بررسی ایجاد ماهیان تراپیلوئید قزل آلاي رنگین کمان (Oncorhynchus mykiss)

محمد رضا کلباسی (۱) ، علی باقری (۲) ، محمد پورکاظمی (۳) و حسین عبدالحی (۴)

Kalbas_m@modares.ac.ir

چکیده
در این تحقیق مناسب‌ترین دما و مدت شوک‌دهی (شوق گرماپی) و زمان پس از لقاح جهت ایجاد تراپیلوئید در ماهی نسل آلای رنگین کمان مورد بررسی قرار گرفت. این امر با استفاده از شوق گرماپی ۲۸ درجه سانتی‌گراد در زمان‌های مختلف پس از لقاح (۷۵/۷۵/۷۱۵/۵۴/۴۲/۴۰ و ۳۸ درجه - ساعت) و مدت زمان‌های مختلف شوک‌دهی (۸ و ۱۲ دقیقه) اعمال گردید. تجزیه و تحلیل گروه‌های خونی به روش اندازه‌گیری مستحکم و حجم مستحکم و سلول‌گرایی ترمیمی خون مشخص نمود که در تیمار‌های مختلف تراپیلوئیدی به میزان صفر تا ۷۵ درصد لقاح گردیده است. لیکن بالاترین پایداری تراپیلوئیدی در شوق گرماپی ۸ درجه سانتی‌گراد در زمان ۷۴ درجه - ساعت پس از لقاح و مدت زمان شوک دهی ۱۲ دقیقه حاصل گردید که در این تیمار بالاترین پایداری تراپیلوئیدی به روش رنگ‌آمیزی نیترات نیتریک و تغییر حداکثر تعداد هفت‌ها در سلول نیز تایید گردید. تعداد هفت‌ها در سلول‌های دیپلوئید (۲n) ۱ تا ۲ عدد و در سلول‌های تراپیلوئید (۴n) ۴ عدد بود.

لغات کلیدی: نسل آلای رنگین کمان، شوق گرماپی، تراپیلوئید، Oncorhynchus mykiss

www.SID.ir
مقدمه

یکی از روش‌های کاربردی زنتیک و اصلاح نژاد در آبزیان الگوهای بلوئیدی است که امروزه، در صنعت آبزی‌پروری جنبه اقتصادی پیدا نموده است (Gjedrem, 2000; Thorgaard, 1992) ماهیان تربرولوئید به دلیل افزایش یک سری کروموزومی در تعداد کروموزوم‌های خوی، کروموزوم‌های محصولی محسوب می‌گردند و این ماهیان به دلیل اختلال در تقسیم میوژ به هنگام گام‌جزئی چاقی دیده و از رشد بیشتری برخوردار می‌گردند (Myers et al., 1995؛ کلباسی، 1372). ایجاد تربرولوئید در ماهیان به دو روش مستقیم (الگویی) و با غیرمستقیم (غیر الگویی) امکان‌پذیر می‌باشد. میانای روش مستقیم، احیاس دومین گوشه قطعی پس از لتقح با استفاده از شوک‌های محیطی می‌باشد. در روش غیر الگویی ابتدا مولبدین تربرولوئید بر مبنای حذف اولین تقسیم جنینی پس از لتقح توسط شوک‌های محیطی تولید می‌گردند و سپس با ام‌آپی‌ش ماهیان تربرولوئید ماده و دیش‌پرور نر ماهیان تربرولوئید حاصل می‌شود. تمایل Myers et al., (1995) از مهم‌ترین مزایای ماهیان تربرولوئید می‌توان به افزایش رشد، کاهش ضربت تنبلی غنایی، بهبود کیفیت گوشت و افزایش درصد پاکی‌مانده‌گی زیره ناهم (1987) تجربه چهارگانه القاب قلبی تولیدی در ماهیان قدمتی بیش از پنجاه سال دارد (کلباسی، 1372 ویلی از آنکا که اگر تربرولوئیدی تابع شرایط محیطی و ویژگی‌های مولبدین محل انجام تحقیق می‌باشد، نتایج متفاوتی در این Chourrot & Chevassus، Refstie، 1981؛ Thorgaard et al., 1986؛ Beck & Biggers، 1983؛ 1986 خصوص ارائه گردیده است. لذا با توجه به نتایج متفاوت فوق و عدم انجام این تحقیق در ایران، به منظور بهینه‌سازی پارامترها و شرایط ایجاد ماهی قزل آلای تربرولوئید این بررسی انجام بذیرف.

