برورسی تأثیر برخی میکروالمنتها بر سطح فعالیت آنزیم‌های پروتئولیتیک و آنزیم فسفاتاز قلیایی در دستگاه گوارش بهجه فیل ماهی (Huso huso)

رضا قرمانی (1)، ابولقاسم کمالی (2)، اکسندر نیوویونی (3)، عبدالمحیط حاجی‌مرادلو (4) و محمدپورکاظمی (5)

ghorbani194@yahoo.com

1 - بخش آبزی پروری، پژوهشگاه میکروکش و کشور، بانک صندوق پستی: 1372
2 و 3 - دانشکده شیلات و مهیاطیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، کرگان، صندوق پستی: 15738-4913
3 - دانشکده فنی دانشگانه، دانشگاه بیولوژی، استراخان، روسته
5 - انستیتو تحقیقات بین‌المللی مامیان خاویاری، رشت، صندوق پستی: 6375-4936

تاریخ دریافت: شنبه 1384.2.28ferences:

چکیده
تأثیر میکروالمنت‌های روی (بیصوئرتن، NiCl2.6H2O، ZnCl2، CuCl2) (CoCl2)، MnCl2.2H2O، FeCl2 و مس، سلنید مس، CuSO4.5H2O، سولفات مس، Cu2(OH)2CO3، استات مس، CH3CO2H و نیترات مس، [Cu(NO3)2.3H2O] بر سطح فعالیت کل آنزیم‌های پروتئولیتیک قلیایی (تریپسین باکد) و پروتئاز متفاوت در مختاط E.C.3.4.21.4.3.1.1.1، کمپتوتروپین 1 و E.C.3.4.21.2.2.2 در مختاط معدن و فعالیت آنزیم فسفاتاز قلیایی (1 و E.C.3.1.10.1.1) در غلظت 1 و 0.01 میلی‌گرم در in vitro با تکرار در هر تیمار بروش انگی جنگن در آزمایشات آزمایش در میان Cu2+، Mn2+، Fe3+، Ni2+، Zn2+، Co2+ بر روی بیل ماهی با وزن متوسط 45 ± 7 گرم کالبدگشا و اندام‌های مورد
بررسی تأثیر برخی میکروالمت‌ها بر سطح فعالیت انزیم‌های پروتئزیک و...
گربانی و همکاران

نیاز از بدن ماهیان خارج و در حال انجام نگهداری گروه‌دهنده، در آزمایشگاه بس از وضعیت انجام می‌پذیرد. در آزمایش گروهی پس از ارگلی تیمارهای تحت تأثیر میکروالمت‌ها، سطح فعالیت آنزیم‌های پروتئزیک (قلبیا و اسیدی) و فسفاتاز قلبیا، کمتر از تیمار شاهد (میزان میکروالمت صفر میلی‌گرم در لیتر) می‌باشد. سطح فعالیت کل آنزیم‌های پروتئزیک قلبیا، تحت تأثیر استاتس مس با غلظت 1 میلی‌گرم در لیتر در مخاط روده و سطح فعالیت آنزیم پروتئزیک اسیدی (پیپس) تحت تأثیر میکروالمت روی با غلظت ۲۵۰ میلی‌گرم در لیتر و نیترات مس با غلظت 1 میلی‌گرم در لیتر در مخاط معدن، بطور معنی‌دار بیش از تیمار شاهد اندازه‌گیری گردیدند (P<0/05). همچنین سطح فعالیت آنزیم فسفاتاز قلبیا، تحت تأثیر نیترات مس با غلظت ۵۰۰ میلی‌گرم در لیتر در ضمانت بام‌برامده بطور معنی‌دار بیش از تیمار شاهد می‌باشد (P<0/05).

