بررسی رابطه آلودگی های نقیتی با تراکم صدف مروارید ساز (Pinctada fucata) در خلیج فارس

شبنم جمشیدی (1) عباس اسماعیلی ساری (2) سید محمد رضا فاطمی (3) غلامحسین وثوقی (4) و شهلا جمیلی (5)

1- گروه بیولوژی دانشگاه آزاد اسلامی واحد چمران، چمران صندوق پستی: 74135/355 گروه بیولوژی دانشگاه آزاد اسلامی واحد چمران، چمران صندوق پستی: 74135/355
2- و 3- انجمن علوم و تحقیقات دانشگاه آزاد اسلامی، چمران صندوق پستی: 74135-18153-18153-18153
4- دانشکده دامپزشکی دانشگاه تهران، تهران صندوق پستی: 6465-6465
5- موسسه تحقیقات پیشگیری از بیماری‌ها تهران، صندوق پستی: 14355-14355-14355
تاریخ دریافت: آبان 1386 تاریخ پذیرش: اردیبهشت 1387

چکیده
صفد مروارید ساز مانند Pinctada fucata به عنوان تولید‌کننده مواد آلوده محسوب می‌گردد. هدف از این بررسی کاهش آلودگی تراکم صدف در خلیج فارس و پیشگیری از افزایش آلودگی خلیج فارس می‌باشد. پروتکل های غیر تیم‌های و گونه‌ای به منظور بهترین خلاصه‌گیری و بهبود جهت بهبود آلودگی تراکم صدف در خلیج فارس استفاده می‌شود.

یافته‌ها
پژوهش که در سالهای 1350 تا 1385 که تبیین گردیده که در این زمان، آلودگی تراکم صدف در خلیج فارس باعث افزایش آلودگی خلیج فارس شده است.

نتایج کلیدی
همسر خلیج فارس Pinctada fucata، صدف مروارید ساز مانند Pinctada fucata، خلیج فارس Pinctada fucata،
مقهه

خلاص فارس یکی از مناطق مهم از نظر استخراج نفت، غنی از طبیعی و بهره‌برداری از فلات قاره، آب توآزن کشتی‌ها و غیره وارد خلیج فارس می‌گردد. بخش از ۲۷ درصد آلودگی نفت خلیج فارس مربوط به آب توآزن کشتی‌ها و شستشوی آنها، بخش از ۳۲ درصد مربوط به نفت طبیعی و بهره‌برداری از نفت فلات قاره و ۱۱ درصد بقیه به علت ورود فاضلاب‌ها و آب‌های رودخانه‌ها دائمی و موتی می‌باشد.

(قائمی، ۱۳۷۵).

یکی از منابع مهم اقتصادی خلیج فارس، صدف‌های مورودی ساز می‌باشد. با اینکه توسه تولید مورود مرجعی از دهه ۱۹۳۰ و از طریق کشف و استخراج ذخایر عمیق نفت در دهه ۱۹۴۰ کاهش صنعت صيد و استحصال مورودی طبیعی را به دنبال داشته است، اما نیاز اقتصادی صیادان مورود و همچنین انقراض این موجود با اهمیت، ضرورت بروز هیدروکربن‌های نفتی در زیستگاه‌های اصلی این صدف را نشان می‌دهد.

امینی رنجی و جمیلی در سال ۱۳۷۵، میزان هیدروکربن‌های نفتی را در آب، رسوب و صدف مورود ساز ماحار در شمال شرقی خلیج فارس اندوزه‌گیری کردند.

در بررسی‌هایی که در زمینه نفت حادثه چاه‌های نوروز بعمل آمد، چندین نقطه خلیج فارس مورد مطالعه قرار گرفت و میزان تراکم صدف‌های زنده و مرده در ایستگاه‌های مختلف اندوزه‌گیری گردید.

(احمدی، ۱۳۶۳).

در دانشگاه شهید چمران اهواز نیز اثرات آلودگی نفتی بر تعداد و فراوانی نرم‌تنان خلیج فارس مورد مطالعه قرار گرفت (سواری، ۱۳۶۴).

