تعیین ترکیبات شیمیایی و بیوشیمیایی بوسته‌ی سیست آرتمیا اورمیانا (Artemia urmiana) و استخراج کیتین از آن

یوسفی‌النیا اسدپور(1)، سیدعباس شجاع السادات(2)، احمد غرقت(3)، محمد رضا کلباسی(4)، و علی اصغر خسروی‌شاهی(5)

asadpo_y@modares.ac.ir

1- اداره کل منابع طبیعی و امور دام چهدر اقلید استان اذربایجان غربی، ارومیه صندوق پستی: 681-96135-5
2- دانشکده فنی مهندسی دانشگاه تربیت مدرس، تهران صندوق پستی: 14155-1316
3- مؤسسه تحقیقات شیلات ایران، تهران صندوق پستی: 65162-14155
4- کرو مهندسی دانشگاه علوم دریایی، دانشگاه تربیت مدرس، تهران صندوق پستی: 35-13634-14155-1
5- دانشکده صنایع غذایی دانشگاه ارومیه، صندوق پستی: 165-15156-9

پژوهشگران: آبان 1381، د. میرانوش شریعتی، اردبیلی، تاریخ پذیرش: آذر 1382

چکیده

پوسته‌های سیست آرتمیا دریایی ارومیه به منظور استخراج کیتین طی ماهه‌های دی و بهمن 1380 از سواحل رشگان و پژوهگان جمع آوری، خاکسازی و خشک گردیدند. در مرحله اول آنالیز ترکیب شیمیایی و بیوشیمیایی پوسته با روش استاندارد (XRF) تعیین شد. بر اساس نتایج بدست آمده پوسته‌های سیست آرتمیا اورمیانا دارای 8/4±0/0 دیده جسم و 7/5±0/0 دیده چربی بودند. اندازه‌گیری با روش این که ترکیب و درصد عنصر مذکور در دهنده آن با روش (XRF) تعیین گردید. بر این اساس پوسته سیست آرتمیا دارای 8/22% Fe2O3، Zn = 5/0/0، CaO = 8/5%، MgO = 8/5% و SO3 = 8/5% گردید. استخراج کیتین از پوسته‌ها با انجام تغییراتی در روش‌های مرسوم شیمیایی طی چهار مرحله
نمایندگی‌های ارومیا به همراه دیگر گونه‌های مانند ارومیایی و ارومیاتی، به دینا است سخت یک سیستم بی‌پوسته از طریق یا گونه‌های هم‌رده از ردهٔ ارشاد مشابه‌پوسته‌های شناخته شده دنبال است. این دریافت از درمانی از ارومیا به مساحت 500 × 500 کیلومتر مربع واقع در موقعیت جغرافیایی ۱۰° ۵۵ طول شرقی و ۴۵° ۰۰ عرض شمالی ایران است. سیستم‌های ارومیای دریاچه ارومیه در طول سال طی دور مرحله زنده‌گی این سیستم‌های فرمای به فرمای زمستان تخم‌گذار و نابنده تخم‌گذار زنده‌زا (Ooviviparous) کوربوني‌ها سیستم‌ها به شکل یک سیستم جدا شده و به علت سیستم‌شنیدن، با بهداشتی غلیب منطقه‌ای و امواج دریا به سواحل رانده شده و در سواحل اتصال به می‌شود. پوسته‌های سیستم ارومیا اورمیایی در این مرحله از جهت تغذیه از هستند (اسدبور، ۱۳۷۳). در را، استخوان‌های موادی از ارزش افزوده‌ای فراوان، بالا برای استخراج کمیت ان، پوسته‌های سیستم‌های دریاچه مورد آزمایش قرار گرفته.