لچات کلیدی: ماهی، حاوی‌های پروتئزیک، فسفاتاز قلبیا، حاوی‌های پروتئزیک، فسفاتاز قلبیا، حاوی‌های پروتئزیک

مقدمه

فیل ماهی (Huso huso) یکی از گونه‌های شیخ بهار از خویش از نظر تولید خواری است. از نظر تغذیه‌ای از برخی ماهیان و پرینکن کنیزی تغذیه‌ی می‌تواند (Shavkin & Aslanidy 1999) با توجه به اهمیت ماهیان خواری از جنبه تولید خواری و وشک‌نشست انجام تحقیقات همه جانبه در خصوص آنها لازم و ضروری است. در سالهای اخیر تمایل نسبت به تحقیق برای جامعه افرادی آغازه (Kuzmina et al., در زمینه میزان برخی میکروالمت‌ها در ق سم‌های باز میانی و جنوبی دریای خزر تحقیقاتی انجام گرفته و مقدار آن از ۵۰۰ تا ۸۷۳ مرگی، منگنز از ۲۷ تا ۲۴، مس از ۱۵ تا ۱۵۰ و روی از ۲۹ تا ۱۲۳ میکروگرم در لیتر، تعداد گرو از گردیده است (Kastrov & Gorbanuva, 2000). به جهت اهمیت ویژه آنزیم‌های پروتئزیک و فسفاتاز قلبیا نسبت به بررسی تأثیر میکروالمت‌ها بر سطح فعالیت آنها در اندام روده، معدن و ضمایم بام‌برامده اقدام گردیده است. به منظور بی‌پردن به اهمیت آنزیم‌های پروتئزیک برای این گونه لازم به‌نظر می‌گردد که به جهت ماهیان خواری نیازمند رژیم‌های غذایی حاوی ۲۸ تا ۳۵۰ درصد پروتئین می‌باشند. به‌منظور بررسی آنزیم‌های تهیه‌سازی و سنگ‌ساز استرها بنا شده‌اند (Akopovna, 1997)

www.SID.ir 112
فسفریک و انتقال گروه‌های فسفات از اسید فسفیک به سایر ترکیبات را در

cالیبایی سریع می‌نماید (Parker, 1986). این آنزیم می‌تواند نقش مهمی را در فرآیند معدنی سازی اسکلت آبیان بعده‌داشت

باشد (Lan et al., 1995).

در تحقیق حاضر با توجه به میزان میکروالمنت‌ها در دریای خزر و محدوده تقریبی افرادی آنها در

آبهای طبیعی (Kastrov & Gorbunova, 2000) و با توجه به اینکه در کشور روسیه از غلظت‌های تا 5 میلی‌گرم در لیتر از میکروالمنت‌های مس، آهن، روی و منگنز بررسی تأثیر آنها بر درصد لقح، درصد

تفنیج تخمها و قابلیت بقاء لاروها و وزن و طول لاروها پس از تفنیج تخمها در کبور ماهیان جنین مورد

استفاده قرار گرفته (Warobev, 1993) از دو غلظت 1 و 0.5 میلی‌گرم در لیتر برای انجام بررسی

استفاده گردیده است. در واقع با استفاده از غلظت‌های فوق، میزان تغییر سطح فعالیت آنزیم‌ها در دو

غلظت بیان و کمی از میکروالمنت‌ها مشخص و در نتیجه می‌توان با دید و سیاستی نسبت به انتخاب سایر

غلظت‌ها در تحقیقات آنی اقدام نمود.

از عوامل اصلی در دریای ذهندی میکروالمنت‌های روی، نیکل، کبالت، منگنز، آهن و مس اهمیت آنها از

جنده‌های مختلف می‌باشد. برای مثال عدم وجود آهن و مس بیماران کافی در ماهیان می‌تواند موجب

کم خونی گشته و در ساخت هموگلوبین اختلال ایجاد شود. منگنز در ساختن عصبی از آنزیم‌ها شرکت

dاشته و عنصری ضروری محصول می‌گردد. کبالت بخش مهمی از ویتامین B12 (کوبالامین) را تشکیل

داده و همچنین بر ترکیبات آنزیم‌ها تأثیر می‌گذارد (Steffens, 1989).

با توجه به اهمیت حیاتی آنریمها و نقش سیستم گوارش ماهیان در هضم و جذب غذا و نیاز ماهیان به

میکروالمنت‌ها (Steffens, 1989; Lovell، 1989) نسبت به انجام این تحقیق اقدام گردید. هدف

بررسی تأثیر میکروالمنت‌های روی، نیکل، کبالت، منگنز، آهن و مس با دو غلظت 1 و 0.5 میلی‌گرم

dر لیتر بر سطح فعالیت آنریمها بروتوئلینک و فسفات قلیایی در روشه، معدع و ضمایم بادمعلول می‌باشد. برای یک بردن به تأثیر ترکیبات مختلف از اسید میکروالمنت بر سطح فعالیت آنریمها، از ۴ ترکیب