و همکاران در سال ۱۹۹۳ میزان هیدروکربن‌های نفتی و فلزات کمبود در رسوبات ساحلی Fowler خلیج فارس و موارد زنده از جمله صدف مورودی ساز (Pinicelda margaritifera) را قابل و بعد از جنگ عراق با کویت در سال ۱۹۹۱، مقایسه کردند.

در سال ۱۹۹۵ تراکم نرم‌تنان در سواحل آلوده به مواد نفتی و غیر آب‌هده در Debroet و Nagelkerken کوراکو (Curacoa) را مقایسه کردند.

و همکاران در سال ۱۹۹۵ غلظت هیدروکربن‌های نفتی را در بافت نرم اویستر Gold-Bouchot اندازه‌گیری کردند و رابطه بین وزن و طول اویسترها را با میزان هیدروکربن‌ها بست پورودند.
مواد و روش کار

تعدادی از مناطق که هم اکنون از زیستگاه‌های مهم صدف مروری ساز می‌دارند در شمال خلیج فارس ومحسوب می‌شوند. (زیستگاه‌های کنونی) به نظر می‌رسد، لازم است از طریق ترکیبی بوده که قبل از زیستگاه صدف بوده و اکنون کامل‌النابود شده‌اند. (زیستگاه‌های قبلی) به نظر می‌رسد بتواند بسته، بندار بستانه، ملو و ریشه جهت نمونه‌برداری انتخاب شند (شکل 1).

موقعیت جغرافیایی هر ایستگاه توسط دستگاه GPS اندازه‌گیری شده.

در هر ایستگاه نمونه‌برداری از رسوبات و صدف‌ها (سه نقطه متغیر از هر ایستگاه) با سه نکرد انجام گرفت. لازم به ذکر است که در ایستگاه‌های مربوط به زیستگاه‌های قبلی فقط نمونه‌های رسوب جمع‌آوری شده. نمونه‌برداری از صدف‌ها در دو فصل تابستان (تهماه 1380) و زمستان (بهمن ماه 1380) انجام گردید. نمونه‌برداری از رسوبات در تابستان (تهماه 1380) صورت گرفت. نمونه‌های صدف را براساس چهار گروه طولی مختلف (منبع کوچک، 20 تا 80 میلی‌متر و بزرگتر از 80 میلی‌متر تقسیم بندی کرده و سپس بافت‌های نرم از بوسته آنها جدا گردید. جهت حذف رطوبت نمونه‌های رسوب و صدف، از دستگاه فربزدایر (Freeze dryer) استفاده شد. در مرحله بعدی، نمونه‌های منجمد شده توسط آسیاب یا به وسیله هاون دستی کامل بود و یکنواخت گردید و سپس برای انجام انددازه‌گیری کل هیدروکربن‌های نفتی (T.P.H) در رسوبات و بافت‌های نرم صدف‌ها، پرتاب حدود 20 و 5 گرم از نمونه توزین شد (MOOPAM, 1999). ضمناً بر روی نمونه‌های سه بار اندازه‌گیری (سه تکرار) صورت گرفت.
شکل 1: موقعیت جغرافیایی استان‌های نمونه‌برداری شده
جهت اندازه‌گیری هیدروکریزی نفتی در رسوبات بتریب زمره عمل شد:

1- نمونه‌های بودر شده درون تیمبلاژ سلولزی مشخص ربخته شدند و در سئون‌های دستگاه سوکلسه (Soxhlet) جهت استخراج قرار گرفتند. عمل استخراج توسط مخلوطی از حل‌های هگزان و دی‌کلرولتان به نسبت ۵۰:۵۰ و به مدت ۱۶ ساعت انجام گردید.

در عصاره استخراجی به وسیله دستگاه روتاری (تبخیر کننده) تا حجم ۴ میلی لیتر تغییر شد.

در مرحله بعدی جهت تصفیه (Clean up) عصاره استخراجی، نمونه‌ها از سئون‌های بپر شده از سولفات سدیم خشک و اکسید آلومینیوم عبور داده شدند.

4- میزان جذب در دو طول موج مختلف و همچنین به‌عنوان طول موج بارانگیخته ۳۱۰ نانومتر و طول موج نشری ۴۴۰ نانومتر توسط دستگاه اسیکتروفوتومتر (UVF) استخراج گیری گردید.

