بررسی رابطه آلودگی های نفتی با تراکم صدف موروارید ساز (Pinctada fucata) در خلیج فارس

فرشید کمالزاده (1)، عباس اسماعیلی ساری (2)، سید محمد رضا فاطمی (3)
غلامحسین وثوقی (4) و شهلا جمیلی (5)

1- گروه بیولوژی دانشگاه آزاد اسلامی واحد چمران، تهران
2- واحدهای علم و تحقیقات دانشگاه آزاد اسلامی، یزد
3- دانشگاه تهران، تهران
4- موسسه تحقیقات شرکت انرژی نفتی ایران، تهران
5- تاريخ دریافت: آبان 1385، تاريخ پذیرش: اردیبهشت 1386

چکیده
صدف موروارید ساز محار (Pinctada fucata) به عنوان یکی از آبزیان بسیاری از آبزیان خلیج فارس بسیار محل اکتشاف و محبوبیت می‌گردد. هدف از این بررسی، تأثیر آلودگی‌های نفتی در تراکم صدف موروارید ساز محار، از منظر آلودگی‌های نفتی در مناطق دریایی بود. در این مطالعه، تعدادی از تراکم‌های صدف در مناطق مختلف در خلیج فارس بررسی و تحقیق شدند. نتایج نشان داد که تراکم صدف موروارید ساز محار در مناطق آلودگی نفتی بالا شده و افزایشی نسبت به مناطق آلودگی نفتی کم‌تر دارد. این نتایج نشان می‌دهد که آلودگی نفتی باعث افزایش تراکم صدف موروارید ساز محار خلیج فارس می‌شود.
مقامه

خليج فارس یکی از مناطق مهم از نظر استخراج نفت، سوخت و مورور نفتکش‌ها و فعالیت‌های صنعتی است. سالانه به آن ۱۵۰ میلیون تن نفت و سوخت انتقال داده می‌شود. بهره‌برداری از فلات قاره، آب تواژن کشتی‌ها و غیره وارد خلیج فارس می‌گردد. به آن ۵۷ درصد آلودگی نفتی خلیج فارس مربوط به آب تواژن کشتی‌ها و غیره وارد خلیج فارس می‌گردد. به آن ۳۲ درصد مربوط به نفت طبیعی و بهره‌برداری از نفت فلات قاره و ۱۱ درصد بقیه به سمت ورود فاضلاب‌ها و آب‌هایی رودخانه‌ها دائمی و موطنی می‌باشد.

(قائمی، ۱۳۷۵).

یکی از منابع مهم اقتصادی خلیج فارس، صدف‌های مورور می‌باشد. با اینکه توسعه تولید مورور مورد در دهه ۱۳۴۰ و از طرفی کشف و استخراج ذخایر عظیم نفتی در دهه ۱۳۴۰ کاهش صنعت مورد و استحکام تولید مورور سیاه داشته است، اما نیاز اقتصادی صنایع مورور و همچنین آنگروان آبی آن موجود با استحیمی ضرورت بررسی هیدروکربن‌های نفتی در زیست‌گاه‌های اصلی این صدف را نشان می‌دهد.

امینی رنجی و جميلی در سال ۱۳۷۵، میزان هیدروکربن‌های نفتی را در آب رسو و صدف مورور ساز محار در شمال شرقی خلیج فارس اندوزه‌گیری کردند. در بررسی‌هایی که در زمینه نفت حادثه‌ی قاهاری به جعل اکول‌و جنگ‌های نقطه خلیج فارس مورد مطالعه قرار گرفت و میزان تراکم صدف‌های زنده و مرده در ایستگاه‌های مختلف اندازه‌گیری گردید.

(احمدی، ۱۳۶۳).

در دانشگاه شهید قروز انتشارات آلودگی نفتی بر تعداد و فراوانی نرم‌تنان خلیج فارس مورد مطالعه قرار گرفت (سواری، ۱۳۶۹).

و همکاران در سال ۱۹۹۳ میزان هیدروکربن‌های نفتی و فلزات کم‌یاب در رسوبات ساحلی Fowler خلیج فارس و موجودات زنده از جمله صدف مورور ساز (Pinctada margaritifera) را قابل و بعد از جنگ عراق با کویت در سال ۱۹۹۱ مقایسه کردند.

در سال ۱۹۹۵ تراکم نرم‌تنان در سواحل آلوده به مواد نفتی و غیر آلوده در Debrodt و Nagelkerken کوراکوو (Curacoa) را مقایسه کردند.