مختلف مس استفاده گردید. نتایج حاصل از تحقیق حاضر می‌تواند راه‌گشای انجام تحقیقات بعده‌در

خصوص استفاده از میکروالمنت‌ها به تنهایی و یا به شکل ترکیبی از جنبه‌های مختلف باشد.
مواد و روش کار

بچه فیل ماهیان مورد نیاز به تعداد ۲۱۷ عدد با وزن متوسط ۲۵۴ گرم در ابتدا سال ۱۳۸۵ از مرکز تکنیک و برونش ماهیان خاویاری شهید مرجاني گرگان (استان گلستان) تأمین و عمل کالبدگشایی بچه ماهیان و بیرون اوردن اندازها را روی سطح یک صفحه شسته مستقر بر ظرف حاوی مخلوط آب و یخ انجم گرفت. سپس روده ضامن با پالرده و لوزالْعده از بدن ماهیان خارج شده و در شرایط انجماد ثابت کردن گردیدند. کاهش درجه حرارت در زمان کالبدگشایی بچه ماهیان و نگهداری اندازها، به منظور حفظ فعالیت آنزیمی انجام شده است.

برای بررسی تأثیر میکروالمننت بر سطح فعالیت آنزیم‌ها از کلرید روی (ZnCl₂)، کلرید نیکل (NiCl₂)، کلرید کبالت (CoCl₂)، کلرید آهن (FeCl₂)، کلرید منگنز (MnCl₂.2H₂O)، کلرید مس (CuCl₂) و نیترات مس (Cu(NO₃)₂.3H₂O)، با احتساب دو غلظت ۱ و ۱×۱۰⁻۶ میلی‌گرم در لیتر هر یک از میکروالمننت‌های روی نیکل، کبالت، منگنز، آهن و مس استفاده گردید.

سنجدس سطح فعالیت آنزیم پروتئاز اسیدی (پیپسن) (E.C.4.2.2.1) در مخاط معده بر مبنای روش فولین سیکلانتو می‌باشد. اساس عمل این است که اسید آمینه تیتروزین ناشی از تجزیه سویسترا (هموگلوبین) به سیکلانتو مربوط می‌شود. در مجاورت مصرف فولین ایجاد کمپلکس رنگی می‌نماید و شدت رنگ به Nevalennyy، ۱۹۹۶; Kuzmina et al.، ۱۹۹۹; Kuzmina & Skvortsova، ۱۹۹۱ نشان می‌دهد.

تعداد اسید آمینه تیتروزین ایجاد شده بستگی دارد (Kuzmina & Skvortsova، ۲۰۰۱). در این روش از هم‌و‌هم‌رسید ۱/۱ درصد بعنوان سویسترا و از بایفر ۱/۰ مولارگلیسرین با pH ۱۵ برای رقیق سازی سویسترا و مخاط استفاده گردید. عمل سانتریفوژ مخاط رقیق شده به مدت ۱۵ دقیقه با ۵۰۰۰ دور در دقیقه انجام و عمل انکوباسیون لوله‌های آزمایش حاوی میکروالمننت و مخاط رقیق شده که به آن سویسترا افزوده شده به مدت ۶۰ دقیقه در درجه حرارت ۲۵ درجه سانتی‌گراد و قرائت دانسیتی نوری به استفاده از دستگاه اسپکتروفوتومتر در طول موج ۶۷۰ نانومتر انجام گرفت (Kuzmina & Skvortsova، ۱۹۹۱)

برای سنجدس سطح فعالیت کل آنزیم‌های پروتئزهای فلایایی (ترپرسین، ۲.۱.۴.۲۱.۳.۴۳)
کیموترپیسین‌های مختلف) در مخاط روده، اساس روی همانند پروتئاز21 و پنتیدازهای مختلف) در مخاط روده، اساس روی همانند پروتئاز اسیدی، مبتنی بر تشخیص و اندام‌گیری اسید آمینه تیروزین می‌باشد. در این روش از کاریک ۱ دصرد بعنوان سوسترا و از بار فسفات با pH۷/۴ برای رقیق سازی سوسترا و از آب م قطر برای رقیق سازی مخاط استفاده گردید. سایر شرایط مانند سانتیفیور، مدت زمان انکوباسیون، درجه حرارت انکوباسیون و طول موج دستگاه اسکیترونومتر برای قرایت دانسیته نوری همانند آزمیز پروتئاز اسیدی است. واحد سطح فعالیت آنزیم‌های پروتئولیتیک بر اساس مقدار محصول ایجاد شده در نتیجه تأثیر آنزیم بر سوسترا در مدت ۱ دقیقه و بوشله ۱ گرم وزن‌برافته می‌باشد (میکرومول بر گرم در دقیقه).