در نهایت مقدار غلظت TPH در رسوبات از روی منحنی استاندارد نفت خام ردیابی (با MOOPAM, ۱۹۹۹) استفاده از استاندارد کراپین) به دست آمد.

جهت اندازه‌گیری هیدروکریزی نفتی در نمونه‌های بافت‌های نرم صدف‌ها بتریب زمره عمل شد:

1- نمونه‌های بودر شده را درون تیمبلاژ سلولزی ربخته و در سئون‌های دستگاه سوکلسه جهت استخراج قرار داده شدند. عمل استخراج توسط ۲۵۰ میلی لیتر متنبل و به مدت ۱۶ ساعت انجام گردید.

2- به منظور صابونی شدن لیمبیدها، پتاس اضافه گردیده و مدت ۴ ساعت عمل (KOH) ادامه یافت.

3- عصاره توسط دکتانور (قیف جدا کننده) ابتدا با ۹۰ میلی لیتر هگزان و سپس دوبار با ۵۰ میلی لیتر هگزان استخراج گردید.

4- سه قسمت استخراج شده با هم مخلوط و به آن سولفات سدیم خشک جهت حذف رطوبت احتمالی اضافه شد. سپس توسط دستگاه روتاری تا حجم ۴ میلی لیتر تغییر گردید.

5- جهت تصفیه عصاره استخراجی، نمونه‌ها از سئون‌های بپر شده از سولفات سدیم خشک و اکسید آلومینیوم عبور داده شدند.

www.SID.ir
نتایج
نتایج انداده‌گیری میزان هیدروکربن‌های نفتی در رسوبات زیستگاه‌های کنونی و زیستگاه‌های قبیلی در نموندار ۱ آورده شده است. بیشترین میزان هیدروکربن‌های نفتی در زیستگاه‌های کنونی مربوط به ایستگاه ۵۷/۸۷ ppm هدایت با میانگین و کمترین میزان در ایستگاه نخلو با میانگین ۱۵/۸۱ ppm می‌باشد. در زیستگاه‌های قبلی بیشترین میزان مربوط به ایستگاه بستنی با میانگین ۸۸/۸۷ ppm و کمترین میزان مربوط به ایستگاه مغوه با میانگین ۸۸/۸۷ ppm می‌باشد.

نتایج حاصل از تجزیه واریانس (ANOVA) و دانکن (Duncan) نشان می‌دهد که از نظر میانگین هیدروکربن‌های نفتی در رسوبات زیستگاه‌های کنونی، فقط ایستگاه‌های چهل و دردوم با هم یکسان و بقیه با هم اختلاف معنی‌دار دارند.

در زیستگاه‌های قبلی، میانگین هیدروکربن‌های نفتی در رسوبات ایستگاه‌های گشه و مغوه و همچنین ایستگاه‌های ملو و بستنی با هم یکسان و بدون اختلاف معنی‌دار هستند.

با توجه به نموندار ۲ که مقایسه میانگین‌های هیدروکربن‌های نفتی در بافت‌های نرم صدها در دو ماه تیر و بهمن را نشان می‌دهد می‌توان نتیجه‌گرفت بیشترین میزان مربوط به ایستگاه هدایت (تریملا ۵۲/۳۷ ppm و بهمن ماه ۱۲/۸۷ ppm) و کمترین میزان مربوط به ایستگاه نخلو (تریملا ۵۲/۳۷ ppm و بهمن ماه ۱۲/۸۷ ppm) می‌باشد. همچنین میانگین هیدروکربن‌های نفتی در بافت‌های نرم صدها در نمونه‌برداری تیرملا ۱۲/۸۷ ppm و در بهمن ماه ۱۲/۸۷ ppm نشان می‌دهد که اختلاف در این دو ماه معنی‌دار است.