کیتین بیولیمی (C₈ H₁₃ NO₅)ₙ، با نام علمی است که در ساختار شیمیایی آن بیش از ۵۰۰ واحد گلکوز است. در بازوی این بیولیمی، از بکرین بکرین در صنايع داروسازی، آرآپی، کشاورزی، غذا، تهیه و تهیه گیاهی، پایان آب، بیوتکنولوژی، پرورش، کاغذسازی، پالاپی و فلزات سنگین، تغذیه حیوانات، صنايع شیمی، فیبر و نساجی مصرف فراوانی دارد (Hansen & Illanes, 1994). با حال بیش از ۳۰۰

Lغتی کلیدی: آرتمیا اورمیا، کیتین، سیستم

نقد

آرتمیا اورمیا سخت یک سیستم بی‌پوسته از رده‌ای است که از نوع پایان و از این‌گونه‌ها مهم تری‌ها شناخته شده دنبال است. این دریافت از درمانی از ارومیا به مساحت 500 × 500 کیلومتر مربع واقع در موقعیت جغرافیایی ۱۰° ۵۵ طول شرقی و ۴۵° ۰۰ عرض شمالی ایران است. سیستم‌های ارومیای دریاچه ارومیه در طول سال طی دور مرحله زنده‌گی این سیستم‌های فرمای به فرمای زمستان تخم‌گذار و نابنده تخم‌گذار زنده‌زا (Ooviviparous) کوربوني‌ها سیستم‌ها به شکل یک سیستم جدا شده و به علت سیستم‌شنیدن، با بهداشتی غلیب منطقه‌ای و امواج دریا به سواحل رانده شده و در سواحل اتصال به می‌شود. پوسته‌های سیستم ارومیا اورمیایی در این مرحله از جهت تغذیه از هستند (اسدبور، ۱۳۷۳). در را، استخوان‌های موادی از ارزش افزوده‌ای فراوان، بالا برای استخراج کمیت ان، پوسته‌های سیستم‌های دریاچه مورد آزمایش قرار گرفته.

کیتین بیولیمی (C₈ H₁₃ NO₅)ₙ، با نام علمی است که در ساختار شیمیایی آن بیش از ۵۰۰ واحد گلکوز است. در بازوی این بیولیمی، از بکرین بکرین در صنايع داروسازی، آرآپی، کشاورزی، غذا، تهیه و تهیه گیاهی، پایان آب، بیوتکنولوژی، پرورش، کاغذسازی، پالاپی و فلزات سنگین، تغذیه حیوانات، صنايع شیمی، فیber و نساجی مصرف فراوانی دارد (Hansen & Illanes, 1994). با حال بیش از ۳۰۰
منبع مختلف از انواع بی مهرگان و گیاهان دریابی، جلبی‌ها، باکتریا، حشرات، قارچ‌ها و مخمرها برای استخراج این ماده مورد بررسی قرار گرفته‌اند (Haard & Simpson, 1994). در حال حاضر بوسته میگو، خرچنگ و کریل (Krill) (Shahidi et al., 1999) میزان مصرف سالانه کیتین تا 15000 تن بی‌پرو که است، در حالیکه میزان تولید فعالی آن 3000 تن می‌باشد (Gildberg & Stenber, 2001) محدودیت منابع قابل دسترس و فصلی بودن صید سخت‌پوستان از علی اصلی در کاهش تولید آن محصول می‌شوند (Scaborne, 2001).

نظر به اهمیت و کاربردهای فراوان این بیولیم تربیعی، دستیابی به منابع جدید و روش‌های نوین در عمل آوری همیشه مورد تأکید دانشمندان است (Pariser & Lombardi, 1988)، لذا در این تحقیق پوسته‌های سیست آرتمیا اوریمانا بار اولیه بار بعنوان منبع جدید در استخراج کیتین، مورد مطالعه و تجزیه و تحلیل فراورفت.

مواد و روش کار

مقدار ۱۰ کیلوگرم از پوسته‌های سیست آرتمیا دریاچه ارومیه از ایستگاه‌های ساحلی رشکان و بزرگراه طی ماه‌های دی و بهمن ۱۳۸۵ جمع‌آوری شدند و خالص سازی شد و به مدت ۲۴ ساعت در دمای ۶۵ درجه سانتی‌گراد در آون خشک و برای تعبیه تجدید میزان تغییرات شکل دهنده آن مورد تجزیه قرار گرفت. در این آزمایش‌ها تجزیه شیمیایی و بیوشیمیایی با روش‌های استاندارد بین‌المللی (A.O.A.C., 1995) اندازه گیری دیگر رطوبت آن به روش تک بخاری در آون، مواد گرمی به روش سکل‌سازه، مواد بروتونی معادل کننده با روش کلاسیک و خاکستر خالص به روش سوئیس‌اینی با تکنیک Rider (۵۵ درجه سانتی‌گراد مدل کانیک) به‌کار گرفته شد.

