بررسی ایجاد ماهیان تترابولونید قزل آلای رنگین کمان (Oncorhynchus mykiss)

محمدضاکی کلیاسی (1)، علی باقری (2)، محمد پورکاظمی (3) و حسین عبداللهی (4)

Kalbas_m@modares.ac.ir

1 - و 2 - گروه شیلات، دانشکده علوم دریایی دانشگاه تربیت مدرس، تهران. صندوق پستی: 66708-33143
3 - ارتباط تحقیقات بین المللی ماهیان خاویاری، رشت. صندوق پستی: 456702-3406
4 - معاونت تکثیر و پرورش شرکت سهامی شیلات ایران، تهران. خیابان فاطمی غربی، پلاک 450

تاریخ دریافت: خرداد 1381
تاریخ پذیرش: مهر 1381

چکیده
در این تحقیق مناسب‌ترین دما و مدت شکوکده (شکوگرما) و زمان پس از لقاح جهت افزایش تراپولونید در ماهی تزریق آلای رنگین کمان مورد بررسی قرار گرفت. این امر با استفاده از شکوگرما 28 درجه سانتی‌گراد در زمان‌های مختلف پس از لقاح (5/5، 4/4 و 3/5) و مدت زمان‌های مختلف شکوگرما 10، 12 و 14 دقیقه اعمال گردید. تجزیه و تحلیل گسترش‌های خونی به روش اندوزی گیری مساحت و حجم همستای و سلول‌های دیپلوئید بدون کنار خوردن مشخص نمود و در تیمارها مختلف، تراپولونید به میزان صفر تا 75 درصد لقاح گردیده است. لیکن بالاترین پایه تراپولونید در شکوگرما 28 درجه سانتی‌گراد در زمان 12 دقیقه پس از لقاح و مدت زمان شکوگرما 14 دقیقه حاصل گردیده که در این تیمار بالاترین پایه تراپولونید در سه‌مایی، به روش رنگ‌آمیزی نیترات نتر و تیمین حداکثر تعداد هسته‌ها در سلول نیز تایید گردید. تعداد هسته‌ها در سلول‌های دیپلوئید (2n) 1 تا 2 عدد و در سلول‌های تترابولونید (4n) 4 عدد بود.

لیست کلیدی: قزل آلای رنگین کمان، شکوگرما، تترابولونید، Oncorhynchus mykiss

www.SID.ir
کلیاتی و همکاران

مقمه

یکی از روش‌هایی کاربردی زنتیک و اصلاح نژاد در آبزیان الگوی بیلیپلوئیدی است که امروزه، در صنعت ماهیان (Gjedrem, 2000; Thorgaard, 1992) تربیت‌پذیری به دلیل افزایش یک سری کروموزومی در تعداد کروموزومهای خود، n-کروموزومهای محسوب می‌گردد و این ماهیان به دلیل اختلال در تقسیم میوز به هنگام گاممونت عقیقی تلقی شده و از رشد بیشتری برخوردار می‌گردد (Myers et al., 1995; کلیاسی، 172). ایجاد تربیت‌پذیری در ماهیان به روشن عملکرد مورد بررسی قرار گرفت که این موضوع با مسایل بررسی‌های آبزیان ناشی از افزایش قابلیت تولید مسئله‌های مربوط به هنگام گاممونت مطرح می‌شود. در روش شیوع پذیری می‌باشد. در روش‌های مختلف این مسئله مورد بررسی قرار گرفت که این موضوع با مسایل بررسی‌های آبزیان ناشی از افزایش قابلیت تولید مسئله‌های مربوط به هنگام گاممونت مطرح می‌شود. در روش شیوع پذیری می‌باشد. در روش‌های مختلف این مسئله مورد بررسی قرار گرفت که این موضوع با مسایل بررسی‌های آبزیان ناشی از افزایش قابلیت تولید مسئله‌های مربوط به هنگام گاممونت مطرح می‌شود. در روش شیوع پذیری می‌باشد.

