنی تخم‌گذار شناخته می‌شود (Oviparous). کروبیونی سیست‌ها به شکل بوسته جدا شده و به سطح سیست روانی، با جهاده‌ای غالب منطقه‌ای و امواج دریا به سواحل رانده شده و در سواحل انتباشت می‌شوند. (Sorgeloos et al., 1997) سیست‌های بوستی آرتمیا اورمنیا در این مرحله از جنبه آبی‌پروری فاقد اهمیت تغذیه‌ای هستند (اسدبور، ۱۳۷۲). در راستای عمل آوری موادی از ارچه افزوده‌ای فراوان، با بالا بردن اثر استخراج کیتین و مشتقات آن، بوسته‌های سیست آرتمیا دریایی مورد ارزیابی قرار گرفتند.

کیتین بیوبلاستی از یک سرکاردهدهای ازدیادار با فرمول شیمیایی (C۸H۱۳NO۵۱)n با نام علمی B-D-(1-4)- N - acetyl - glucosamine است که در ساختار شیمیایی آن بش از ۵۰۰۰ واحد گلولوز امین شرکت می‌کند. (Alder, 1997) این بیوبلاست در صنایع دارویی، آبزی، کشاورزی، غذایی، توییباد گیاهی، پاپیور، بیوتکنولوژی، پزشکی، کاغذسازی، بالکنی‌های سنتی، تنظیم حیوانات، صنایع شیمی، بهبود و نساجی مصرف فراوانی دارد (Hansen & Illanes, 1994). تا حال بیش از ۳۰۰

www.SID.ir
منبع مختلف از انواع بی‌مهرگان و گیاهان دریایی، جلبک‌ها، باکتریا، حشرات، قارچ‌ها و مخمرها و برای استخراج این ماده مورد بررسی قرار گرفته‌اند (Haard & Simpson, 1994). در حال حاضر بوسته‌میگو خرچنگ و کریل (Krill) منابع اصلی و اقتصادی استخراج این ماده است (Shahidi et al., 1999). میزان مصرف سالانه کیتین ۱۵۰۰۰ تن برآورد شده است. در حالیکه میزان تولید فعلي آن ۲۰۰۰ تن می‌باشد (Gildberg & Stenberd, 2001). حدودیت منابع قابل دسترس و فصلی بودن صید سختبوستان از علل اصلی در کاهش تولید آن محسوب می‌شوند (Scaborne, 2001).

نظر به اهمیت و کاربردهای فراوان این بیولیمیر طبیعی، دستیابی به منابع جدید و روش‌های نوین در عمل آوری همیشه مورد تأکید دانشمندان است (Pariser & Lombardi, 1988). لذا در این تحقیق پوشه‌های سیست آرتمیا اوریمانا برای اولین بار بعنوان منبع جدید در استخراج کیتین، مورد مطالعه و تجزیه و تحلیل فراگرفت.

مواد و روش کار

مقدار ۱۰ کیلوگرم از پوشه‌های سیست آرتمیا دریاچه ارومیه از ایستگاههای ساحلی رشکان و بزرگراه طی ماه‌های دی و بهمن ۱۳۸۰ جمع‌آوری شدند و خالص سازی شد و به مدت ۴۴ ساعت در دمای ۶۵ درجه سانتی‌گراد در آون خشک برای تعبیه درصد مواد تشکیل دهنده آن مورد تجزیه قرار گرفت. در این آزمایش‌ها تجزیه شیمیایی و بیوشیمیایی با روش‌های استاندارد بین‌المللی (A.O.A.C., 1995) انجام شد. نتیجه درآمدها به روش تخبیری در آون، مواد چربی به روش سوکله، مواد پروتئینی با روش کلیدال و خاکستر خالص به روش سورانی‌دان با کوره الکتریکی ۵۵ درجه سانتی‌گراد مدل Heraeus بود.

برای مشخص نمودن نوع و ترکیبات عنصر معدنی، مقدار ۳ گرم از پوشه‌های سیست آرتمیا با Wax-C دستگاه مخلوطکن مدل Retsch تا حدود ۵۰ میکرون آسیاب و با یک گرم ماده با Bodor اسیدپوریک به قرص ۴ میلی‌متری تبدیل شد و بعد از شماره‌گذاری به Herzog مدل برس مدل (۱۹۹۷) منتقل گردید (سپیرواسنی و ایکسوسبستر، ۱۹۹۷). استخراج کیتین از پوشه با انجام تغییراتی در روش‌های مرسوم شیمیایی (Peberdy, 1999) و
نتایج

ابتدا پوسته‌های سیست آزمایش دریاچه ارومیه برای تعیین نوع و درصد ترکیبات شیمیایی و بیوشیمیایی موجود در آن مورد آزمایش و تجزیه قرار گرفت. که نتایج حاصله در جدول ۱ آورده شده است.

\[V/V \] مدل FTIR و طیف‌سنجی مادون فرمر با دستگاه Heraeus C.H.N.O-analyser

\[MB-100 \] با نمونه‌سازی به صورت پیسته‌های میلی‌متری با برمی‌باتیم، و آنالیز پراش‌های اشعه X-Ray انجام شد. در روش طیف‌سنجی X-Ray powder diffraction مدل XRD ابکس با دستگاه Brugnerotto et al., (2001)

\[Wax-C \] و اسیدپوریک بود.