مواد و روش‌کار

در این تحقیق که در کارگاه تکنیک و پرورش ماهی شهید باهنر کلاردشت انجام پذیرفت از مخلوط تخمک ۲ ماهی مولد ماده با مبانگین سن ۲ تا ۳ سال، متوسط طول کل ۱۸ سانتی‌متر و مبانگین وزن ۲۵/۵۰ کیلوگرم استفاده شد. لتقح به روش خشک و با استفاده از مخلوط اسپرم ماهی مولد نر یک تا ۲ ساله انجام شد. شوک‌گرماپی در آکواریوم‌های مجهز به دو عدد بخاری آکواریوم فرانسوی را با ترمودات شوک گرماپی در آکواریوم‌های مجهز به دو عدد بخاری آکواریوم فرانسوی را با ترمودات

www.SID.ir

124
حرازی قابل کنترل، توأم با هوادهی انجام بذیرفت. در این خصوص شکرگویی ۲۸ درجه سانتی‌گراد (کلباسی، ۲۷۷) در زمان‌های متفاوت پس از لقاح (۲۴/۵۶/۵، ۵۸/۵، ۵۳/۲، ۲۲/۲۷ درجه سابع) و مدتها متفاوت شکرگویی (۱۰ و ۱۲ دقیقه) در نظر گرفته شد. برای هر تیمار از تخم لقاح یافته استفاده گردید و در گروه‌های تخم‌های نیز از تخم‌های مذکور بدون تیمار شکرگویی استفاده شد.

پس از شکرگویی و انتقال تخم‌ها به صورت تصادفی در انکوباسیون‌های تقصیم، شده، مراحل تکاملی لاروها مورد مطالعه قرار گرفت. در این خصوص ضمن ثبت روزانه تغییرات دمای آب، درجه‌ روز مراحل مختلف تکاملی، میزان باقیمانده لاروها در تیمارها مختلف محاسبه گردید. تشخیص تتراپلودید به روش اندازه‌گیری حجم و مساحت هسته‌ای و سطح گلپلذهای فرم صورت پذیرفت. در این خصوص از هر تیمار ۱۰ نمونه بطور تصادفی انتخاب و از آنها گسترش خونی تهیه و پس از رنگ‌آمیزی با هیپروزین‌اسیدی طول و عرض هسته و سطح گلپلذهای فرم توسط میکروامتر اندازه‌گیری شد و با استفاده از رابطه ۱ حجم و مساحت هسته و سطح گلپلذهای فرم محاسبه گردید (Wolters, ۱۹۸۱).

\[
\text{حجم هسته} \, \text{یا سطح گلپلذهای فرم} = \frac{a \times b \times \pi / 4}{\pi} = \text{مساحت هسته یا سطح گلپلذهای قلزم (رابطه ۱)}
\]

\[
\text{نصف محور بزرگ} = b = \sqrt{a \times b \times \pi / 4}
\]

\[
\text{محور بزرگ} = a = \frac{\text{مساحت هسته یا سطح گلپلذهای قلزم}}{b}
\]

همچنین به منظور تأیید روش مذکور تعداد هسته‌های حداکثر ۱۰۰ سلول در نمونه‌های دیپلودید و تتراپلودید به روش Shamarsh و مقایسه گردید. این روش شامل رنگ‌آمیزی سلولهای آبدار شده پس از هیپروزین‌اسیدی و با استفاده از رنگ اختصاصی نیترات نقره بود که در نتیجه عوامل احیای تعداد هسته‌ها در سلول تعمیم گردید. رنگ‌آمیزی نیترات نقره در سلول‌های شناسایی مناطق فعال و کروموزوم‌ها با کار می‌رود (Gold, ۱۹۹۰). درصد تتراپلودید تیمارهای مختلف با استفاده از رابطه ۲ و بازده تتراپلودید با استفاده از رابطه ۳ محاسبه گردید.

\[
\text{تعداد ماهیان تتراپلودید} \times 100 = \text{درصد الگه تتراپلودیدی (رابطه ۲)}
\]

\[
\text{تعداد ماهیان تتراپلودیدی} \times 100 = \text{درصد الگه تتراپلودیدی (رابطه ۲)}
\]

\[
\text{میزان باقیمانده لاروها تا مرحله شناخت وی‌بودی} \times \text{درصد تتراپلودیدی} = \text{بازده تتراپلودیدی (رابطه ۳)}
\]

۱۴۵
پس از تأیید نرم‌الملی داده‌های آماری مربوط به نتایج درصد باقی‌مانده، درصد الکا و بازده تنترابولونید با آزمون کولموگورف-اسمیرنسکوف، با استفاده از آنالیز واریانس در قالب طرح فاکتوریل داده‌ها مورد بردارش قرار گرفت و برای مقایسه نتایج تی‌مارتا با یکدیگر از آزمون LSD با سطح اعتماد 99 درصد استفاده شد. برای مقایسه پارامترهای مربوط به سنگش سلولهای خونی از آزمون غیر پارامتریک Mann-Whitney استفاده گردید.