مواد و روش کار

در این تحقیق که در کارگاه تکثیر و پرورش ماهیان ناشی شهید باهنر کلامدشت انجام پذیرفت از مخلوط تخمک ۲ ماهی مولد ماده با میانگین سن ۲ تا ۳ سال، متوسط طول کل ۲۸ سانتی‌متر و میانگین وزن ۲۵۰/۵/۰ کیلوگرم استفاده شد. لقاح به روش خشک و با استفاده از مخلوط اسپرم ۳ ماهی مولد نر تا ۲ ساله انجام شد. شکل گروه‌های در آکواریوم شیشه‌ای مجهز به دو عدد بخاری آکواریوم فرانسوی را با ترمومتر
حرارتی قابل قبولی توانای آمادهست که برای بررسی در این خصوص شوک گرمایی ۲۸ درجه سانتی‌گراد (کلباسی، ۱۹۷۲) در زمان‌های متغیر پس از لقح (۲۷/۵، ۳۷/۵، ۵۷/۵، ۶۷/۵) در نظر گرفته شد. برای هر از ۵۰۰ نخ در لقحاً یافته استفاده گردید. و درگروه شاهد نیز از تخم‌های مذکور بدون تیمار شوک‌دهی استفاده شد. بس از شوک‌دهی و انتقال تخم‌ها به صورت تصادفی در انکوباسیون‌های تقسیم‌شده، مراحل تکاملی لاروها مورد مطالعه قرار گرفت. در این خصوص ضمن ثبت روند تغییرات دما، ۸ درجه - روز مراحل مختلف تکاملی، میزان باقیماندگی لاروها در تیمارهای مختلف محاسبه گردید. تشخیص تترابلوئیدی به روش اندام‌گیری حجم و مساحت هسته‌های سلول‌گلوبولهای قرمز صورت پذیرفت. در این خصوص از هر تیمار ۱۰ نمونه بطور تصادفی انتخاب و از آنها گسترش خونی تهیه و پس از نگهداری با گیمسای ۹ درصد، طول و عرض هسته و سلول گلوبول قرمز توسط میکروسکوپ اندام‌گیری شد و با استفاده از رابطه ۱ حجم و مساحت هسته و سلول گلوبولهای قرمز محاسبه گردید (Wolters, ۱۹۸۱).

\[\frac{a \times b \times \pi}{4} = \text{مساحت هسته با سلول گلوبول قرمز (رابطه ۱)} \]

\[b = \text{نصف محور بزرگ} \]

\[a = \text{محور بزرگ} \]

\[\frac{a}{b} = \text{هیمنچین به منظور تایید روش مذکور تعداد هسته‌های حداکثر ۱۰۰ سلول در نمونه‌های دیپلئید و تترابلوئیدی به روش Gold شماره و مقایسه گردید. این روش شامل رنگ‌آمیزی سلول‌های آبی‌شکل پس از هیپوتوئیسیون و با استفاده از رنگ اختصاصی نیترات نقره بود که در نتیجه خدمات تعداد هسته‌ها در سلول تغییر گردید. رنگ‌آمیزی نیترات نقره در واقع برای شناسایی مناطق فعال کروموزومها به کار می‌رود (Gold, ۱۹۹۰). درصد تترابلوئیدی تیمارهای مختلف با استفاده از رابطه ۲ و بازده تترابلوئیدی با استفاده از رابطه ۳ محاسبه گردید.

\[\frac{\text{تعداد ماهیان تترابلوئیدی}}{100} \times \frac{\text{تعداد ماهیان تترابلوئیدی}}{\text{تعداد ماهیان دیپلئید}} = \text{درصد الاغ تترابلوئیدی (رابطه ۲)} \]

\[\text{میزان باتلاق‌داری در مرحله نخ偷偷 زنای عوضوی} \times \text{درصد تترابلوئیدی} = \text{بازده تترابلوئیدی (رابطه ۳)} \]

۱۴۵
پس از تایید نرم‌الملیتی داده‌های آماری مربوط به نتایج درصد باقیماندنی، درصد آفت و بازده
تنوکاپی‌های با آزمون کولموگوروف - اسمیرنوف، با استفاده از آنتالیز واریانس در قالب طرح فاکتوریل
داده‌ها مورد بررسی قرار گرفت و برای مقایسه نتیجه‌ها با یکدیگر از آزمون LSD
با سطح اعتماد 99 درصد استفاده شد. برای مقایسه پارامترهای مربوط به سن جنگ سلولهای خونی از آزمون
غیر Mann-whitney
پارامتریک
در دو گروه ماهیان دیپلاوئید و تنترابلوئید با سطح اعتماد آزمون 99 درصد
استفاده گردید.