نتایج آزمون ۲ برای مقایسه هیدروکربن‌های نفتی در بافت‌های نرم صدها در دو ماه تیر و بهمن

www.SID.ir

۱۳۷
نمودار 1: مقایسه میانگین های هیدروکربن‌های نفتی در رسوبات زیستگاه‌های کنونی و زیستگاه‌های قبلی

نمودار 2: مقایسه میانگین های هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها در زیست‌گاه‌های کنونی (تیر ماه 1 و بهمن ماه 2)
نمودار ۳ مقایسه میانگین های هیدروکربن های نفتی در بافت های نرم صدف‌ها از نظر طولی در دو ماه تیر و بهمن را نشان می‌دهد. همانطور که مشاهده می‌شود در گروه‌های طولی کوچکتر از ۶۰ میلی‌متر، تا ۲۰ میلی‌متر، ۳۰ تا ۸۰ میلی‌متر بترتیب با افزایش طول صدف‌ها میزان هیدروکربن‌های نفتی افزایش و در گروه‌های طولی بزرگتر از ۸۰ میلی‌متر کاهش می‌یابد. تجزیه و اریانا برای مقایسه میانگین‌های هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها از نظر طولی در زیستگاه‌های کنونی نشان می‌دهد که این گروه طولی با هم اختلاف معنی داری دارد.

نمودار ۴ مقایسه میانگین‌های هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها از نظر طولی (تیر ماه ۱ و بهمن ماه ۲)

- گروه طولی کوچکتر از ۶۰ میلی‌متر
- گروه طولی بزرگتر از ۸۰ میلی‌متر

نمودار ۵ ارتباط بین میزان هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها و رسوبات زیستگاه‌های کنونی در نمونه‌برداری تیرماه را نشان می‌دهد. با افزایش هیدروکربن‌ها در رسوبات، میزان آن در بافت‌های نرم صدف‌ها نیز افزایش می‌یابد.

نمودار ۶ ارتباط بین تراکم صدف‌ها (پراکسی گزارش مرکز تحقیقات شیلاتی نرم تنان - بندر لنگه) و
میزان هیدروکربن‌های نفتی در رسوبات زیستگاه‌های کنونی را نشان می‌دهد. با ازدیده‌‌ی هیدروکربن‌های نفتی، تراکم صدف‌های کاهش یافته است (۲/۸۷%=۲). نمودارهای ۶ و ۷ بترتیب ارتباط بین تراکم صدف‌ها و میزان هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها را در ماه‌های تیر و بهمن نشان می‌دهند. با ازدیده‌‌ی هیدروکربن‌های نفتی در بافت‌های نرم تراکم صدف‌ها کاسته می‌شود (در تیر ماه ۱/۹۸=۳ و در بهمن ماه ۲/۹۷=۳).

آزمون همبستگی (Correlation) برای ارتباط بین میزان هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها (نمونه برداری تیر ماه) و رسوبات زیستگاه‌های کنونی نشان می‌دهد که بین دو کمیت ارتباط مستقیم وجود دارد (۹۹/۳%=۲) یعنی هر چه میزان هیدروکربن‌ها در رسوبات بیشتر باشد، مقدار آن در بافت‌های نرم صدف‌ها نیز افزایش می‌یابد.

آزمون ۲ برای مقایسه هیدروکربن‌های نفتی در رسوبات زیستگاه‌های کنونی و زیستگاه‌های قبیل نشان می‌دهد که میانگین‌ها با هم اختلاف معنی‌دار داشته و این میزان در رسوبات زیستگاه‌های کنونی بیشتر است.

نمودار ۶: ارتباط بین میزان هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها و رسوبات زیستگاه‌های کنونی (تیر ماه ۱۳۸۵)
نمودار 5: ارتباط بین تراکم صدف‌ها و میزان هیدروکربن‌های نفتی در رسوبات زیستگاه‌های کنونی

نمودار 6: ارتباط بین تراکم صدف‌ها و میزان هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها

(تیر ماه 1380)
بحث

میزان هیدروکربن‌های نفتی در رسوبات و بافت‌های نرم صدف‌های ایستگاه‌های لاوان که مجاور با یابان‌های نفتی بوهد بیشتتر از دو ایستگاه دیگر (نخلو و هندورابی) است. به دلیل تردد نفت‌کش‌ها در نزدیکی ایستگاه هندورابی، میزان هیدروکربن‌های نفتی در رسوبات آن بیشتر از ایستگاه نخلو می‌باشد.علت بیشتر بودن میزان هیدروکربن‌های نفتی در بافت‌های در بهمن ماه (زمستان) نسبت به بهمن ماه (تایبستان) احتمال‌الناشی از موارد زیر است:

1- در فصل تایبستان به علت درجه حرارت بالا و تبخیر زیاد، مقدار هیدروکربن‌های نفتی در آب کاهش می‌یابد و چون صدف‌ها فیلتر کننده آب هستند، به دنبال آن میزان تجمع مواد نفتی در بافت‌های نرم صدف‌ها نیز کاهش می‌یابد.