در نهایت کیفیت کیتین بوسته سیست آزمایش با نوع کیتین مشابه تجاری دیگر از کشورهای جین (از بوسته میگو) و ویتنام (از بوسته خرچنگ) که به روش‌های شیمیایی تهیه شده بودند، مورد مقایسه قرار گرفت.
جدول ۱: آنالیز تقریبی ترکیب شیمیایی و درصد مواد تشکیل دهنده پوشه‌های سیست آرتیما اورمی‌اکر

<table>
<thead>
<tr>
<th>مواد لیپیدی‌های خاکستر خالص</th>
<th>روطب</th>
<th>پروتئین (درصد)</th>
<th>پروتئین (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰±۶/۸</td>
<td>۱۰۵±۹/۸ ۲۲±۳/۴ ۲۲±۳/۴</td>
<td>۲۲±۳/۴</td>
<td>۲۲±۳/۴</td>
</tr>
</tbody>
</table>

برای مشخص نمودن نوع و درصد عنصری معدنی موجود در آن، خاکستر پوشه‌های سیست آرتیما آنالیز شده که نتایج بدست آمده در جدول ۲ آورده شده است.

جدول ۲: ترکیب شیمیایی تشکیل دهنده خاکستر خالص موجود در پوشه‌های سیست آرتیما اورمی‌اکر

<table>
<thead>
<tr>
<th>نکات</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>MgO</td>
</tr>
<tr>
<td>SO₃</td>
<td>Cl</td>
</tr>
<tr>
<td>K₂O</td>
<td>CaO</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Zn</td>
</tr>
<tr>
<td>۱/۹۲</td>
<td>۱/۹۲</td>
</tr>
</tbody>
</table>

پس از مشخص شدن نوع ترکیبات شیمیایی و فیزیکیایی پوشه‌های سیست آرتیما اورمی‌اکر، برای استخراج کیت کین آن مواد معدنی، لیپیدی، پروتئین و مواد رنگی آن با روش‌های شیمیایی حذف گردید. باقیمانده محصول را برابر بوده در ۲۸ درصد کتین تلقی شد. برای اینکه آن آنتیژهای تحقیضی کیفی انجام گردید، آزمایش‌های تجزیه عنصری دستگاهی به منظور دستیابی به تعداد و نوع اتمهای تشکیل دهنده محصول استخراجی بعمل آمد که نتایج بدست آمده در جدول ۳ آورده شده است.

جدول ۳: نتایج تجزیه عنصری کیتین استحصالی از پوشه سیست آرتیما اورمی‌اکر

<table>
<thead>
<tr>
<th>عنصر</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>استخراج</td>
<td>۲۴/۸</td>
</tr>
<tr>
<td>ترزو</td>
<td>۷/۶</td>
</tr>
<tr>
<td>هیدروژن</td>
<td>۵/۷</td>
</tr>
<tr>
<td>اکسیژن</td>
<td>۳۶/۸</td>
</tr>
</tbody>
</table>

طریفسنگی مادون قرص و پروتئین‌گاهی با آموزه‌های ایکس از پیشرفت‌های روش‌ها در تعیین و ساختن
مولکولی و ساختار بیلوری ترکیبات شیمیایی آنی مجهول به‌شمار می‌آیند، که این آزمایش‌ها روی ماده
استخراجی از پوشه‌های سیست آرتیما انجام شد.

در طرف سنگی:
- FTIR و جذب بنددهای جذب C-H ۱۴۵۰، C-H ۱۳۹۶/۸، C-H ۱۲۸۹۸/۸، C-H ۱۱۹۱، C-H ۱۰۱۸/۸، C-H ۹۵۸/۷، C-H ۸۵۵/۳، C-H ۷۱۸/۴
- OH ۱۶۳۷/۸، OH ۱۵۸۷/۸

از پلیمر کیتین است که در نمودار ۱ آورده شده است.

www.SID.ir
نمودار ۱: طیف کیتین استخراج شده از پوست سیست آرتیمیا. گراف ۳D-FTIR نمونه‌سازی بصورت پلت‌های شیشه‌ای به ضخامت ۱۵/۰ میلی‌متر با است. پیک‌های A, B, C, D, E, F هر کدام در ارتباط با C-H، آمینو استیل و OH گره‌های کیتین است. شدت مربوط به باندهای C=O در فاصله ۱۴۴۰ تا ۱۵۰۰ cm⁻¹ به مدت ۲ ساعت مشخص گردید که در نمودار شماره ۲ آورده شده است که بیانگر ساختار بلوری کیتین است.