(Kuzmina \textit{et al.}, 1999 ; Kuzmina\& Skvortsova, 2001 ; Davletova \textit{et al.}, 1986) \(\text{(Davletova \textit{et al.}, 1986 ; Nevalenyy, 1996} \)

برای سنجش سطح فعالیت آنزیم فسفاتاز قلب‌ای تحت اثر میکروالمنت‌ها از محلول ۶۰ میلی مول در لیتر پارا‌تیرنو نیل فسفات بعنوان سوسترا استفاده گردید. محلول فوق تحت اثر آنزیم به فسفات و محلول زرد رنگ پارا‌تیرنو نیل تجزیه می‌گردد. برای رقیق سازی بافت و سوسترا از محلول رنگر (۱۰۹ میلی مول کلرید سدیم، ۱۱۹ میلی مول کلرید پتاسیم، ۱۱۱ میلی مول کلرید کلسیم، ۴۳ میلی مول بی کربنات سدیم) استفاده گردید. سیس بافت رقیق شده به مدت ۱۵ دقیقه با دو دقه به مدت ۵۰۰ دقه در دقيقه سانتیفیور گردد. عمل انکوباسیون لوله‌های آزمایش‌‌گیری میکروالمنت و مخاط رقیق شده که بانی سوسترا اضافه شده به مدت ۶۰ دقیقه در درجه حرارت ۲۵ درجه سانتی‌گراد و قرائت دانسیته‌نوری با استفاده از دستگاه اسکیترونومتر در طول موج ۴۰۵ نانومتر انجام گرفت. واحد سطح فعالیت آنزیم فسفاتاز قلب‌ای براساس مقدار محصول توپیلد شده در نتیجه تأثیر آنزیم بر سوسترا در مدت ۱ دقیقه و بوشله ۱ گرم وزن‌برافته می‌باشد.

(Kuzmina \& Skvortsova, 2001 ; Kuzmina, 1996) \(\text{(میکرومول بر گرم در دقیقه).} \)

آزمایشات با تکرار در هر تیمار انجام و نتایج کسب شده از تأثیر میکروالمنت‌ها در دو عضلات سیم برای سطح فعالیت آنزیم‌ها در اندام‌های مختلف با شاهد مناسب‌گردد. تیمار شاهد دارای شرایطی یکسانی با ساپر تیمارها بوده ولی فاقد میکروالمنت می‌باشد.

جهت تجزیه و تحلیل داده‌ها، از طرح کاملاً تصادفی در قالب فاکتوریل استفاده گردید. آزمایش یک با دو فاکتور، میکروالمنت در شش سطح (راروی، نیکل، کیالت، منگنز، آهن و مس بشکل کلرید) و غلتظت

