تعیین تركیبات شیمیایی و بیوشیمیایی بوسته (Artemia urmiana) و استخراج کیتین از آن

یوسفعلی اسدپور (1)، سیدعباس نجافی الساداتی (2)، احمد غرچی (3)، محمد رضا کلیبایی (4)، و علی اصغر خسروشامی (5)

asadpo_y@modares.ac.ir

1 - اداره کل متابع طبیعی و امور دام چهار دام ولایت استان آذربایجان غربی، ارومیه، صندوق پستی: 111-1155-1110
2 - دانشکده فنی مهندسی دانشگاه تربیت مدرس، تهران، صندوق پستی: 116-1155-1110
3 - مؤسسه تحقیقات شیلات ایران، تهران، صندوق پستی: 14-1165-6
4 - کروه شیلات دانشکده علوم دبیری، دانشگاه تربیت مدرس، تهران، صندوق پستی: 14-1155-1114
5 - دانشکده صنایع غذایی و نیشیده دانشگاه ارومیه، ارومیه، صندوق پستی: 14-1155-1114

تاریخ دریافت: آبان 1381 - تاریخ پذیرش: اردیبهشت 1382

چکیده

بوسته‌های سیست آرتمیا دریایی اروپی به منظور استخراج کیتین طی ماه‌های دی و بهمن 1380 از سواحل رشگان و پژوهگران جمع‌آوری شدند. با توجه به سیست‌های سیست‌های شیمیایی، بررسی شیمیایی بوسته‌های سیست آرتمیا اروپی با روش‌های مختلفی انجام گردید. بررسی با درصد‌های مختلفی از XRF نشان داد که درصد مواد پروتئینی، 2/4 ± 0/5 درصد رنگی و 0/3 ± 0/5 درصد خاکستری سیست‌ها باشد. نوعی از اصل عناصر معدنی در آن با روش XRF شناسایی گردید. بر این اساس پوسته سیست آرتمیا دارای 5/0 ± 0/5 CaO، 4/0 ± 0/5 Fe2O3، 1/0 ± 0/5 Zn، 8/0 ± 0/5 MgO، 0/0 ± 0/5 K2O و 0/0 ± 0/5 SO3 تغییر داد. استخراج کیتین از بوسته با انجام تغییرات در روش‌های سیست‌های شیمیایی طی چهار مرحله
تهیه ترکیبات شیمیایی و بیوشیمیایی پوسته سیست‌آرتمیا اورمیانا و...

اسدبور و همکاران

کانی زداتی، حذف مواد پروتئزی و لیپیدی و مواد رنگی انجام شد. تخلیص مواد حاصل با محلول کلرید سدیم و اسید استیک بود. براساس نتایج حاصله پوسته سیست آرتمیا دارای 28±3 درصد کیتین است. شناسایی و تبعیض ساختار مولکولی کیتین حاصله با روشهای XRD و ترایکین فرصت (FTIR) و تجزیه عنصری (C.H.N.O- analysis) انجام شد. سپس به منظور مقایسه کیفیت کیتین بدست آمده، طیف‌های حاصله از آن با طیف استاندارد سیگما و طیف دو نوع کیتین وارداتی از کشور رژن و چین مورد مطالعه و بررسی قرار گرفت. نتایج تجزیه عنصری نشان داد که کیتین استخراج شده از پوسته سیست آرتمیا اورمیانا دارای 2/7 درصد نیتروژن، 6/8 درصد کربن و 3/6 درصد هیدروژن است. براساس این تجربه نرمول تجزیه واحد کیتین حاصله (C76,H12,8 N1,006 O5,2) تهیه شد.