و همکاران در سال ۱۹۹۵ غلافت‌های هیدروکربن‌های نفتی را در بافت نرم اویستر Gold-Bouchot اندوزه‌گیری کردند و رابطه بین وزن و طول اویسترها را با میزان هیدروکربن‌ها بدست آوردند.

www.SID.ir

۱۲۸
مواد و روش کار

تعدادی از مناطق که هم اکنون از زیستگاه‌های مهم صدف مواری‌ساز مجاز در شمال خلیج فارس محسوب می‌شوند (زیستگاه‌های کنونی) عناوین جدیده‌ای در آن لذت می‌بخشند. البته تعدادی از مناطق که قبلاً زیستگاه صدف بوده و اکنون کاملاً نابود شده‌اند (زیستگاه‌های قبیلی) که اکنون بعنوان منابع نمودریکی در انتخاب شدن (نکات 1).

موقعیت جغرافیایی و هر ایستگاه عموماً توسط دستگاه GPS انتخاب گیرد. در هر ایستگاه نمونه‌برداری از رسوبات و صدف‌ها (سه نقطه متفاوت از هر ایستگاه) با سه تکرار انجام گرفت. لازم به ذکر است که در ایستگاه‌های مرمری بیشتر به زیستگاه‌های قبیلی فقط نمونه‌های رسوب جمع‌آوری شدند. نمونه‌برداری از صدف‌ها در دو فصل تابستان (نمره‌های 1380 و 1386) و زمستان (نمره‌های 1383) صورت گرفت. نمونه‌های صدف را براساس چهار گروه طولی مختلف یعنی کوچکتر از 60 میلی‌متر، 60 تا 80 میلی‌متر، 80 تا 100 میلی‌متر و بزرگتر از 100 میلی‌متر تقسیم‌بندی کردند و سپس بافت‌های نرم از بوسته آن‌ها جدا گردیدند. جهت حذف رطوبت نمونه‌های رسوب و صدف از دستگاه فریزر درایر (Freeze dryer) استفاده شد. در مرحله بعدی، نمونه‌های منجمد شده توسط آسیاب یا به وسیله هاون دستی کمالاً بود و یک‌واخت گردید و سپس برای انجام اندوزه‌گیری کل هیدروکربن‌های نفتی (T.P.H) در رسوبات و بافت‌های نرم صدف‌ها، برترب حدود 20 و 5 گرم از نمونه توزین شد (1999, MOOPAM). ضمناً بر روی هر نمونه سه بار اندازه‌گیری (سه تکرار) صورت گرفت.
جهت استخراج قرار داده شدن: 

1. نمونه‌های بطور شده درون تیمول‌های سلول‌زی مخصوص محله ریخته شدند و در ستوهای دستگاه سوکسل جهت استخراج قرار گرفتند. عمل استخراج توسط مخلوطی از حل‌های هگزان و دی‌کلروتان به نسبت 50:50 و به مدت 16 ساعت انجام گردید.

2. عصاره استخراجی به وسیله دستگاه روتاری (تبخیر کننده) تا حجم 4 میلی لیتر تغییر شد.

3. در مرحله بعدی جهت تصفیه (Clean up) عصاره استخراجی، نمونه‌ها از ستوهای بر شده از سولفات سدیم خشک و اکسید آلومینیوم عبور داده شدند.

4. میزان جذب در دو طول موج مختلف و هم‌زمان یعنی طول موج برابری خنثی، UVF، 260 نانومتر و طول موج نشری، 360 نانومتر توسط دستگاه تایکوتروفوتومتر (اندازه‌گیری گردید.

5. در نهایت مقدار غلظت TPH در رسوبات از روی منحنی استاندارد نفت خام رابعی (با استفاده از استاندارد کراپسین) به دست آمد (1999).

استخراج هیدروکریستالیت‌های نفتی در نمونه‌های بافت‌های نرم صدف‌ها بطور زیر عمل شد:

1. نمونه‌های بدور شده را درون تیمول‌های سلول‌زی ریخته و در ستوهای دستگاه سوکسل جهت استخراج قرار داده شدند. عمل استخراج توسط 250 میلی لیتر متانول و به مدت 16 ساعت انجام گردید.

2. به منظور صابونی شدن لبیده‌ها، پتاس اضافه گردید و مدت 2 ساعت عمل (KOH) ادامه یافت.

3. عصاره نسبت به ذکنیور (فیش جدا کننده) ابتدا با 90 میلی لیتر هگزان و سپس دومبار با 50 میلی لیتر هگزان استخراج گردید.

4. سه قسمت استخراج شده به هم مخلوط و به آن سولفات سدیم خشک جهت جذب رطوبت احتمالی اضافه شد. سپس توسط دستگاه روتاری تا حجم 4 میلی لیتر تغییر گردید.