2- با توجه به اینکه اوج تخم‌برزی صدف‌های مروری ساز محار در خرداد و مرداد ماه است (اصبیلی، ۱۳۷۵)، هیدروکربن‌های نفتی در این ماه‌ها از طریق گام‌ها به واسطه تخم‌برزی دفع می‌گردد. بنابراین کاهش میزان هیدروکربن‌ها در تیر ماه نسبت به بهمن

نمودار ۷: ارتباط بین تراکم صدف‌ها و میزان هیدروکربن‌های نفتی در بافت‌های نرم صدف‌ها (بهمن ماه ۱۳۸۰)
نتایج تحقیق امینی رنجبر و جمالی در سال ۱۳۷۵ در رابطه با اندازه‌گیری میزان هیدروکربن‌های نفتی در آب، رسوب و صدف در شمال شرقی خلیج فارس، نشان داد که در منطقه شمالی جزیره لوان، به دلیل کم بودن جریان‌های آبی، هیدروکربن‌ها تجمع بریشتری نسبت به شمال شرقی لوان، منطقه هندورابی و نخیلو یافته‌اند و در منطقه نخلو که میزان هیدروکربن‌ها نسبت به ایستگاه‌های مورد بررسی کمتر است اندازه صدف‌های موروراید ساز پرگنتر است. در تحقیق حاضر نیز نتیجه گرفته شد که آلودگی‌های نفتی در ایستگاه نخلو از مناطق دیگر کمتر است.

نتایج تحقیق احمدی در سال ۱۳۶۳ در رابطه با آلودگی نفت نشان داد که میزان تراکم صدف‌های زنده و مرده در ایستگاه‌های مورد مطالعه، با هم تفاوت‌های زیادی دارند به این معنی که در نقاط آلوده، تعداد صدف‌های زنده به مراتب کمتر است. در تحقیق حاضر نیز نتایج مشابهی به
دست آمده است، بطوری که با افزایش میزان آلودگی نفتی در بافت‌های نرم صدها و رسوبات از تراکم صدهای مبنا استفاده ساز مجاز کاپسیتی می‌شود.

اولین بررسی دانشگاه شهید چمران اهواز در زمینه اثرات آلودگی نفتی بر آبزیان خلیج فارس نشان می‌دهد که نرم‌تنان، خیلی زبان دیده‌اند و هر چه از آلودگی دورتر شوید، بر تعداد و فراوانی آنها افزوده می‌گردد (سواری، 1362).

نتایج

کف‌هایی از جمله صدهای مبنا استوارساز (Pinctada margaritifera) در مناطق مختلف خلیج فارس نشان می‌دهد که هیدرورکینون‌های نفتی در بدن صدها به‌طور مستقیم به رسواب تجمع می‌یابد که با نتایج تحقیق حاضر بکسان می‌باشد ولی با افزایش میزان هیدروکربن‌ها در بدن صدها، مقدار آن در رسوبات افزایش نیافته است که بر خلاف نتایج تحقیق حاضر می‌باشد.

در سال 1995 اجتماعات نرم‌تن سواحل سنگی آلوده به مواد نفتی و Debroت و Nagelkerken غیرآلوده در کوراکاس (Curacao) راک در مقابل استرس امواج فارام داشتند مقایسه کردن. تراکم نرم‌تنان و همجنسین ترکیب‌گونه‌ها در نواحی آلوده به نفت خیلی کمتر از نواحی غیرآلوده بود. فراوانی نرم‌تنان در نواحی آلوده فقط ۴۰ درصد مناطق غیرآلوده و رابطه لگاریتمی - خطی با درصد بوشوش نفت داشت.