لنزکلیدی: آرتمیا اورمیانا، کیتین، سیست

مقدمه

آرتمیا اورمیانا خصوصا از زمینه گیاهان و از گونه‌های مهم آرتمیاهای شناخته شده دنیا است (Sorgeloos et al., 1997). زیستگاه اصلی آن در بیابان‌های خشکه با مساحت 5000-55000 کیلومتر مربع واقع در موقعیت جغرافیایی ٧٠°٠٠ تا ١٠°٠٠ طول شرقی و ٥°٠٠ تا ٢٩°٠٠ عرض شمالی ایران است. سیست‌های آرتمیا در آبادان‌های امریکایی و در ساحل‌هایی از سواحل خلیج فارس در تامان، پایگاهی تجاری و تولیدی پوشیده‌های (Oviviparous) و نابیسته تخم‌گذار زندزه‌دار (Oviparous) گرونی پیش‌بازی که می‌تواند به‌طور آزمایشگاهی در سواحل به سه کلاس برشده و به علت سیست شدن، با بادهای غالب منطقه‌ای و امواج دریا به سواحل راهان شده و در سواحل انتباشت می‌شوند (Sorgeloos et al., 1997). پوشیده‌های سیست آرتمیا اورمیانا در این منطقه از جنبا آبیز مادای مواده فاقد اهمیت تغذیه‌ای هستند (اسبدور، ١٩٧٣). در راستای عمل آوری موادی با ارزش، افزودنیابی و باریک، بالا برای استخراج کیتین و مشتقات آن، پوشیده‌های سیست آرتمیا دارای مورد آزمایش قرار گرفتند.

کیتین کوپانیی از یک ساکاریدهای از دست داده با فرمول شیمیایی C8 H13 NO5) می‌باشد. نام علمی است که در ساختار شیمیایی آن بیش از 50% از تغییر دبیرکرده ملکوت (B-D(1-4)-N-acetyl - glucosamine) آمیز شده می‌کند (Alder, 1997). این کوپانیی در صنایع دارویی، آرایشی و کشاورزی، غذایی، تولیدات گیاهی، پلاستیک، پیوندی و پزشکی، کاغذسازی، یال‌پوشنت، فلزات سنتیک، پزشکی و تغذیه حیوانات، صنایع شیمی، فیبر و نساجی مصرف فراوانی دارد (Hansen & Illanes, 1994).
منبع مختلف از انواع بی‌مهرگان و گیاهان دریایی، جلبکها، باکتریا، حشرات، فارماق‌ها و دیگر برای استخراج این ماده مورد بررسی قرار گرفته‌اند (Haard & Simpson, 1994). در حال حاضر بیوشیمی (Shahidi et al., 1999) می‌گوید، که پروتئین کریل (Krill) مانند اصلی و اقتصادی استخراج این ماده است.

میزان مصرف سالانه کیتین ۱۵۰۰۰ تن بی‌پروردگر است. در حالیکه میزان تولید فعلی آن ۲۰۰۰ تن می‌باشد (Gildberg & Stenber, 2001). محدودیت‌های مالی، دسترسی و فصلی بودن صید سخت‌پوستان از اعضا در کاهش تولید آن محسوب می‌شوند (Seaborne, 2001).

نظر به اهمیت و کاربردی‌های فراوان این بیوشیمی، سخت‌پوستان به منابع جدید و روش‌های نوین در عمل می‌آیند. همین‌طور مورد تأکید دانشمندان است (Pariser & Lombardi, 1988). لذا در این تحقیق پوسته‌های سیست آرتیمیا اوریگیانا برای اولین بار به عنوان منبع جدید در استخراج کیتین، مورد مطالعه و تجزیه و تحلیل فراگرفت.

مواد و روش کار

مقدار ۱۰ کیلوگرم از پوسته‌های سیست آرتیمیا دریاچه ارومیه از ایستگاه‌های ساحلی رشکان و بئرزگران طی ماه‌های دی و بهمن ۱۳۸۰ جمع‌آوری، شستشو و خالص سازی شد و به مدت ۴۴ ساعت در دمای ۶۵ درجه سانتی‌گراد در آون خشک و برای تبعیض درصد مواد تشکیل دهنده آن مورد تجزیه قرار گرفت. در این آزمایش‌ها تجزیه شیمیایی و بیوشیمیایی با روش‌های استاندارد بین‌المللی (A.O.A.C., 1995) انجام شد. که این آزمایش‌ها موجب شده که به روش بی‌بخری در آون، مواد چربی به روش سوکسله، مواد بروتئینی با روش کلدنال و خاکستر خالص به روش سوزانده با کوره الکتروکلینیکی درجه سانتی‌گراد مدل Heraeus بود.