برای مشخص نمودن نوع و ترکیبات عناصر معدنی، مقدار ۳ گرم از پوسته‌های سیست آرتمیا با گرموماخن واکسین-C (Wax-C) مخلوط و با گرموماخن راتش (Retsch) تا حدود ۵۵ میکرون آسیاب و با یک گرم ماده Herzog، با بودر اسید‌وریک به قرص ۴ میلی‌متری تبدیل شد و بعد از شماره‌گذاری به مدل متخلخل‌ریز سپل‌راستشتن و ایکس‌پوستر (۱۹۹۷) استخراج کیتین از بوسته با انجام تغییراتی در روش‌های مرسوم شیمیایی (Peberdy, 1999) و
نتیجه

ابتدا پوسته‌های سیست آزمایشی دریاچه ارومیه برای تعیین نوع و درصد ترکیبات شیمیایی و
بیوشیمیایی موجود در آن مورد آزمایش و تجزیه قرار گرفت. نتایج حاصله در جدول 1 اورده شده است.

(تهامی و تهامی، ۱۳۷۴) طی مراحل مختلفی عمل کانی‌زدایی با اسید کلریدریک ۵٪ نرمال به مدت ۶
ساعت در دمای ۶۵ درجه سانتی‌گراد، حذف مواد پروتئینی با هیدروکسید سدیم ۱۰ درصد (w/w)
در دمای ۶۵ درجه سانتی‌گراد به مدت ۱۲ ساعت، حذف مواد لیپیدی با محلول بیترولیوم بنزن به مدت ۴
ساعت و حذف مواد رنگی با محلول هیدروژن پراکسید ۳ درصد با غلظت ملایم به مدت ۱۵ دقیقه انجام
پذیرفت. تحلیل کیتین استخراج شده با محلول کلرید سدیم ۱ درصد (w/w) به مدت ۱ ساعت در دمای
۶۵ درجه سانتی‌گراد و سپس با اسید استیک گلیساپال ۱۰ درصد (V/V) به مدت ۲ یک ساعت دیگر انجام
شد (Pariser & Lombard، ۱۹۸۸).

حذف مواد لیپیدی با بیترولیوم بنزن بعنوان یک روش نوین در فرآیند اورده شده است (سپاس،
A.O.C.A، ۱۹۹۶). آزمایش‌های درصد میزان حذف‌شدن مواد مذکور نیز با همان روش (۱۹۹۵،
کیسی) است معرفی شده و می‌تواند روشی مناسب باشد برای حذف مواد مذکور.

به مخاطبین توصیه می‌شود که میزان مواد خطرناک‌جو را به حداقل رساند.

ABB-Bomenl و طیف‌سنجی مادون فرمز با دستگاه FTIR و هلرایکس مدل C.H.N.O-analyser
با نمونه‌سازی به صورت پیلیت‌های ۱/۲۵ سانتی‌متری با اکستایپ، و آنالیز با استفاده
X-Ray انجام گرفت. در روش طیف‌سنجی Brugnerotto et al، (2001)
آماده‌سازی نمونه‌ها به صورت ضخیم‌های ۲ میلی‌متری با Wax-C و اسیدبیوریک بود.

در نهایت کیفیت کنتین پوسته سیست آزمایشی با دو نوع کنتین مشابه تجاری دیگر از کشورهای چین
از پوسته میگو) و ویتنام (از پوسته خرچنگ) که به روش‌های شیمیایی تهیه شده بودند، مورد مقایسه
قرار گرفت.

نتایج
جدول ۱: آنالیز تقریبی ترکیب شیمیایی و درصد مواد تشکیل دهنده پوسته‌های سیست آرتیما اورمی‌اکا

<table>
<thead>
<tr>
<th>مواد لیپیدی</th>
<th>خاکستر خالص</th>
<th>رطوبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط (درصد)</td>
<td>متوسط (درصد)</td>
<td>متوسط (درصد)</td>
</tr>
<tr>
<td>۲۲±۲</td>
<td>۱۰/۵±۲</td>
<td>۲۰/۵±۲</td>
</tr>
<tr>
<td>۱۰/۵±۲</td>
<td>۲۰/۵±۲</td>
<td>۲۰/۵±۲</td>
</tr>
<tr>
<td>۲۰/۵±۲</td>
<td>۲۰/۵±۲</td>
<td>۲۰/۵±۲</td>
</tr>
</tbody>
</table>