نتایج

متوسط دمای آب کارگاه در طول مدت آزمایش 18/5± درجه سانتی‌گراد بود. در این آزمایشات، مدت مرحله لقاح تا چشمه‌گذی بطور متوسط 171 درجه - روز، لقاح تا آغاز تخم‌گذاری درجه 37 درجه - روز و لقاح تا شروع تغذیه فعال 113 درجه - روز محاسبه گردید. همچنین درصد باقی‌مانده‌گی لاروها از لقاح تا سنگش عمودی برای گروه شاهد و تیمارهای مختلف تعبین شد (نمودار 1). نتایج اندکازه‌گیری طول و عرض هسته‌ای و سلولی گلپول قرمز، که بر روی 50 گسترش خونی بعمل آمد، نشان می‌دهد که بین اندکازه‌گیری و سلول گلپول قرمز تنترابولونید نسبت به ماهیان دیپولونید اختلاف معنی‌دار وجود دارد (0.0<P). در مجموع نسبت ارقام دیپولونید به تنترابولونید در مورد طول هسته 1:645:1، عرض هسته 1:56:1، سطح هسته 1:527:1، حجم هسته 1:398:1 و در مورد طول سلول 1:58:1، عرض سلول 1:15:1، سطح سلول 1:39:1 و حجم سلول 1:37:1 بدست آمد (شکل 1).

نتایج حاصل از بررسی تعداد هسته‌ها در سلول به منظور تأیید الکا تنترابولونید، مشخص نمود که سلول‌های تنترابولونید حاوی 3 تا 4 عدد هسته می‌باشند در حالی که سلول‌های دیپولونید حاوی 1 تا 2 عدد هسته در سلول بودند. همچنین هسته‌های تنترابولونید از نظر سطح، کمی بزرگتر از هسته‌های دیپولونید به نظر می‌رسند (شکل 2).

نتایج نهایی می‌پذیرفته‌ایم ان این است که تنترابولونید به میزان صفر تا 75 درصد در تیمارهای مختلف پیامد گردیده است لیکن در گروه شاهد واحد نمونه تنترابولونید مشاهده نگردید (نمودار 3). میزان باقی‌مانده‌گی لاروها در تیمارهای مختلف تا 13 درصد و در گروه شاهد حداقل باقی‌مانده‌گی 72 درصد ثبت گردید.

www.SID.ir
برای سنجش اثرات بیشتری بر افزایش تراپلودی در شوک گرمايی 28 درجه سانتی‌گراد به مدت 12 دقیقه و در زمان 22-27/5 درجه‌سانتی‌گراد، متوسط درصد تراپلودی در این تیمار 8/2 درصد بوده است (0.01>P) (نمودار 3).

نمودار 1: میانگین درصد باقی‌مانده‌گی از لقاح تا شناهی فعال در ماهی قزل‌آلاپالایی در غیر رنگی گیمکان

نمودار 2: میانگین درصد الکرب تراپلودی در ماهی قزل‌آلاپالایی رنگین گیمکان
شکل 1: مقایسه گلوبول قرمز دیپلوئید (n2) و گلوبول قرمز تتراپلوئید (4n) ماهی قزل آلالی رنگین کمان (پیزورگنما 100×)

شکل 2: تعداد هسته‌ها در سلول دیپلوئید (n2) و سلول تتراپلوئید ماهی قزل آلالی رنگین کمان (4n) (پیزورگنما 100×)
بحث