www.SID.ir
نتیجه
در بررسی تأثیر میکرووالمنت‌های روی، نیکل، کبالت، مکنزی، آهن و مس بر سطح فعالیت آنزیم‌های گوارشی، ابتدا تأثیر میکرووالمنت‌های فوق، به‌شکل کلیرد مورد بررسی و سپس برای یک بردن به میزان تأثیر ترکیبات مختلف یک میکرووالمنت بر سطح فعالیت آنزیم‌های گوارشی در خصوص مس علاوه بر کلرید مس از سولفات، استات و نیترات مس نیز بطور جداگانه استفاده گردید (جدول 1 تا 3).
در جداول شماره 1 تا 3 میانگین‌ها به روش آزمون دانکن در سطح احتمال 5 درصد مقایسه شده و در خصوص 6 میکرووالمنت اول و ترکیبات مس بطور جداگانه تفاوت بین میانگین‌ها نشان داده شده است. در بررسی تأثیر میکرووالمنت‌ها، بر سطح فعالیت کل آنزیم‌های پروتئولیتیک قلیایی (ترپین‌سین، کیموتیوبین و پروتئازهای مختلف) مخاطر روده مشخص گردید که سطح فعالیت آنزیم بجز تحت تأثیر میکرووالمنت آهن، استات مس و نیترات مس در غلظت 1 میلی‌گرم در لیتر، در سایر تیمارها، کمتر از تیمار شاهد (مقدار میکرووالمنت صفر میلی‌گرم در لیتر) می‌باشد. فعالیت آنزیم تحت تأثیر استات مس در غلظت فوق بطور معنی‌داری بیش از تیمار شاهد می‌باشد (p<0.05) (نمونه‌های 1 و 2 و جدول 1). در مخاطر روده، روی، کلرید مس، و استات مس در غلظت 10-4 میلی‌گرم در لیتر، و نیکل در غلظت کبالت و مکنزی در غلظت 1 میلی‌گرم در لیتر، موجب کاهش معنی‌دار فعالیت آنزیم نسبت به تیمار شاهد گردیده‌اند (p<0.05) (جدول 1 و نمونه‌های 1 و 2).
جدول 1: مقایسه میانگین‌های سطح فعالیت کل آنزیم‌های پروتئازهای قلیایی (میکرومول بر گرم در دمای 37 درجه Celsius) در مختال روده بچه نیل ماهی (n=10)

<table>
<thead>
<tr>
<th>میکرومولنت</th>
<th>شاهد</th>
<th>غلظت میکرومولنت</th>
</tr>
</thead>
<tbody>
<tr>
<td>میلی گرم در لیتر</td>
<td>1/20</td>
<td>(ZnCl₂)</td>
</tr>
<tr>
<td>1/29</td>
<td>(NiCl₂)</td>
<td>نیکل</td>
</tr>
<tr>
<td>1/29</td>
<td>(CoCl₂)</td>
<td>کبالت</td>
</tr>
<tr>
<td>1/28</td>
<td>(MnCl₂·2H₂O)</td>
<td>مگنیز</td>
</tr>
<tr>
<td>1/26</td>
<td>(FeCl₂)</td>
<td>آهن</td>
</tr>
<tr>
<td>1/24</td>
<td>(CuCl₂)</td>
<td>مس</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ترکیبات مس</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20</td>
<td>(CuCl₂)</td>
</tr>
<tr>
<td>1/20</td>
<td>(CuSO₄·5H₂O)</td>
</tr>
<tr>
<td>1/20</td>
<td>(CH₃COO)₂Cu·2H₂O</td>
</tr>
<tr>
<td>1/19</td>
<td>Cu(NO₃)₂·3H₂O</td>
</tr>
</tbody>
</table>

*تفاوت بین میانگین‌های که حداکثر دارای یک حرف مشترک از حروف a, b, c, d باشند از نظر آماری معنی‌دار نیستند.

در بررسی تأثیر میکروپروتئازها بر سطح فعالیت آنزیم پروتئاز اسیدی معده (پپسین)، بجز تحت تأثیر میکروپروتئاز روی در غلظت 1/20 میلی گرم در لیتر و نیکل در غلظت 1 میلی گرم در لیتر و نیترات مس در دو غلظت، در سایر تیمارها (سطح فعالیت آنزیم تحت تأثیر استات مس در غلظت 1 میلی گرم در لیتر مساوی با شاهد است) سطح فعالیت آنزیم کمتر از تیمار شاهد می‌باشد. روی در غلظت فوق و نیترات مس در غلظت 1 میلی گرم در لیتر موجب افزایش معنی‌دار فعالیت آنزیم نسبت به تیمار شاهد گردیده‌اند.

(جدول 2 و نمودار 3) (P<0/05)
نمودار ۱: مقایسه میانگین‌های سطح فعالیت کل آنزیم‌های پروتئولیتیک قلیایی در مخاط روده

نمودار ۲: مقایسه میانگین‌های سطح فعالیت کل آنزیم‌های پروتئولیتیک قلیایی در مخاط روده

www.SID.ir
نمودار ۳: مقایسه میانگین‌های سطح فعالیت آنزیم پروتئاز اسیدی (پپسین) در مخاط معده بجه نیل ماهی در مخاط معده، کلرید مس و سولفات مس در دو غلظت و استات مس در غلظت ۱ میلی‌گرم در لیتر موجب کاهش معنی‌دار فعالیت آنزیم پپسین، نسبت به تیمار شاهد گشته‌اند (۵% < P) (جدول ۲ و نمودار ۴).

