برآور د میزان زیتوده و اثر شاخص‌های هواشناسی

(Penaeus merguiensis)

بر میگوی موزی

در آباهای ساحلی هرمزگان

محسن صفایی، احسان کامرانی، محمد مؤمنی

Mohsen Safai@yahoo.com

پژوهشکده اکولوژی خلیج فارس و دریای عمان، بندرعباس، صندوق پستی: 1592

چکیده

با بررسی‌های عمل آمده که بصورت ماهانه و در سال‌های ۱۳۸۱ تا ۱۳۸۷ و توسط شناور نمونه‌گیری و به روش مساحتهای جاروبرنگ شده، میزان فرآوری آن‌ها برآورده و در استان هرمزگان در سال‌های ۱۳۷۸، ۱۳۷۹ و ۱۳۸۰ و ۱۳۸۱ و ۱۳۸۲ (Biomass) و (Swept area) به‌طور متوسط مشاهده شد. در سال‌های ۱۳۷۸ و ۱۳۷۹ و ۱۳۸۰ و ۱۳۸۱ و ۱۳۸۲ (Biomass) و (Swept area) به‌طور متوسط مشاهده شد. در سال‌های ۱۳۷۸ و ۱۳۷۹ و ۱۳۸۰ و ۱۳۸۱ و ۱۳۸۲ (Biomass) و (Swept area) به‌طور متوسط مشاهده شد. در سال‌های ۱۳۷۸ و ۱۳۷۹ و ۱۳۸۰ و ۱۳۸۱ و ۱۳۸۲ (Biomass) و (Swept area) به‌طور متوسط مشاهده شد. در سال‌های ۱۳۷۸ و ۱۳۷۹ و ۱۳۸۰ و ۱۳۸۱ و ۱۳۸۲ (Biomass) و (Swept area) به‌طور متوسط مشاهده شد. در سال‌های ۱۳۷۸ و ۱۳۷۹ و ۱۳۸۰ و ۱۳۸۱ و ۱۳۸۲ (Biomass) و (Swept area) به‌طور متوسط مشاهده شد. در سال‌های ۱۳۷۸ و ۱۳۷۹ و ۱۳۸۰ و ۱۳۸۱ و ۱۳۸۲ (Biomass) و (Swept area) به‌طور متوسط مشاهده شد.

نتایج حاصل از آزمون همبستگی پیرسون (Pearson correlation) بین میزان میگوی موزی (CPUE) و دیگر متغیرهای واریانس (Variances) و شاخص‌های هواشناسی در سال‌های مورد بررسی ارتباط معنی‌دار وجود دارد. نشان می‌دهد که بین میزان CPUE و شاخص‌های دما و رطوبت ارتباط معنی‌دار با داده‌های-run می‌باشد. نشان می‌دهد که بین میزان CPUE و شاخص‌های دما و رطوبت ارتباط معنی‌دار وجود دارد. نشان می‌دهد که بین میزان CPUE و شاخص‌های دما و رطوبت ارتباط معنی‌دار وجود دارد. نشان می‌دهد که بین میزان CPUE و شاخص‌های دما و رطوبت ارتباط معنی‌دار وجود دارد.

نگاه کلی: میگوی موزی، زیتوده، شاخص‌های هواشناسی، هرمزگان، ایران
مقدمه
توسعه پایدار شیلاتی و بهره‌برداری از منابع آبی کشور جهت تأمین به‌خیس از پرورش مورد نیاز جامعه، نیاز به برقراری نظام مناسب مدیریتی جهت بهره‌برداری بیشتر از آبی‌زای می‌باشد.

آب‌های جنوب کشور شامل خلیج فارس و دریای عمان از نظر ذخایر آبی‌زای ایرانیان، از طرفی نسبتاً بالایی برخوردار است و از میان گونه‌های مختلف جانوری در این منطقه، میگوی از مهم‌ترین ویژگی‌های برخوردار می‌باشد.

این پژوهش میزان توده و زمان بهینه آغاز فصل صید را با روشهای رایج در مدیریت ذخایر محاسبه نموده و میزان آن در چهار سال متوالی از سال 1378 تا 1381 برآورد نموده است. همچنین اثرات عوامل محیطی روی ذخایر این گونه مورد بررسی قرار گرفته است.