نرم‌تنان دو کف‌های و میگو توانایی متا‌مولسم هیدرورکینون‌های نفتی را ندارند. در نتیجه با آسانی این ترکیبات را در بافت‌هایی که نتیجه‌ای از بین می‌روند، دفع مواد نفتی می‌تواند بین جنگ روز تا چند ماه صورت گیرد. برای مثال به دنبال نشت نفت در آبهای کم عمق تندیدکس ساحل در سال‌های سال‌های اولیت‌های جنوبی به صخره در عمق ۲-۳ متری، یک و چهار هفته بعد از حادثه نمونه‌برداری شدند و ترکیبات آروماتیک چند هلقه‌ای (PAH) مورد نظر در طی این سه هفته به میزان (Michel & Henry, 1994 مورد نظر در طی این سه هفته به میزان (Michel & Henry, 1994)

۹۴ تا ۹۸ درصد کاپسیتی یافته‌شده (1994) هیدرورکینون‌های سمی از طریق وارد شدن به لایه چربی که قسمت داخیل غشاء سلولی را تشکیل می‌دهد اتشفاش را اعمال می‌کنند. در نتیجه غشاء از بین می‌روند و کنتور تبادل مواد بین داخل و خارج سلول به طور کامل از بین می‌روید (Nelson-Smith, 1972)

در سال 1991 صدهایی دو کف‌های سیاه (Chromytilus meridiaalis) را برای مدت زمان Galina
کوتاه کمتر از یک هفته و مدت زمان طولانی حدود سه ماه در شرایط آزمایشگاهی در معرض نفت خام قرار داد. به‌این منظور، صدف‌ها در هر دو آزمایش در اکل هضم شدن و توسط آتربست هر گونه نفتی صورت گرفت. سپس از میان ستون‌های سیلیکا-آلومینا عبور داده شدند و در نهایت توسط آنالیز UV در طول موج برانگیخته ۸۸ نانومتر و طول موج نوری ۳۴۴ نانومتر میزان هیدروکربن‌های نفتی به دست آمد. نتایج نشان داد که هیدروکربن‌های نفتی به سرعت در بافت‌های این موضع تجکید می‌شوند.

در زیستگاه‌های کنونی این صدف، آلودگی‌های نفتی باعث کاهش تراکم ان شده است ولی به نظر می‌رسد نابودی صدف‌ها در مناطقی مثل ملی بسته، گشه و مغبوه به قیل زیستگاه‌های آنها محصور می‌شود. ارتباطی با آلودگی‌های نفتی ندارد. نتایج مقدار هیدروکربن‌های نفتی در رسوبات این مناطق کمتر از رسوبات زیستگاه‌های کنونی (دردور، هدا، آباد، چیل، نخلو، و هندورابی) است. به عبارت دیگر به میزان مثبت تحت تأثیر آلودگی‌های نفتی قرار دارند. بنابراین عوامل دیگری مانند موجودات مراحم و حفر، مصرف شدن بعضی از زیستگاه‌ها در زیر گل و لای، صید پیروی، شکارچیان، کم‌بود مواد غذایی، تغییر شرایط ویژگی و شیمیایی دریا و غیره ممکن است باعث نابودی این صدف‌ها شده باشد.

تشکر و قدردانی

از جناب آقای مهندس دفوکی (ریاست محرمان وقت مرکز تحقیقات شیلاتی نرم‌تنان - بندر لنگ)، مهندس رامشی (معاون مرکز)، سرکار خانم دکتر بورعابدی (مدیریت محرمان آزمایشگاه‌های مرکز تحقیقات زیست‌محیطی برلیساتن) و سرکار خانم هنگامه افترنیزد (کارشناس آزمایشگاه) به دلیل همکاریها و راهنمایی‌های ارزش‌ده تشكر و سپاسگزاری می‌گردد.

منابع

احمدی، م. ر. 1363. مطالعات مقدماتی بهینه‌سازی بر روی مناطق آلوده شده حوضه چاه‌های نفتی نوروز و مقابسه آن با دیگر مناطق. اولین کنفرانس بین‌المللی بررسی علمی اثرات نفت در خلیج فارس، دانشگاه تهران. 150 صفحه.

امیری رنجبر، غ. و جمیلی، ش. 1375. بررسی کیفیت هیدروکربن‌های نفتی در آب روستا و

www.SID.ir

140
صفحه ۱۴۱


Manual of Oceanographic and Pollutant Analysis Methods (MOOPAM), 1999. ROPME. Kuwait. 519 P.