5. جهت تصفیه عصاره استخراجی، نمونه‌ها از ستوهای بر شده از سولفات سدیم خشک و اکسید آلومینیوم عبور داده شدند.
نتیج
نتیجه‌گیری میزان‌هیدروکربن‌های نفتی در رسوبات زیستگاه‌های کنونی و زیستگاه‌های قبیلی در نمونه‌هایی از میزان‌های ۷ کلنریک نرم‌مایه و در شرایط H و K را بررسی کردند. در نمونه‌هایی که از نظر میانگین (Duncan) و دانکن (ANOVA) نشان می‌دهد که از نظر میانگین هیدروکربن‌های نفتی در رسوبات زیستگاه‌های کنونی، فقط ایستگاه‌های چهل و دردور با هم یکسان و بقیه با هم اختلاف معنی‌دار دارند.
در زیستگاه‌های قبیلی، میانگین هیدروکربن‌های نفتی در رسوبات ایستگاه‌های گشته و مغوفه و همچنین ایستگاه‌های ملو و بسته با هم یکسان و بدون اختلاف معنی‌دار هستند.

نتایج آزمون تابستان است.
نمودار 1: مقایسه میانگین های هیدروکربن‌های نفتی در رسوبات زیستگاه‌های کنونی و زیستگاه‌های قبیل

نمودار 2: مقایسه میانگین های هیدروکربن‌های نفتی در باندهای نرم صدف‌ها در زیستگاه‌های کنونی

(تیر ماه 1 و بهمن ماه 2)
نمودار 3 مقایسه میانگین‌های هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها از نظر طولی در دو ماه تیر و بهمن را نشان می‌دهد. همانطور که مشاهده می‌شود در گروه‌های طولی کوچکتر از 40 میلی‌متر، 60 تا 70 میلی‌متر، 70 تا 80 میلی‌متر بترتیب با افزایش طول صدف‌ها میزان هیدروکربن‌های نفتی افزایش ولی در گروه طولی بزرگتر از 80 میلی‌متر کاهش می‌یابد. تجزیه و اریان برای مقایسه میانگین‌های هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها از نظر طولی در زیستگاه‌های کنونی نشان می‌دهد که این گروه طولی با هم اختلاف معنی‌دار دارد.

نمودار 4 ارتباط بین میزان هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها و رسوبات زیستگاه‌های کنونی در نمونه‌برداری تیم‌های را نشان می‌دهد. با افزایش هیدروکربن‌ها در رسوبات، میزان آن در بافت‌های نرم صدف‌ها نیز افزایش می‌یابد.

نمودار 5 ارتباط بین تراکم صدف‌ها (براساس گزارش مرکز تحقیقات شیلاتی نرم تنان - بندر لنگه) و
میزان هیدروکربن‌های فنی در رسوبات زیستگاه‌های کنونی را نشان می‌دهد. با ازدیده‌نگاری هیدروکربن‌های فنی، تراکم صدف‌ها کاهش یافته است (۹۲٪). نمودارهای ۶ و ۷ بیان‌کننده ارتباط بین تراکم صدف‌ها و هیدروکربن‌های فنی در بافت‌های نرم صدف‌ها را در ماه‌های تیر و بهمن نشان می‌دهند. با افزایش هیدروکربن‌های فنی در بافت‌ها از تراکم صدف‌ها کاسته می‌شود (در تیر ماه %۹۸ و در بهمن ماه %۹۷). آزمون همبستگی (Correlation) برای ارتباط بین میزان هیدروکربن‌های فنی در بافت‌های نرم صدف‌ها (نمونه‌برداری تیر ماه) و رسوبات زیستگاه‌های کنونی نشان می‌دهد که بین دو کمیت ارتباط مستقیم وجود دارد (۹۹٪) و نشان‌دهنده جهت میزان هیدروکربن‌ها در رسوبات بيشتر باشد. مقدار آن در بافت‌های نرم صدف‌ها نیز افزایش می‌یابد.

آزمون ۴ برای مقایسه هیدروکربن‌های فنی در رسوبات زیستگاه‌های کنونی و زیستگاه‌های قبیل نشان می‌دهد که میانگین‌ها با هم اختلاف معنی‌دار داشته و این میزان در رسوبات زیستگاه‌های کنونی بیشتر است.