نمودار ۴: مقایسه میانگین‌های سطح فعالیت آنزیم پروتئاز اسیدی (پپسین) در مخاط معده بجه نیل ماهی
جدول 2: مقایسه میانگین‌های "سطح فعالیت آنزیم پروتئاز اسیدی (بر حسب میکروولول بر گرم در دقیقه)" در مخلوط معده با فیل ماهی (n=5)

<table>
<thead>
<tr>
<th>میکروالمنت</th>
<th>شاهد</th>
<th>غلظت میکروالمنت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 میلی گرم در لیتر</td>
<td>(ZnCl₂)</td>
</tr>
<tr>
<td></td>
<td>2/20</td>
<td>abc ± 0.2/24</td>
</tr>
<tr>
<td></td>
<td>2/22</td>
<td>d ± 0/24</td>
</tr>
<tr>
<td></td>
<td>2/24</td>
<td>cd ± 0/27</td>
</tr>
<tr>
<td></td>
<td>2/26</td>
<td>abc ± 0/20</td>
</tr>
<tr>
<td></td>
<td>2/28</td>
<td>bc ± 0/24</td>
</tr>
</tbody>
</table>

ترکیبات مس

	2/30	ab ± 0/12	(CuCl₂)	2/32	a ± 0/4	کلرید مس
	2/32	a ± 0/4	(CuSO₄·5H₂O)	2/34	a±± ± 0/6	سولفات مس
	2/34	a±± ± 0/6	(CH₃COO)₂Cu·H₂O	2/36	a±± ± 0/17	استات‌های مس
	2/36	a±± ± 0/17	(Cu(NO₃)₂·3H₂O)	2/38	b±± ± 0/29	نیترات مس

*تفاوت بین میانگین‌ها که حداقل دارای یک حرف مشترک از حروف a, b, c و d باشند از نظر آماری ممکن نیست.

در بررسی تأثیر میکروالمنت‌ها بر سطح فعالیت آنزیم فسفاتاز قلیایی در ضرائم پایه‌المعده، به‌جز تحت تأثیر نیترات مس در دو غلظت در سایر نیترات سطح فعالیت آنزیم، کمتر از تیمار شاهد اندازه‌گیری گردیده که افزایش فعالیت آنزیم تحت تأثیر نیترات مس در غلظت 10×10⁻⁴ میلی‌گرم در لیتر نسبت به تیمار شاهد معنی‌دارمان‌داده‌است (جدول 3 و نمودارهای 5 و 6).

میکروالمنت‌های روی، نیکل، کیالت، منگنز، آهن و کلرید مس در دو غلظت سولفات و سولفات مس در غلظت 1 میلی‌گرم در لیتر موجب کاهش معنی‌داری فعالیت آنزیم فسفاتاز قلیایی در ضرائم پایه‌المعده، نسبت به تیمار شاهد گردیده‌اند (جدول 3 و نمودارهای 5 و 6).
جدول ۳: مقایسه میانگین‌های سطح تغییرات آنزیم فسفاتاز قلیایی (میکرومول بر گرم در دقیقه) در ضمان بالایی بجع نیل ماهی (n=۵)

<table>
<thead>
<tr>
<th>میکرومالنت</th>
<th>شاهد</th>
<th>روانگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>میلی‌گرم در لیتر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۵۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ترکیبات مس</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(CuCl۲)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CuSO۴.۵H۲O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH۳COO)۲Cu.۲H۲O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu(NO۳)۲.۳H۲O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* تفاوت بین میانگین‌ها به حداکثر دارای یک حرف مشترک از حروف a, b, c, d باشد از نظر آماری

معنی دار نیستند.