در القاء تنترابولوئیدی بوسیله شوک گرمایی، با افزایش دما درصد القاء تنترابولوئیدی بالا می‌رود ولی این امر موجب کاهش درصد بقای یافته‌های لاروها تحت تیمار می‌شود (Quillet et al., 1988). این بیده در تیمارها مختلف این تحقیق نیز تأیید گردید. بنابراین به‌پیشنهاد فاکتور تنترابولوئید ضروری است. از آنجا که هدف از این گونه مطالعات تولید انبوه ماهیان پروری نمی‌باشد لذا دستیابی به بیوتکنیک تولید مولده تنترابولوئید به‌منظور مطابق تامین تخم m320کروموزومی جهت تولید انبوه ماهیان تربیتولوئید به روش غیرالقابی بسیار حائز اهمیت است. ولی در این مطالعه تنترابولوئید قزل آلا رگین کمیکن را مدت زمان 5 ساعت پس از لقح و به مدت یک دقیقه در دمای ۴۶ درجه سانتی‌گراد ذکر نموده‌اند. و همکاران در سال ۱۹۸۱ با استفاده از شوک شیمیایی Refstie و H & Beck Biggers سانتی‌گراد را در مدت زمان ۳۸۰ ساعت پس از لقح و به مدت یک دقیقه مؤثر می‌داند. در سال ۱۹۸۳ به‌ترین نتایج را از شوک فشار هیدرواستاتیک در مدت زمان ۴۸ دقیقه پس از لقح و در فشار به مدت ۱۰ دقیقه بست آوردند. بررسی حاضر نشان داد که اعمال شوک گرمایی روشی مناسب برای حذف اولین تقسیم جنینی و در نتیجه القاء تنترابولوئیدی می‌باشد. نتایج بدست آمده با نتایج بعضی از محققین همکاری دارد (Chourrout, 1982; Myers et al., 1986; Quillet et al., 1988;
ولی در مورد درصد بقا و میزان اقلام تربیلوئیدی نتایج متفاوت به دست آمده است. میزان درصد آن‌ها تربیلوئید در تیمار بهینه ۸۰ تا ۱۰۰ درصد، گزارش شده است و این در حالت است که حداکثر درصد اظهار می‌دارند که اختلافاتی که در زمینه انتخاب تیمار بهینه گزارش می‌شود ممکن است به کیفیت تخم‌های میزان رسیدگی مولدین و یا حساسیت آنها در مناطق مختلف و ساختار ژنتیکی مولدین مربوط باشد و حساسیت تخم‌های لقاح به سرعت و میزان نسبت به دستگاری و عوامل محیطی بیشتر می‌شود. در بررسی حاضر از عواملی که باعث کاهش درصد باقی‌مانده گزینه تربیلوئیدی مختلف گردد می‌توان به شرایط نامطلوب آپ کارگاه در زمان اجرای تحقیقات و گل آلودگی بیش از حد آب ناشی از سیلابی شدن آب ورودی به کارگاه اشاره نمود. بنحویکه در گروه شاهد نیز تلفاتی در حدود ۳۳ درصد را ایجاد نمود و این امر می‌تواند روی باقی‌ماندنگی تیمارها اثر منفی داشته باشد. به هر حال تکرار این آزمایشات در شرایط مطابق می‌تواند در جهت اخذ نتایج دقیق تأثیر مؤثر واقع گردد. گرچه امر روزه استفاده اقتصادی از یک‌هوا گرمایی به دلیل تکنیک ساده و ارزان آن برای القنی‌پلیوانید بسیار معمول شده است، ولی آزمایشات نشان داده است که استفاده از شوک گرمایی در مقایسه با شوک فشر باعث افزایش ناهنجاری و بد شکلی و کاهش درصد بقاء می‌شود. ولی نسبت به کاربرد شوک شیمیایی دارای مضرات کمتری است (Quillet et al., 1988). از اینجای این تحقیق در کارگاه تکثیر و پرورش آزاد ماهیان شهید باهتر کلاردشت انجام پذیرفته است عواملی از قبیل کیفیت آب، کیفیت تنفس و نژاد مولدین بر کیفیت مواد تناسیل آنها مؤثر بوده و نتایج حاصل کاملاً تحت تأثیر عوامل فوق بوده‌اند. بنابراین بهتر است به منظور بررسی اینگونه عوامل، آزمایشات مشابهی در سایر کارگاه‌های تکثیر و پرورش ماهی، قزل آلا رنگین کمان و نتایج نهایی مورد ارزیابی قرار گیرد.

منابع

کلباسی، م.ر، ۱۳۷۲. آتقه تربیلوئیدی در ماهی قزل آلا رنگین کمان. پایان‌نامه کارشناسی ارشد شیلات، دانشکده علوم دریایی، دانشگاه تربیت مدرس، ۱۳۰ صفحه.