نمودار ۴: ارتباط بین میزان هیدروکربن‌های فنی در بافت‌های نرم صدف‌ها و رسوبات زیستگاه‌های کنونی (تیر ماه %۹۸)
نمودار ۵: ارتباط بین تراکم صدف‌ها و میزان هیدروکربن‌های نفتی در رسوایی‌های سیستم‌های کانوی

نمودار ۶: ارتباط بین تراکم صدف‌ها و میزان هیدروکربن‌های نفتی در باندهای نرم صدف‌ها

(تیر ماه ۱۳۸۰)
نمودار 7: ارتباط بین تراکم صدف‌ها و میزان هیدروکرین‌های نفتی در بافت‌های نرم صدف‌ها

بحث

میزان هیدروکرین‌های نفتی در رسوبات و بافت‌های نرم صدف‌های ایستگاه‌های لاوان که مجاور با پایان‌های نفتی بیدر از دو ایستگاه دیگر (نخیلو و هندورابی) است. به دلیل تردد نفتکش‌ها در نزدیکی ایستگاه هندورابی، میزان هیدروکرین‌های نفتی در رسوبات آن بیشتر از ایستگاه نخیلو می‌باشد. عمل بیشتر بودن میزان هیدروکرین‌های نفتی در بافت‌های نرم ۱۳۸۵ به بهم‌راه (زمستان) نسبت به تیرمای (تاپستان) احتمالاً ناشی از موارد زیر است:

۱- در فصل تابستان به علت دچاری حرارت بالا و تبخیر زیاد، مقدار هیدروکرین‌های نفتی در آب کاهش می‌یابد و چون صدف‌ها فیلتر کننده آب هستند، به دنبال آن میزان تجمع مواد نفتی در بافت‌های نرم صدف‌ها نیز کاهش می‌یابد.

۲- با توجه به اینکه اوج تخمرزی صدف‌های موثرتر ساز مخازن ضرر در خرداد و مرداد ماه است، میزان هیدروکرین‌های نفتی در این ماه‌ها از طریق گام‌ها، به واسطه تخمرزی تر در ماه نسبت به بهم‌های

www.SID.ir
نتایج تحقیق امینی رنجبر و جمالی در سال ۱۳۷۵ در رابطه با اندازه‌گیری میزان هیدروکربن‌های نفتی در آب، رسوب و صدف در شمال شرقی خلیج فارس، نشان داد که در منطقه شمالی جزیره لاون، به دلیل کم بودن جریان‌های آبی، هیدروکربن‌ها تجمیع بیشتری نسبت به شمال شرقی لاون، منطقه هندورابی و نخل‌ویاپانه‌اند و در منطقه نخل‌ویاپانه کمتر از منطقه نخلویاپانه کمتر است. این انتباشت و میزان صدف‌های موره‌ای بررسی کنی است. در تحقیق حاضر نیز نتیجه گرفته شد که آلودگی‌های نفتی در این منطقه نخلویاپانه از مناطق دیگر کمتر است.

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت حتی جاده‌های نوروز نشان داد که میزان تراکم صدف‌های زندیه و مرده در این منطقه نیز مطلوع، با هم تفاوت‌های زیادی دارند به این معنی که در نتایج آنلوده، تعداد صدف‌های زندیه به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به
دست آمده است، بطوری که با افزایش میزان آلودگی نفتی در بافت‌های نرم صدها و رسوپات از تراکم صدها مال‌بیان ساز مخرب کاسته می‌شود.

اولین بررسی دانشگاه شهید جهان افشار از زمینه اثرات آلودگی نفتی بر آبزیان خلیج فارس نشان می‌دهد که نرم‌تانان خلیج ایران به‌طور کلی و هر چه از آلودگی دورتر شود، بیشتر تعداد و فراوانی آنها افزوده می‌گردد (سواری، 1362). 

نتایج و همکاران در سال 1993 در مورد اندام‌های غلافی‌های هیدروکرتین های نفتی در دو کفه‌ها از جمله صدف ماره‌بید ساز (Pinictada margaritifera) در مناطق مختلف خلیج فارس نشان می‌دهد که هیدروکرتین‌های نفتی در بدن صدها بیشتر از رسوپات تجمع می‌یابد که با نتایج تحقیق حاضر یکسان می‌باشد ولی با ازدحام میزان هیدروکرتین‌ها در بدن صدها، مقدار آن در رسوپات افزایش نمی‌آید، نتایج حاضر می‌باشد.

در سال 1995 اجتماعات نرم‌تان، سواحل سنگی آلوده به مواد نفتی و Debrov و Nagelkerken گیرالوده در کوراکهو (Curacao) را در مقابل استرس امواج قرار داشتند مقایسه کردند. تراکم نرم‌تانان و همچنین ترکیب گونه‌ها در نواحی آلوده به نفت خیلی کمتر از نواحی غیرآلوده بود. فراوانی نرم‌تانان در نواحی آلوده فقط 0.2 درصد مناطق غیرآلوده و رابطه لگاریتمی - خطی با درصد بوشنه نفت داشت.