نمودار ۵: مقیاس میانگین‌های سطح تغییرات آنزیم فسفاتاز قلیایی در ضمان بالایی بجع نیل ماهی

www.SID.ir
نمودار ۶: مقایسه میانگین‌های سطح فعالیت آنزیم فسفاتاز کلیایی در ضامن‌های بادم‌البلوط به جهت ماه‌ها

بحث
در بررسی تأثیر میکروالمبنتها بر سطح فعالیت آنزیم‌های پروتئولیتیک (اسیدی و قلیایی) و آنزیم‌های فسفاتاز کلیایی در اندام‌های معده، روده و ضامن‌های بادم‌البلوط به صورت ماهی، سطح فعالیت آنزیم‌های فوسفاتاز کلیایی تحت تأثیر میکروالمبنتها در اغلب تیمارها کمتر از تیمار شاهد اندام‌های گردید. همگونی گروه که در نتایج ذکر گردید، افزایش کاهش سطح فعالیت آنزیم‌ها تحت تأثیر میکروالمبنتها در بخش تیمارها دارای اختلاف معنی‌داری با تیمار شاهد می‌باشد (P<0.05).

در تحقیق حاضر برای بررسی به تأثیر ترکیبات مختلف از یک میکروالمبنت در خصوص مس علوفه بر کلرید مس، از سولفاته، استات و نیترات مس نیز استفاده گردید. هدف پی‌بردن به این موضوع بود که کدام میکروالمبنت، یا میکروالمبنت‌ها و دارای کم‌غلظتی و در خصوص ترکیبات مس کدام ترکیب‌ها ترکیبات به میزان بیشتری موجب تغییر سطح فعالیت آنزیم در اندام‌های مختلف می‌گردد.

مس به‌شكل سولفاته، استات و اکسی‌کلرید و غیره نسبت به وسیعی بعنوان علف‌کش و در ترکیب حشره‌گر هم‌کارش مورد استفاده قرار گرفته و در نتیجه از طریق زه‌گشایی از مزارع کشاورزی و از طریق کانال‌ها به آبنیای ساحلی می‌رسد (Perumal & Subramanian, 1985)

و همکاران در سال ۱۹۹۵ در بررسی تأثیر دو میکروالمبنت ضروری شامل مس و روی بر فعالیت Län Anxiety فسفاتاز کلیایی کبد ماهی سیم قرمز دریایی Chrysophyys major ده ماهه در آبی‌ند که فعالیت این
آنزیم در غلظت 100 میکروگرم در لیتر از میکروالمند روی، افرازیش و در زمان رسیدن غلظت این عنصر به 500 میکروگرم در لیتر، فعالیتِ این آنزیم تغییری نمی‌کند. در مقادیر بیش از 500 میکروگرم در لیتر از میکروالمند روی، فعالیت آنزیم کاهش می‌یابد. میکروالمند مس در غلظت 200 میکروگرم در لیتر موجب افرازیش غلظت آنزیم فسفاتاز قلیایی و در غلظت 100 میکروگرم در لیتر بطور قابل توجهی موجب کاهش فعالیت آنزیم می‌گردد. همچنین در تحقیق فوکیدگیری ماهی سیم فرمز در دوازدهمی در مرحله‌ی گردیده است.

همه‌پس از تفکری، دانشجوی حساستی بالایی نسبت به میکروالمند‌های ذکر شده می‌باشد.

در سال 1985، در برسی تأثیر غلظت‌های مختلف مس بر درصد مز و Subramanian و Perumal میتر یا میگر (Alpheus malabaricus malabaricus) دریافتند که لاروها در غلظت 0.5 میلی‌گرم در لیتر از مس دارای کمترین درصد تلفات از پا بودند.

در سال 1993، قید نموده که افزودن میکروالمند‌های مس، روز، منگنز و آهن به تنهای Warobev و یا به ترکیبی با آب مورد استفاده برای تکثیف و پروش کیور ماهیان جنین، موجب افرازیش درصد لقاح، درصد تفکیک تخم‌ها، قابلیت بقاء لاروها و وزن و طول لاروها پس از تفکیک در مقایسه با تیمار شاهد (مقدار میکروالمند صفر میلی‌گرم در لیتر) می‌گردد. در تحقیق فوق عمل اثرات در معاین‌های مس و آهن بعد از دو دقیقه در غلظت‌های 0.5 تا 5 میلی‌گرم در لیتر (بسته به نوع میکروالمند) انجام گرفته است.

برخی محققین تأثیر بعضی فلزات سنگین غیرضروری را بر فعالیت تعدادی از آنزیم‌ها مورد بررسی قرار داده‌اند. برای مثال در برسی تأثیر فلز سنگین کادمیم با غلظت 5 میلی‌گرم در لیتر بر سطح فعالیت آنزیم‌های پروتئازیک موجودات مورد تغذیه برفی ماهیان استخوانی، کادمیم موجب کاهش سطح فعالیت آنزیم در اغلب تیمارها نسبت به تیمار شاهد بوده است (Kuzmina & Skvortsova).