نمودار ۲: طیف کیتین حاصله از دستگاه X-Ray (رنگ ترمیز) با زاویه تابش θ زاویه تابش ۱۰۰ درجه و زمان تابش ۲ ساعت است.
ارزیابی‌های مقایسه‌ای کیتین استخراجی از پوسته‌های سیست‌آرتیمی‌رمانیا با طیف استاندارد با دو نوع کیتن وارداتی از کشور چین و ویتنام انجام شده و نتایج حاصله در نمودارهای ۳ و ۴ اورده شده است.

نمودار ۳: طیف مقایسه‌ای سه نوع کیتین با طیف نوع استاندارد

A. طیف کیتن استخراجی از پوسته سیست‌آرتیمی‌رمانیا (Sigma, 1999)
B. طیف مربوط به کیتن پوسته کچنگ (آبی رنگ)
C. طیف مربوط به کیتن پوسته میگو (سرز رنگ)

نمودار ۴: طیف‌های X-ray مقایسه‌ای کیتین‌ها انجام شده با دستگاه X-ray

A. طیف مربوط به کیتن آرتیمی‌رمانیا (قرمز رنگ)
B. طیف مربوط به کیتن پوسته کچنگ (آبی رنگ)
C. طیف مربوط به کیتن پوسته میگو (سرز رنگ)

یک‌جانب ارتباطات جرزی مربوط به منبع استخراجی و روش‌های عمل آوری و درصد رطوبت است.
بعث

لایه کویونی سیسته‌های آرتمیا دریاچه‌ی پس از تحقیق به صورت پوسته‌های غیر قابل مصرف در
سواحل دریاچه انبشته می‌شود. این پوسته‌ها جهت بازیافت موادی با ارزش افزوده‌ها فراوان مورد تجزیه
و مطالعه قرار گرفت. آماری برای ترکیبات شیمیایی و بیوشیمیایی بدست آمده از پوسته سیسته آرتمیا
دریاچه ارومیه در مقایسه با گزارش‌های (Laven et al., 1993), از آنالیز ترکیبات سیسته و توده زنده
آرتمیا کاملاً متفاوت است. نوع و دو رصد خاکستر و درصد کیتین از آرتمیا در منابع مورد تحقیق یافته نشد.
بتایاون ترکیب و دو رصد عنصر معدنی موجود در پوسته سیسته آرتمیا به عنوان اولین گزارش تحقیقاتی
در این زمینه تلقی می‌شود که با نتایج سایر محققین قابل مقایسه خواهد بود. پوسته سیسته آرتمیا
اورمیان، با بازده ۳±۲ درصد کیتین بعنوان یکی از منابع مهم برای استحصال این بیوبیوم برای اولین
بار نیز گزارش می‌شود.

کیتین پوسته سیست آرتمیا با ۷/۱ درصد نیتروژن و ۶/۴ درصد کربن در مقایسه با مفادیز بست
امد از سایر منابع تحقیقاتی قابل مقایسه است (Rojer و Keller, 1998). از طریقی کیتین‌ها به علت
نوع منبع اولیه و همچنین روشهای عمل آوری تا حدودی نسبت به هم‌گیر متفاوتند.

درصد نیتروژن و کربن کیتین پوسته سیست آرتمیا در مقایسه با دو نوع دیگر استخراج شده از پوسته
خرجنگ و پوسته میگو تا حدی بیشتر است. این شاخص بر اساس گزارش (Jagar و Zinski, 1998) که
بایا، بودن درصد این عنصر را از مشخصات مهم و مرتبط آن در برخی کاربردها و ایجاد مشتق‌های
می‌دانند نیز مورد تایید قرار گرفت. این موضوع اهمیت آن را در کاربردهای اختصاصی کیتین پوسته
سیست آرتمیا در زمینه‌های یزدی‌کن در رضویه هموستاتز، پروشیده دیالیز، سنتز پوست مصنوعی، نخ
بخه جراحی، فناوری زیست محیطی، سمزدایی و پروتوزای افراشی می‌دهد.