برای مشخص نمودن نوع و درصد عنصر معدنی موجود در آن، خاکستر پوسته‌های سیست آرتیما آنالیز شد که نتایج بدست‌آمده در جدول ۲ آورده شده است:

جدول ۲: ترکیب شیمیایی تشکیل دهنده خاکستر خالص موجود در پوسته‌های سیست آرتیما اورمی‌اکا

<table>
<thead>
<tr>
<th>ترکیب معدنی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na۲O</td>
<td>Mg۲O</td>
</tr>
<tr>
<td>۱/۹۲</td>
<td>۱/۱۲</td>
</tr>
</tbody>
</table>

پس از مشخص شدن نوع ترکیبات شیمیایی و بیوشیمیایی پوسته‌های سیست آرتیما براي استخراج کیتین‌بن مواد معدنی، لیپیدی، پروتئینی و مواد رنگی آن با روش‌های شیمیایی حذف گردید، باقی‌مانده محصول با راندمان ۲۸ درصد کیتین تلفی شد. برای انتهای آن آنالیز‌ها تحقیق کیفی انجام گردید.

از آزمایش‌های تجزیه عنصری دستگاهی به منظور دستیابی به تعداد و نوع اتم‌های تشکیل دهنده محصول استخراجی عمل امده که نتایج بدست‌آمده در جدول ۳ آورده شده است:

جدول ۳: نتایج تجزیه عنصری کیتین استحصالی از پوسته سیست آرتیما اورمی‌اکا

<table>
<thead>
<tr>
<th>عنصر</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>اکسیژن</td>
<td>۳۶/۸</td>
</tr>
<tr>
<td>نیترژن</td>
<td>۷</td>
</tr>
<tr>
<td>کربن</td>
<td>۲۸/۶</td>
</tr>
</tbody>
</table>

طبق‌سنجی ماده سوزانی و پرنده‌گرایی با اشعه ایکس از بیشتر فته‌های روی شده در تعیین ساختن مولکولی و ساختار بلوری ترکیب‌های شیمیایی آلی مجهول بشر می‌آید، که این آزمایش‌ها روي ماده استخراجی از پوسته‌های سیست آرتیما انجام شد.

در طیف‌سنجی FTIR وجود بنددهای جذب ۱,۳۴۷/۲۸۰ Cm⁻¹ ۱,۳۴۷/۲۸۰ Cm⁻¹ و ۱,۳۱۸/۲۸۰ Cm⁻¹ نشانه وجود گروه‌های آمینواستیل و گروه OH و از پلیمر کیتین است که در نمودار ۱ آورده شده است.
نمودار ۱: طیف کیتین استخراج شده از پوست میسیت آرتیمیورمیتا FTIR نمونه‌سازی بصورت پلت‌های شیشه‌ای به ضخامت ۱/۰ میلی‌متر با کت‌های A, B, C, D, E, F ایجاد شده بنا به پرانتهای C-H، آمینو استیل و OH در پلیمر کیتین است.

ساختار بلوری محصول حاصله با پرتوگاری با اشعه ایکس از تیوب مسی و با زاویه تابش θ به مدت ۲ ساعت مشخص گردید که در نمودار شماره ۲ آورده شده است که بیانگر ساختار بلوری کیتین است.

نمودار ۲: طیف کیتین حاصله از دستگاه X-Ray (رگ ترمی) زاویه تابش θ از ۵ الی ۱۵ درجه و زمان تابش ۲ ساعت است.

www.SID.ir
ارزیابی‌های مقایسه‌ای کیتی‌های استخراجی از پوسته سبز آرتیمیا در برخی از طیف‌های استاندارد با دو نوع کیتی‌های وارداتی از کشور چین و ویتنام نشان داد که نتایج حاصله در نمودارهای ۱ و ۲ آورده شده است.