برای مشخص نمودن نوع و ترکیبات عناصر معدنی، مقدار ۳ گرم از پوسته‌های سیست آرتیمیا با Wax-C تستگاه مخلوطی فلزات و با Retsch NA تا حدود ۵۰ میکرون آلاین و با یک گرم ماده تستگاه بی‌سپر مدل Herzog BA بود. تستگاه اسیدیوراکی به مقدار ۳ میلی‌متری تهیه شد و بعد از شماره گذاری به Philips-Pw مدل XRF (مدل ۴۷) منتقل گردیده (سیلویاناتن و ایکسروبرست، ۱۹۹۷). استخراج کیتین از پوسته با انجام تغییراتی در روش‌های مرسوم شیمیایی (1999) و (Peberdy, 2001)
نتایج

ابتدا پوسته‌های سیست آزمایش دریاچه ارومیه برای تعبیه نوع و درصد ترکیبات شیمیایی و بیوشیمیایی موجود در آن مورد آزمایش و تجزیه قرار گرفت که نتایج حاصله در جدول ۱ آورده شده است.
جدول ۱: آنالیز تقریبی ترکیب شیمیایی و درصد مواد تشکیل دهنده پوست‌های سیست آرتیمیا اورمیان

<table>
<thead>
<tr>
<th>ماده لیپیدی</th>
<th>خاکستر خالص</th>
<th>روتبت</th>
<th>پروتئین (درصد)</th>
<th>(درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد رنگی</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۲±۲</td>
<td>۱۰/۵±۲</td>
<td>۲۰±۲</td>
<td>۸±۵/۴</td>
<td></td>
</tr>
</tbody>
</table>

برای مشخص نمودن نوع و درصد عناصر معدنی موجود در آن، خاکستر پوست‌های سیست آرتیمیا آنالیز شد که نتایج بدست آمده در جدول ۲ اورده شده است:

جدول ۲: ترکیب شیمیایی تشکیل‌دهنده خاکستر خالص موجود در پوست‌های سیست آرتیمیا اورمیان

<table>
<thead>
<tr>
<th>ترکیب معدنی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>۱/۹۴</td>
</tr>
<tr>
<td>MgO</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>SO₃</td>
<td>۶/۸۲</td>
</tr>
<tr>
<td>Cl</td>
<td>۳/۲۳</td>
</tr>
<tr>
<td>K₂O</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>CaO</td>
<td>۲/۴۸</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۱/۹۲</td>
</tr>
<tr>
<td>Zn</td>
<td>۰/۰۵</td>
</tr>
</tbody>
</table>

پس از مشخص شدن نوع ترکیبات شیمیایی و بیوشیمیایی پوست‌های سیست آرتیمیا برای استخراج کیتین آن مواد معدنی، لیپیدی، پروتئینی و مواد رنگی آن با روش‌های شیمیایی حذف گردید. باقیمانده محصول با راندمان ۸۲ درصد کیتین تلقی شد. برای اثبات آن آنالیزهای تحلیلی کیفی انجام گردید. آزمایش‌های تجزیه عنصری دستگاهی به منظور دستیابی به تعداد و نوع اندهای تشکیل دهنده محصول استخراجی با عمل آمده که نتایج بدست آمده در جدول ۳ اورده شده است.

جدول ۳: نتایج تجزیه عنصری کیتین استحصالی از پوست‌های سیست آرتیمیا اورمیان

<table>
<thead>
<tr>
<th>عنصر</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>الهیترولین</td>
<td>۳/۶۸</td>
</tr>
<tr>
<td>کربن</td>
<td>۷/۵۶</td>
</tr>
</tbody>
</table>

طیف‌سنجی مادون قرمز و پرتو‌گاری با آشامیده ایکس آریپورسان روش‌ها در تعبیر ساختار مولکولی و ساختار بلوری ترکیبات شیمیایی آنت مجهول بستگی می‌آید. که این آزمایش‌ها روی ماده استخراجی از پوست‌های سیست آرتیمیا انجام شد.

- در طیف‌سنجی FTIR وجود بنددهای جذب C=O، ۱۴۶۵/۸، ۱۸۵۹/۷، ۱۴۶۵/۸، ۱۳۱۴/۸ و ۱۰۱۹/۸ Cm⁻¹، ۱۵۱۵/۱ بیند پوندهای آمنووستیل و گروه OH و
- از طرف کیتین است که در نمودار ۱ اورده شده است.

www.SID.ir
نمودار ۱: طیف کیتین استخراج شده از پوست سیست آرتیمیالومریان (PTIR)

نموده‌سازی بصورت پلتاهای شیشه‌ای به ضخامت ۲۵/۰ میلی‌متر با است. پیک‌های کیتینی A, B, C, D, E, F ایجاد شده مربوط به باندهای چندی گروه‌های OH، آمینو استیل و C-H در پلیمر کیتین است.