میگوها خانواده Penaeidae ساخت لوده و اغلب در نواحی گرمسیری و نیمه گرمسیری مشاهده می‌شوند. اغلب اوقات میگو در مناطقی که تحت تأثیر دلتاها، مصب (خوریات) یا مردادها می‌باشد و بستر آنها معمولاً گیا ترکیبی از شن و گل که غنی از مواد آلی می‌باشد زندگی می‌کند، علاوه بر این میگوها با خشکی از جمله زندگی خود را کم و بیش در آب‌های لب‌شور می‌گذرانند (Garcia & Le Reste, 1981).

چند که این امر برای تمام گونه‌های این خانواده صادق نیست (Fischer & Bianchi, 1984).

به دنبال مطالعات صورت گرفته، میگوی موزی با نام علمی Penaeus merguiensis گونه غالب استان میگوی Metapenaeus affinis هرمزگان شناخته شده است. سایر گونه‌ها شامل میگوی سفید (سرتیر) یا میگوی P. semisulcatus، میگوی بری سبز M. stebbingie، میگوی خنجری با نام محلی گنگ، و M. indicus در Parapenaeopsis stylifera رده‌های بعدی از نقطه نظر برای کش قرار می‌گیرند (صافی‌ی و کامرانی، 1372).

این پژوهش میزان توده و زمان بهینه آغاز فصل صید را با روشهای رایج در مدیریت ذخایر محاسبه نموده و میزان آن در چهار سال متوالی از 1378 تا 1381 برآورد نموده است. همچنین اثرات عوامل محیطی بر روی ذخایر این گونه نیز مورد بررسی قرار گرفته است.
مواد و روش کار

برای نمونه‌برداری از صیدگاه‌های استان هرمزگان از شناور تحقیقاتی تجهیز مجزه به یکدستگاه تور تراز کفی و دستگاه ن نقطه یاب ماهواره‌ای و اکسپاندر استفاده گردید که مشخصات شناور و تور آن به شرح ذیل می‌باشد:

الف - مشخصات شناور:
- طول شناور: 14/68 متر
- عرض شناور: 4/20 متر
- وزن ناخالص: 40 تن
- آب‌خور: 6/30 متر

ب - مشخصات تور کف روب:
- اندازه جسم بصورت کشیده در کیسه تور: 4/2 سانتی‌متر
- اندازه جسم بصورت کشیده در بالو‌های تور: 4/6 سانتی‌متر
- طول طناوقای: 30 متر
- طول زنجیر تحتالی: 23 متر

نموده‌برداری بصورت ماهانه از خرداد ماه 1378 و از ایستگاه‌های از قبل تعیین شده بوسیله تور تراز کف و به روش مساحت جاروب وحدت (Swept area) صورت گرفت. پس از تعیین تور در آب معمولاً یک ساعت انتخاب شد و گاهی حداکثر به دو ساعت نیز رسیده است. در هر استانگاه، اطلاعاتی از قبیل موقعیت جغرافیایی منطقه تور ریزی و تورکشی شده، عمق آب، مدت زمان تورکشی، مختصات کل صید می‌گوید و در صورتی که در کل صید در فرم‌های مربوطه ثبت گردد، محدوده عملیاتی این پژوهش از لحاظ موقعیت جغرافیایی از منطقه سیریک با موقعیت ۲۴° ۲۶ عرض شمالی و ۵۷° ۵۰ طول شرقی آغاز و تا منطقه طولا و کشتی سوخته با موقعیت جغرافیایی ۷° ۵۰ عرض شمالی و ۵۶° ۰۰ طول شرقی امتداد داشت که در هر ماه مورد بررسی قرار گرفت (شکل ۱).

شکل ۱: نقشه جغرافیایی استگاه‌های واقع در منطقه بدرعباس تا سیریک

www.SID.ir
مزیزان توده زنده (بیوماس) آبزیان در نواحی از دریا که جنس بستر آنها درود بطوریکه به راحتی بتوان در آن منطقه به عملیات تولید کری دخالت از روش مساحت جاروبرد شده تغییر می گردد که رابطه

\[B = \frac{(C_w/a) * A}{X_1} \]

معادله یک)

که در این رابطه:

- \(B \): میزان توده زنده (بیوماس) می‌گویند
- \(C_w/a \): میانگین صید بر حسب وزن کل میگوی صید شده در مدت زمان یک ساعت بر مساحت تورکشی
- \(CPUE/a \): شده می‌باشد (شکل؟) که به جای آن می‌توان از صیاد بر واحد تلاش CPUE بر مساحت یعنی استفاده نمود.