(Kuzmina et al., 1999 ; 2001)

در برسی تأثیر کادمیم در غلظت 0.5 تا 1 میلی‌گرم در لیتر، بر فعالیت آنزیم فسفاتاز قلیایی در اندام کادمیم موجب کاهش سطح فعالیت این آنزیم گردیده است Scylla serata هیپاتوبانک‌رس خرچنگ گونه (Dnavale & Malsurkar, 1986)

و همکاران در سال 1995 در برسی تأثیر کادمیم بر جنین و لاروها ماهی کبور (Witeska

www.SID.ir
در بیان‌کننده، که به فلطات ۰۰۰۱/۰۵۰۰ فسماً در میلیون از کادمیم موجب کاهش آب کشیدگی تخمها، طولانی‌تر شدن زمان تفراخی تخمها و کاهش بقای جنینها و از لحاظی ندارند. در سال ۱۹۹۲، در بررسی تأثیر کمپلکس برخی فنرات سنگین شامل مس مغزی می‌باشد، که موجب کاهش هر این گونه نسبت به مقدار کمی از آنها حساسیت بالایی دارد.

در توجه افزایش یا کاهش سطح فعالیت آنزیم‌های پروتئولیتیک و فسفاتاز فلایایی تحت تأثیر میکروالمنتها در اندام‌های روده، ممکن است بپدید بوده که قبل ماهیان می‌توان اظهار داشته، برخی آنزیم‌ها برای انجام فعالیت‌های کاتالیزوری به ترکیبات فعال کننده غیر پروتئینی (کوفاکتورهای) نیازمندند که ممکن است این کوفاکتورها برخی از بیان‌های فلایای باشنده (۱۹۹۹، Gyliarov) لذا می‌توان اظهار داشت، میکروالمنتها در برخی تیمارها نقش کوفاکتوری در داشته و با تأثیر بر موضع فعال آنزیم موجب افزایش فعالیت آنزیم‌گشته‌اند. در خصوص کاهش سطح فعالیت آنزیم تحت تأثیر میکروالمنتها، در واقع میکروالمنتها نقش بازدارنده بر فعالیت آنزیم داشته و این بازدارندگی می‌تواند ناشی از یاگرزینی یک یون فلزی با یون فلزی دیگر با همان بار الکتریکی و با اندازه مشابه در مثال آنزیم‌ها باشد (Lan et al., ۱۹۹۵). همچنین کاهش فعالیت آنزیم تحت تأثیر فلز سنگین ناشی از اتصال فلز با بخش پروتئینی آنزیم (Dnavale & Masurekar, ۱۹۸۶). می‌باشد.

در مجموع می‌توان اظهار داشت، با توجه به پایینه در تحقیق حاضر در برخی تیمارها تحت تأثیر میکروالمنتها، سطح فعالیت آنزیم‌ها بین از تیمار شاهد می‌باشد. در زمان افزودن میکروالمنتها اب مورد استفاده جهت پرورش بچه ماهی، می‌توان از میکروالمنتها ی که موجب افزایش سطح فعالیت آنزیم‌ها گشته‌اند استفاده نمود. این کار فقط از جنبه تأثیر بر سطح فعالیت آنزیم‌های مورد بررسی توصیه و از جنبه‌های دیگر بايستگی تحقیقات لازم بعمل آید.

تشکر و قدردانی
از مؤسسه تحقیقات شیلات ایران و انتیتیو تحصیلات بین‌المللی ماهیان خاویاری به جهت تامین اعتبارات مالی طرح، از پرستش محترم بخش فیزیولوژی و بیوشیمی انتیتیو، از ریاست محترم دانشگاه

www.SID.ir

۱۲۴
Akopovna, N., 1997. Korma i kormlenie molodiy acetrovikh ryb v industrialnoy akvakulture. Izdatelstwa Azovskyy Nauchno-Institut Khazyaiictva. 64 P.

Nevalenny, A.N., 1996. Issledovanie protecessa pishevarena i ryb. Izdatelstva Astrakhanskii Gosodarstvennii Tekhnicheskii Universitet. 20 P.