ساختار بلوری محصول حاصله با پرتوگاری با اشعه ایکس، از تیوب مسی و با زاویه تابش θ به مدت ۲ ساعت مشخص گردید که در نمودار شماره ۲ اورده شده است که بینتگر ساختار بلوری کیتین است.

نمودار ۲: طیف کیتین حاصله از دستگاه X-Ray (رنگ قرمز). زاویه تابش θ از ۵ الی ۴۰ درجه و زمان تابش ۲ ساعت است.
ارزیابی‌های مقایسه‌ای کیفی کیت‌های استخراجی از پوسته سیستم‌های آرتیپیالی با طیف‌رسانی استاندارد با دو نوع کیت‌های وارداتی از کشور چین و وینتام انجام شده که نتایج حاصله در نمودارهای ۳ و ۴ آورده شده است.

نمودار ۳: طیف مقایسه‌ای سه نوع کیت‌های استاندارد FTIR

• طیف کیت‌های استخراجی از پوسته سیستم آرتیپیالی‌سازی (Sigma, 1999) A
• طیف کیت‌های استخراجی از پوسته‌های خرچنگ B
• طیف کیت‌های استخراجی از پوسته‌های خرچنگ C

نمودار ۴: طیف‌های X-Ray

• طیف مربوط به کیت مناسب ساختار سیستم آرتیپیالی‌سازی (آبی رنگ) A
• طیف مربوط به کیت پوسته‌های خرچنگ (سبز رنگ) B
• طیف مربوط به کیت پوسته‌های X-Ray (آبی رنگ) C

می‌باشد و اختلافات جزئی مربوط به منبع استخراجی و روشهای عملی، تأثیر رشد و طول است.
بحث

لایه کربنی سیسته‌های آرتیمیا در واحدهای سبز از تغذیه به صورت بوسته‌های غیر قابل مصرف در سواحل دریاچه انبیانتوس می‌شوند. این بوسته‌ها جهت بهبود توانایی بازیافت موادی با ارزش افزوده‌ای نیازمند تجزیه و مطالعه قرار گرفت. نتایج آنالیز ترکیبات شیمیایی و بوتیومایاپی بستگی آمده از بوسته سیسته آرتیمیا در دریاچه ارومیه در مقایسه با گزارش‌های (Laven et al., 1993)، از آنالیز ترکیبات سیسته سیسته و بوسته زندگی آرتیمیا کاملاً متفاوت است. نوع و درصد خاکستری در رصد کیتین از آرتیمیا در متابولیسم تحقیق یافته شد.

نمونه‌برداری ترکیب و درصد عناصر معدنی موجود در بوسته سیسته آرتیمیا به عنوان اولین گزارش تحقیقاتی در این زمینه تلقی می‌شود که با نتایج سایر محققین قابل مقایسه‌ای خواهد بود. بوسته سیسته آرتیمیا اورمیانه، با تعداد ۲۰۸ درصد کیتین به‌عنوان یکی از متابولیسم برای استحصال این بیولومیر برای اولین بار نیز گزارش می‌شود.

کیتین بوسته سیسته آرتیمیا با ۱۲/۶ درصد نیتروژن و ۴۸/۴ درصد کربن در مقایسه با مفاهیم به دست آمده از سایر متابولیسم تحقیقاتی قابل مقایسه است (بیکوواپ و همکاران، ۱۳۸۱). از طرفی کیتین‌ها به علت نوع منبع اولیه و همجنسی روش‌های عمل آوری تا حدودی نسبت به هم‌دیدگی متفاوتند (Roje & Keller, 1998).

درصد نیتروژن و کربن کیتین بوسته سیسته آرتیمیا در مقایسه با دو نوع دیگر استخراج شده از بوسته خرچنگ و بوسته میگو تا حدی بیشتر است. این شاخه بر اساس گزارش (Jagar & Zinski, 1998) که با در نظر گرفتن درصد این عناصر را از مشخصات مهم و مرتبط آن در برخی کاربردها و ایجاد مشتق‌های خاصی می‌داند نیز مورد تأیید قرار می‌گیرد. این موضوع اهمیت آن را در کاربردهای اختصاصی کیتین بوسته سیسته آرتیمیا در زمینه‌های پزشکی در رخ‌پوشانی و پزشکی دیابتی، صنعت بوسته مصنوعی، نخ و بی‌خیه جراحی، فناوری زیست محیطی، سم‌زدایی و پروتئز‌سازی افزایش می‌دهد.