نرم‌تانان دو کفه‌ها و مقیم توئانی در منابع هیدروکرتین‌های نفتی را ندارند. در نتیجه با آسانی این ترکیبات را در بافت‌های شناسی تجمع می‌دهند. ولی وقتی که منبع تمام از بین می‌روند، دفع مواد نفتی می‌تواند بین جنس روز تا چند ماه صورت گیرد. برای مثال به دنبال نشت نفت در آب‌های کم عمق نزدیک ساحل در سال‌های اولیه از سیستم جمجمه به شکوه در عمق 0 تا 3 متری، یک و چهار هفته بعد از حادثه نمونه‌برداری شدند و ترکیبات آرومیک‌های کند حلقه‌ای (PAH) مورد نظر در طی این سه هفته به میزان (Michel & Henry, 1994)

44 تا 98 درصد کاهش یافتند (1994).

هیدروکرتین‌های سمی از طریق وارد شدن به لایه چربی که قسمت داخلی غشاء سلاولی را تشکیل می‌دهد انتشار را اعمال می‌کنند. در نتیجه غشاها از بین می‌روند و کنترل تبادل مواد بین داخل و خارج سلول به طور کامل از بین می‌روید (Nelson-Smith، 1972).

در سال 1991 صدها در کفه‌های سیاه (Chromytilus meridioalis) را برای مدت زمان Galina
کوتاه کمتر از یک هفته و مدت زمان طولانی حدود سه ماه در شرایط آزمایشگاهی در معرض نفت خام قرار داد. برای این منظور، صدها در هر دو آزمایش در الک هضم شدن و توسط اثر استخراج مواد نفتی صورت گرفت. سپس از میان ستون‌های سیلیکا-آلومینا عبور داده شدن و در نهایت توسط آنالیز UV در مکان میزان H2O میزان هیدروکربن‌های نفتی به دست آمد. نتایج نشان داد که هیدروکربن‌های نفتی به سه‌گونه توازن در بافت‌های این مجموعه تجمع بی‌پی می‌کنند. در زیستگاه‌های کنونی این صدف، آلوگی های نفتی باعث کاهش تراکم آن شده است و لی به نظر می‌رسد ناپدید صدها در مناطق متنوع ماهوگون، گشه و مغوبه که قبل از زیستگاه‌های آنها محسوب می‌شود، ارتباط با آلوگی‌های نفتی مدار. زیرا مقدار هیدروکربن‌های نفتی در رسوبات این مناطق کمتر از رسوبات زیستگاه‌های کنونی (دردور، هداب، چیل، نخیلو و هندورابی) است. به عبارت دیگر به میزان کمتری تحت تأثیر آلوگی‌های نفتی قرار دارند. بنابراین عوامل دیگری مانند موجودات مراحم و حفار مصرف شدن بعضی از زیستگاه‌ها در زیرگل و بالای صید بی‌رو، شکارچیان، کمیابی مواد غذایی تغییر شرایط بی‌پی و شیمیایی دریا و غیره ممکن است باعث ناپدید شده نشده باشد.

تشریح و قدردانی
از جنبه آقای مهندس دخوی (ریاست محتوم وقت مرکز تحقیقات شیلاتی نرم‌تنان - بندر لنگه)، مهندس رامش (معاون مرکز)، سرکار خانم دکتر بورعابدی (مدیریت محتوم آزمایشگاه‌های مرکز تحقیقات زیست‌محیطی پرپیشن) و سرکار خانم هنگامه اکبرنژاد (کارشناس آزمایشگاه) به دلیل همکاری و راهنمایی‌های ارزش‌ده تشریح و سیاسگزاری می‌گردد.

منابع
احمدی، م.ر.، 1۳۸۳. مطالعات مقدماتی بتن‌گیا بر روی مناطق آلوگه شده حوضه چاه‌های نفتی نوروز و مقابله آن با دیگر مناطق. اولین کنفرانس بین‌المللی بررسی علمی اثرات نفت در خلیج فارس، دانشگاه تهران. ۱۵۰ صفحه.
امینی رنجبر، غ. و جمیلی، ش.، ۱۳۷۵. بررسی کیفیت هیدروکربن‌های نفتی در آب، رسوب و

www.SID.ir


Manual of Oceanographic and Pollutant Analysis Methods (MOOPAM), 1999. ROPME. Kuwait. 519 P.