نتایج
متوسط دمای آب کارگاه در طول مدت آزمایش 17±1 درجه سانتیگراد بود. در این آزمایشات، مدت
مرحله لقاح تا چشم‌گذگی بطور متوسط ۱۷۱ درجه - روز، لقاح تا آغاز تغییر ۳۳ درجه - روز و لقاح تا
شروع تغییر به طول ۵۰ درجه - روز محسوب گردید. همچنین درصد باقیماندنی لاروها از لقاح تا شنای
عمودی باید گروه شاهد و تیمارهای مختلف تعیین شد (نمونه‌ای 1). نتیج اندام‌های گیری طول و عرض
هستهای و سلول گلبول قرمز، که بر روی ۵۰۰ گسترش خویش بعمل آمد، نشان می‌دهد که بین اندازه
هسته و سلول گلبول قرمز تنترابلوئید نسبت به ماهیان دیپلاوئید اختلاف معنی‌دار وجود دارد (0.0<
P<0.001) و در مجموع نسبت ارقام دیپلاوئید به تنترابلوئید در مورد طول هسته 1/65، عرض هسته 1/52، سطح
هسته 1/57، حجم هسته 3/79 و در مورد طول سلول 1/58، عرض سلول 1/51، سطح سلول
1/59 و حجم سلول 1/36 پدید آمد (شکل 1).

نتایج حاصل از بررسی تعداد هسته‌کا در سلول به منظور تایید اگر تنترابلوئید مشخص نمود که
سلولهای تنترابلوئید حاوی تا ۵ عدد هسته می‌باشد در حالی که سلولهای دیپلاوئید حاوی ۱ تا ۲ عدد
هسته در هر سلول بودند. همچنین هسته‌های تنترابلوئید از نظر سطح، کمی بزرگتر از هسته‌های
دیپلاوئید به‌نظر می‌رسند (شکل 2).

نتایج نهایی مبنی بر این است که تنترابلوئید به میزان صفر تا ۷۵ درصد در تیمارهای مختلف اتفاق
گردیده است لیکن در گروه شاهد هیچ نمونه تنترابلوئید مشاهده نگردید (نمونه‌ای ۲). میزان باقیماندنی
لاروها در تیمارهای مختلف ۱۳/۷ تا ۱۸ درصد و در گروه شاهد حداکثر باقیماندنی ۷۵ درصد ثبت گردید.

www.SID.ir

146
نمودار ۱: میانگین درصد باقیماندگی از لقاح تا شنا فعال در ماهی قزل‌آلای رنگ‌های کم‌کمان

نمودار ۲: میانگین درصد اقلاع تتراپلوبی‌ی‌دی در ماهی قزل‌آلای رنگ‌های کم‌کمان

براساس رابطه بیشترین بازده تتراپلوبی‌ی‌دی در شوک گرمایی ۲۸ درجه سانتی‌گراد به مدت ۱۲ دقیقه و در زمان ۲۲ تا ۲۷/۵ درجه سانتی‌گراد با لقاح حاصل گردده و متوسط درصد تتراپلوبی‌ی‌دی در این تیمار ۸/۳ درصد بوده است (۰/۱>۰) (نمودار ۳).

www.SID.ir
شکل ۱: مقایسه گلوبول قرمز دیپلوئید (۲n) و گلوبول قرمز تزرایشوئید (۴n) ماهی قزل آلایی رنگین کمان (بزرگنمایی ۱۰۰×)

شکل ۲: تعداد هسته‌ها در سلول دیپلوئید (۲n) و سلول تزرایشوئید ماهی قزل آلایی رنگین کمان (۴n) (بزرگنمایی ۱۰۰×)
بحث