کیتین بوسته سیسته آرتیمیا دارای وزن مولکولی و درصد عناصر متفاوتی در مقایسه با سایر منابع است. مؤسسه تحقیقاتی Seaborn در سال ۲۰۰۱ تولید مشتق‌های کاربردی متفاوت در شرایط باکتریک از www.SID.ir

Downloaded from isfj.ir at 5:00 +0430 on Thursday April 30th 2020
کیتین را مطرح می‌نماید، که در خصوص کیتین استحصالی از پوسته سری، آرتمیا اورمیانیا به صورت مطرح باشد.

طیف‌های مادون قرمز و هفت‌نگار با اشعه آبکس و باندهای جذبی ایجاد شده در آنها و ساختارهای
بلوری بی‌ساخته آمده از کیتین‌ها در حالت مقايسهای بین‌گرا بوده‌است. این بکران، که در اینجا می‌باشد و اختلافات جنبی
مروری به منبب استخراجی، روش‌های عمل آوری و درصد رطوبت است.

باید بودند درصد کیتین موجود در پوسته سری، آرتمیا در مقایسه با سایر منابع استخراج فعلي آن در
دبیا (1999، www.SID.ir، www.SID.ir)، فرآیندی بر سر خواهد بود. تبدیل پوسته‌های سری، آرتمیا اورمیانیا به
کیتین، موجب تولید موادی با ارزش افزوده‌ای بالا از پوسته‌های غیرقابل مصرف در دریاچه خواهد شد.
سالانه می‌توان چندین تن کیتین و مشتقات آن از پوسته‌های سری، آرتمیا دیروی استخراج نمود.

انجام مطالعات گسترده روی نوع آلفا، بتا و گاما بودن کیتین پوسته سری، آرتمیا، با کارگیری
روش‌های بهینه‌سازی در عمل آوری آن و بررسی امکان سنتر مشتقات جدید، کاربردهای نوینی را به
دبیل خواهد داشت. وجود لایه کربنی (پوسته) در سری‌های داخل کیسه‌های تخمدانی توده زنده
آرتمیا آن را در زمینه‌های آبی‌پوری غیرقابل مصرف می‌نماید، از طرف دیگر، ارتباط ذخایر توده زنده
آرتمیا بر اساس گزارش (1997، Sorgeloos et al.) سیاسی بالا است، لذا بررسی امکان استخراج آن از
توده زنده آرتمیا دریاچه بعنوان یکی دیگر از منابع نوین در تولید این محصول و مشتقات آن پیشنهاد
می‌گردد.

مطالعه روی خواص فیزیکی و شیمیایی کیتین حاصل از پوسته‌های سری، آرتمیا بعلت داشتن
اختلافات جزئی با سایر کیتین‌های استخراج شده از پوسته خرچنگ و میگو، ممکن است منتج به
یافته‌های جدید در تولید فرآورده‌های نوین با کاربردهای خاص از آن شود.

تشکر و قدردانی

از کلیه مسئولین و دانش‌نواز کاران محترم دانشکده منابع طبیعی و علوم دریایی نور و گروه
مباحث

اسدپور، ی.ع.، 1373. دستورالعمل‌های استحصال و عمل آری آزمایشگاه اورمنیا و کارگیری آن در آب‌زی تبریز. مرکز تحقیقات امور دام و مباحث طبیعی آذربایجان غربی. ۶۰ صفحه.


تهمینی، م. و تهمینی، م.، 1374. استخراج کیتین از بوسته خرچنگ، میگو، لابستر. پایان‌نامه کارشناسی ارشد، مرکز تحقیقات شیلات بندرعباس. ۸۹ صفحه.


یعقوبی، ن. ، میرزاهی، ح. و هرمنی، ف. ، 1381. بهبود سازی استخراج کیتین و تهیه کیتوزن از بوست میگو. علوم و تکنولوژی بیلیم. صفحات ۵۵ تا ۶۰.


Sorgeloos, P.; Laven, P. and Leger, P., 1997a. Determination and identification of
biological characteristics of Artemia urmiana for application in aquaculture. Univ. of Gent Belgium, Item A 110 P.