نمودار ۳: طیف FTIR مقایسه‌ای سه نوع کیتی‌ها با طیف نوع استاندارد A. طیف کیتی استخراجی از پوسته سبز آرتیمیا (مارگ) B. طیف کیتی استخراجی از پوسته میگو (Maruyama, 1999) C. طیف استاندارد کیتی D. طیف کیتی استخراجی از پوسته خرچنگ

نمودار ۴: طیف‌های X-Ray مقایسه‌ای کیتی‌های انجام شده با سنتگنه A. طیف مربوط به کیتی آرتیمیا-مارگ (قرمز رنگ) B. طیف مربوط به کیتی پوسته خرچنگ (آبی رنگ) C. طیف مربوط به کیتی پوسته میگو (سرز رنگ) مشابهت ساختارهای بالوری حاصله بیانگر پیوند بودن مواد می‌باشد و اختلافات جزئی مربوط به منبع استخراجی و روش‌های عمل آوری و درصد رطوبت است.
بحث

لایه کوریونی سیسته‌های آرتیمیا دریاچه می‌تواند، این برای سمیک‌سازی و جهت بازیافت موادی با ارزش افزوده‌ای فراوان مورد تجزیه و مطالعه قرار گرفته. نتایج آنالیز ترکیبات شیمیایی و بوشیمیایی بستگی و تأثیر سیسته سیست آرتیما در دریاچه ارومیه در مقایسه با گزارش‌های (Laven et al., 1993) از آنالیز ترکیبات سیست و بوده زنده آرتیما کاملاً متفاوت است. نوع و درصد خاکستر و درصد کیتین از آرتیما در منابع مورد تحقیق یافت نشد، بنابراین ترکیب و درصد عناصر معدنی موجود در بوسته سیست آرتیما به عنوان اولین گزارش تحقیقاتی در این زمینه تلقی می‌شود که با نتایج سایر محققین قابل مقایسه خواهد بود. بوسته سیست آرتیما اورمیه، با ظرفیتی بالاده ۳۷ درصد کیتین بعنوان یکی از منابع مهم برای استحصال این بیوبیوم برای اولین بار نیز گزارش می‌شود.

کیتین بوسته سیست آرتیما با ۶/۷ درصد نیتروزن و ۴۸/۶ درصد کربن در مقایسه با صافی‌دیر بست، آمده از سایر منابع تحقیقاتی قابل مقایسه است (یعقوبی و همکاران، ۱۳۸۱). از طرفی کیتینها به علت نوع منبع اولیه و همچنین روش‌های عمل آوری تا حدودی نسبت به هم‌دیگر متفاوتند (Rojer & Keller, 1998).

درصد نیتروزن کربن کیتین بوسته سیست آرتیما در مقایسه با دو نوع دیگر استخراج شده از بوسته خرج‌گیری و بوسته میگو تا حدی بیشتر است. این شامل بالای نیتروزن و با اساس نیترزین (Jagar & Zinski, 1998) که

با لازم به ذکر، درصد بوسته از عنصر را از مشخصات مهم و مرتبط آن در برخی کاربردها و ایجاد مشتقات خاصی می‌دانند. این نیتروزن با تأیید فرآیند تأمین می‌گردد. این موضوع اهمیت آن را در کاربردهای اختصاصی کیتین بوسته سیست آرتیما در بیشتری به پروتئین‌ها و پروتئین‌های دیالیز، سنتز پوست مصنوعی، نخ‌پیچ و چاپ، گفته می‌شود

کیتین بوسته سیست آرتیما دارای وزن مولکولی در درصد عناصر متفاوتی در مقایسه با سایر منابع در سال ۲۰۰۱ تولید مشتقات کاربردی متفاوت در شرایط یکسان از Seaborne است. مؤسس تحقیقاتی www.SID.ir

8
کیتین را مطرح می‌نماید. که در خصوص کیتین استحصالی از بوسته سیست آرتمیا اورمیا این استحصال‌هایی بی‌پروردگار توجه می‌بکند.

مطرح باشد.

طیف‌های ماده‌های قرمز و پررنگ‌گارها با اشعه ایکس و باندهای جذبی ایجاد شده در آنها و ساختارهای بلوری بدست آمده از کیتین‌ها در حال مقایسه‌ای بیانگر یکسان بودن یلیم‌ها می‌باشد و اختلافات جزئی مربوط به منبع استخراجی، روش‌های عمل آوری و درصد رطوبت است.