در القاء تنترابولوثیدی بوسیله شوک گرمایی، با افزایش دما درصد القاء تنترابولوثیدی بالا می‌رود ولی این امر منجر به کاهش درصد باقیماندگی لاروها تحت تیمار می‌شود (Quillet et al., 1988). این بیده در تیمارهای مختلف این تحت تأثیر آب و هوا و حیات و حیوانات تولید انبوه ماهیان پروری است. از آنجایی که هدف از این گونه مطالعات تولید انبوه ماهیان پروری نمی‌باشد نمی‌باشد لذا دستیابی به بیوتکنیک تولید مولده تنترابولوثید به‌طور مناسب ممکن نمی‌باشد. در زمینه تنترابولوثیدی به تغییرات به روش گیاهی پیشنهاده شده است. در سال ۱۹۸۱ شرایط بهینه برای القای تنترابولوثیدی قزل آلا و ماهیان کمک را می‌دارد. همکاران در سال ۱۹۸۱ Thorgaard و همکاران در سال ۱۹۸۱ با استفاده از شوک شیمیایی Refstie و Hocke & Beck Biggers سانتی‌گراد ذکر دوم به‌دست‌آمد. در سال ۱۹۸۲ سانتی‌گراد را در مدت زمان ۸۰ ساعت پس از لقح و به مدت ۱۲ دقیقه دقت می‌دانند. در سال ۱۹۸۲ بهترین دقتی که را از شوک فشار هیدرواستاتیک در مدت زمان ۴۸ دقیقه پس از لقح و در فشار ۸۰۰ psi به مدت ۱۰ دقیقه بسته‌داره‌اند. بررسی حاضر نشان داده‌اند که عمل شوک گرمایی روشی مناسب برای حذف اولین تقسيم جنینی و در نتیجه القاء تنترابولوثیدی می‌باشد. نتایج بدست آمده با نتایج (Chourrout, 1982; Myers et al., 1986; Quillet et al., 1988) بهمراه محققین همکار مناسب بوده‌اند.
بررسی ایجاد ماهیان تریپلئودی قزل آلای رنگین کمان به وسیله...

کلیباسی و همکاران

ولی در مورد درصد بقا و میزان افزایش میزان تریپلئودی نتایج معناداری بدست آمده است. میزان درصد آنها در مورد تریپلئودی در تیمار بهینه ۸۰ تا ۱۰۰ درصد، گزارش شده است و این در حالی است که حداکثر درصد الگه در این تحقیق، ۷۵ درصد بوده است. ۱۹۸۴، اظهار می‌دارند که اختلافاتی که در تیمارهای مختلف به‌طور کلی گزارش می‌شود ممکن است به کیفیت تخم‌ها، میزان رسیدگی مولکولی و یا حساسیت آنها در مناطق مختلف و مانندانه تخم‌های نوع‌های مختلف از اعمال شوک‌دهی نسبت به استقراض و عوامل محیطی بیشتری می‌شود. در بررسی حاضر از عواملی که باعث کاهش درصد قابل‌ملاحظه‌ی تیمارهای مختلف گردیده می‌توان به شرایط نامطلوب آب کارگاه در زمان اجرای تحقیق و گل آلودگی بیش از حد آب، ناشی از سیلابی شدن آب و ورودی به کارگاه اشاره نمود. بنا به دست کردن در حیطه‌ای که تیمارها اثر منفی داشته باشند، به مرحله تکرار این آزمایشات در شرایط مطلوب‌تر می‌تواند در جهت ا النفط دقت بیشتر واقع گردد. گرچه امروزه استفاده از شوک‌های گرمی به دلیل تکنیک ساده و ارزان آن برای الگ برداری بهبود معمول شده است، ولی آزمایشات نشان داده است که استفاده از شوک گرمی در مقایسه با شوک فشار باعث افزایش ناهنجاری و بد شکل و کاهش درصد بقاء می‌شود.

ولی نسبت به کاربرد شوک شیمیایی دارای مضرات کمتری است (Quillet et al., 1988). از آنجا که این تحقیق در کارگاه تکثیر و پرورش آزاد ماهیان شهید باهتر کلاردوشت انجام پذیرفته است عواملی از قبیل کیفیت آب، کیفیت تنزیه و نزدیک مولکولی بر کیفیت مواد تناسلی آنها مؤثر بوده و نتایج حاصل کاملاً تحت تأثیر عوامل فوق بوده‌ند. بنابراین بپنر است به منظور بررسی اینگونه عوامل، آزمایشات مشابهی در سایر کارگاه‌های تکثیر و پرورش ماهی قزل آلای رنگین کمان به عمل آمده و نتایج نهایی مورد ارزیابی قرار گیرد.

منابع

کلیباسی، م.ر. ، ۱۳۷۲. افزایش کارکردهای قزل آلای رنگین کمان. پایان‌نامه کارشناسی ارشد شیلات، دانشکده علوم دریایی، دانشگاه تربیت مدرس، ۱۳۰ صفحه.