کیتین پوسته سیست آرتمیا دارای وزن مولکولی و درصد عنصر متفاوتی در مقایسه با سایر منابع
در سال ۲۰۰۱ تولید مشتق‌های کاربردی متفاوت در شرایط یکسان از Seaborn است. مؤسس‌ه تحقیقاتی
www.SID.ir
کیتینی را مطرح می‌نماید، که در خصوص کیتینی استحکامی از پوسته سیست آرتمیا اورومیانا بیش از توئنده مطرح باشد.

طیف‌های مادون قرمز و پرتنگارها با اشعه ایکس و باندهای جذبی ایجاد شده در آنها و ساختارهای بلوری بدنست آمده از کیتینی‌ها در حالت مقایسه‌ای بیانگر یکسان بودن یلیم‌ها می‌باشد و اختلافات جزئی مربوط به معنی استخراجی، روش‌های عمل آوری و درصد رطوبت است.

به‌پیشنهاد مولوی درصد کیتین موجود در پوسته سیست آرتمیا در مقایسه با سایر منابع استخراج فعلاً آن در دنیای (فرآیندی پر سود خواهد بود. یکی بودن پوسته‌های سیست آرتمیا اورومیانا به کیتین، موجب تولید می‌شود با ارزش‌شاخه‌های بیالا از پوسته‌های غیرقابل مصرف در دریاچه خواهد شد. سلاینانه می‌توان چندین تن کیتین و مشتقات آن‌ها از پوسته‌های سیست آرتمیا دیگر استخراج نمود. انجام مطالعات گسترده روی نوع آلفا با و گاما بودن کیتین پوسته سیست آرتمیا، بکارگیری روش‌های بهینه‌سازی در این آوری آن و برسی امکان سنتز مشتقات جدید، کاربردهای نوینی را به دنبال خواهد داشت. وجود لایه کورونی (پوسته‌ها) در سیست‌های داخل سیست‌های تخم‌مانی نویدن زندگی آرتمیا آن را در زینه‌های آبرپورا قابل مصرف می‌نماید. از طرف دیگر ارزیابی ذخایر توده زندگی آرتمیا بر اساس گزارش (Sorgeloos et al., 1997b) بسیار بالاست، لذا بررسی امکان استخراج آن از توده‌های آرتمیا در این پروینکسیوی که برخی از منابع نوین در تولید این محصول مشتقات آن بیش‌ترند می‌گردد.

مطالعه روی خواص فیزیکی و شیمیایی کیتین‌ها حاصل از پوسته‌های سیست آرتمیا، بعلت داشتن اختلافات جزئی با سایر کیتین‌های استخراج شده از پوسته خرچنگ و میگو، ممکن است منحنی به یافته‌های جدید در تولید فراورده‌های نوین با کاربردهای خاص از آن شود.

تشکر و قدردانی

از کلیه مسئولین و دست‌اندرکاران محترم دانشکده منابع طبیعی و علوم دریایی نور و گروه
منابع

اسدبورر، ی.ع. ، ۱۳۷۳. دستورالعمل‌های استحصال و عمل‌آوری ارمنی‌آوری، ارمین و بكارگیری آن در آب‌زی بروری. مرکز تحقیقات امور دام و منابع طبیعی آذربایجان غربی، ۶ صفحه.

پاودی، لیمن، کریز، ۱۹۹۴. نگرشی بر طیف سنگی. ترجمه: ب. مونتی، ۱۳۷۵. انتشارات علمی و فنی، ۴۸۵ صفحه.

تهرانی، م. و تهمنی، م. ، ۱۳۷۴. استخراج کیتین از بوسته خرچنگ، میگو، لابستر. پایان‌نامه کارشناسی ارشد، مرکز تحقیقات شیلات بندر عباس، ۸۹ صفحه.

سیلورا شتین، ر. و ایکسرویستر، ف. ، ۱۹۹۷. شناسایی ترکیبات آلی به روش طیفسنگی. ترجمه، س. صادقی. انتشارات علمی و فنی، صفحات ۲۵ تا ۸۰.

سیاسی، ج. ، ۱۹۹۶. شیمی تجزیه مواد غذایی. ترجمه: اف. خسرو شاها، اصل. انتشارات دانشگاه ارومیه، ۲۲۰ صفحه.

یعقوبی، ن. و میرزادر، ح. و هرمنزی، ف. ، ۱۳۸۱. بهینه‌سازی استخراج کیتین و تهیه کیتوزان از بوست میگو. علوم و تکنولوژی پلیمر، صفحات ۵۵ تا ۵۶.

Sorgeloos, P.; Laven, P. and Leger, P., 1997a. Determination and identification of
biological characteristics of *Artemia urmiana* for application in aquaculture. Univ. of Gent Belgium, Item A 110 P.

Sorgeloos, P.; Laven, P. and Leger, P., 1997b. A resource assessment of Urmiah Lake Artemia cysts and biomas. Uni of Gent, Belgium-Item B, 110 P.