باید بودن درصد کیتین موجود در بوسته سیست آرتمیا در مقایسه با سایر منابع استخراج فعلي آن در دنیا (Shahidi et al., 1999) بر سرود خواهد بود. تبدیل بوسته‌های سیست آرتمیا اورمیا به کیتین، موجب تولید موادی با ارزش افزوده‌ای بالا از بوسته‌های غیرقابل مصرف در دریاچه خواهد شد.

سالانه می‌توانند تن کیتین و مشتقات آن‌ها از بوسته‌های سیست آرتمیا دریاچه استخراج نمود.

انجام مطالعات گسترده روی نوع آلفا، بتا و غاما بودن کیتین بوسته سیست آرتمیا، باک‌گیری روش‌های بهینه‌سازی در عمل آوری آن و بررسی امکان سندرم مشتقات جدید، کاربردهای نوینی را به دنبال خواهد داشت. وجود لایه‌های کربنی (پوسته) در سیست‌های داخل کیسه‌های تخمدانی توده زنده آرتمیا آن را در زمینه‌های آبزی‌پروری غیرقابل مصرف می‌نماید. از طرف دیگر ارزیابی ذخایر توده زنده آرتمیا براساس گزارش (Sorgeloos et al., 1997) بسیار بالي است، لذا بررسی امکان استخراج آن از توده زنده آرتمیای دریاچه به‌عنوان یکی دیگران منابع نوین در تولید این محصول و مشتقات آن بیش‌تر می‌گردد.

مطالعه روي خواص فیزیکی و شیمیایی کیتین حاصله از بوسته‌های سیست آرتمیا، بعنوان داشتن اختلافات جزئی با سایر کیتین‌های استخراج شده از بوسته خرچنگ و میگو، ممکن است منتج به پافته‌های جدید در تولید فراورده‌های نوین با کاربردهای خاص از آن شود.

تشکر و قدردانی

از کلیه مسئولین و دست‌اندرکاران محترم دانشکده منابع طبیعی و علوم دریایی نور و گروه
بیوتکنولوژی دانشکده فنی و مهندسی دانشگاه تربیت مدرس و موسسه تحقیقات شیلات ایران، کحال
تشکر و امتنان را داریم.

منابع

اسدپور، ی.ع. ، ۱۳۷۳. دستورالعمل های استحصال و عمل اوری ارمنیا اورمنیا و بکارگیری آن در آبزی
بروی. مرکز تحقیقات امور دام و منابع طبیعی آذربایجان غربی. ۶۰ صفحه.
پایلو ایلامی، کریز، ۱۳۷۳. نگرش بر طیف سنگی. ترجمه: ب. متویق، ۱۳۷۵. انتشارات علمی و فنی. ۴۸۵ صفحه.
تهامی، م و تهامی، م. ، ۱۳۷۴. استخراج کینتین از بوسته خرچنگ، میگو، لابستر. پایان نامه کارشناسی
ارشد، مرکز تحقیقات شیلات بندرعباس. ۸۹ صفحه.
سیلورا شنیز، ر. و ایکسروبستر، ف. ، ۱۹۸۷. ژستاسیی ترکیبات آلی به روش طیف‌سنجی. ترجمه، س.
صداقی. انتشارات علمی و فنی. صفحات ۲۵ تا ۸۵.
سیس، ج. ، ۱۹۹۴. شیمی تجزیه مواد غذایی. ترجمه: الک. خسرو شاهی اصل، انتشارات دانشگاه
ارومیه. ۲۲۰ صفحه.
یعقوبی، ن. ، میرزاه، ح. و هرمزی، ف. ، ۱۳۸۱. بهینه‌سازی استخراج کینتین و تهیه کینتزن از
بوست میگو. علوم و تکنولوژی پلیمر. صفحات ۵۵ تا ۶۵.
relation with Chitin and Chitosan characterization. J. Polymer, 42, Elsevier,
pp.231-242.


Sorgeloos, P.; Laven, P. and Leger, P., 1997a. Determination and identification of
biological characteristics of *Artemia urmiana* for application in aquaculture. Univ.
of Gent Belgium, Item A 110 P.

Lake Artemia cysts and biomas. Uni of Gent, Belgium-Item B, 110 P.