استقلال نمود.

A: کل مساحت منطقه مورد بررسی که قبلأ توسط دستگاه پلاتنیمتر دستی No. 3173 مدل Haff گردد (جدول 1).

\[\text{Swept area} \]

\[D = V \times t \]

\[h \times X_2 \]

\[\text{wing spread} \]

\[\text{Velocity, } V \]

(Sharpe & Venema, 1992)

\[\text{شکل 2: مساحت جاروبرد شده توسط تور تولید آبیزه از 1992} \]

www.SID.ir
جدول 1: مساحت ناحیه‌ها و اشکال‌های مورد بررسی

<table>
<thead>
<tr>
<th>ناحیه‌ها</th>
<th>بیش از ۲۰ متر</th>
<th>۱۰-۲۰ متر</th>
<th>۵-۱۰ متر</th>
<th>زیراشکوب -۱</th>
<th>زیراشکوب -۲</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد</td>
<td>sq.m</td>
<td>sq.m</td>
<td>sq.m</td>
<td>sq.m</td>
<td>sq.m</td>
<td>sq.m</td>
</tr>
<tr>
<td>ناحیه ۱</td>
<td>۱۴/۲۲</td>
<td>۲۵/۱۹</td>
<td>۱۷/۸۸</td>
<td>۱۹/۱۴</td>
<td>۱۹/۵۱</td>
<td>۳۳/۲۵</td>
</tr>
<tr>
<td>ناحیه ۲</td>
<td>۲۱/۴۳</td>
<td>۱۵/۱۸</td>
<td>۲۱/۶۲</td>
<td>۱۰/۱۷</td>
<td>۲۵/۸۹</td>
<td>۵۵/۶۵</td>
</tr>
<tr>
<td>ناحیه ۳</td>
<td>۲۳/۲۴</td>
<td>۳۶/۲۹</td>
<td>۲۶/۷۶</td>
<td>۲۵/۱۴</td>
<td>۲۷/۶۲</td>
<td>۶۷/۲۵</td>
</tr>
<tr>
<td>ناحیه ۴</td>
<td>۱۹/۴۵</td>
<td>۸۸/۵۵</td>
<td>۱۹/۴۲</td>
<td>۲۵/۷۹</td>
<td>۱۳/۳۴</td>
<td>۶۷/۵۶</td>
</tr>
<tr>
<td>مجموع</td>
<td>۱۰۰/۱۴</td>
<td>۱۵۷/۱۲</td>
<td>۱۰۰/۱۴</td>
<td>۱۰۰/۱۴</td>
<td>۱۰۰/۱۴</td>
<td>۱۰۰/۱۴</td>
</tr>
</tbody>
</table>

شکل ۲) در یک واحد تلاقی، (بطور مثال در یک ساعت) می‌باشد که به مساحت مورد بررسی

قرار دیلی محاسبه می‌گردد: (Sparre & Venema, 1992)

\[
a = D^*h^*X_2, \quad D = V^*t
\]

معادله (دو)

\[
a = V^*t^*h^*X_2
\]

که در این معادله:

\[
V = \text{سرعت شناور مجید با تور ترال در زمان تور کشی}
\]

۱- مدت زمان تور کشی (که بهتر است جهت کاهش میزان خطاها مدت زمان تور کشی یک ساعت تعیین

گردد).

\[
h = \text{طول طناب بالایی تور ترال}
\]

\[
X_2 = \text{نسبت عرض تور ترال، تقسیم بر طول طناب بالایی تور (نسبت باز شدنی دهانه تور) که در آب‌های جنوب شرق آسیا مقدار آن بین ۴/۰ تا ۶/۴ گزارش شده است (Sparre & Venema, 1992).}
\]

\[
X_1 = \text{می‌باشد که عبارت از میزان میگویی است که در مسیر تور کشی در نور به دام افتاده‌اند. در آبهای جنوب شرقی آسیا مقدار آن را بین ۵/۰ تا یک انتخاب می‌کنند (Sparre & Venema, 1992).}
\]

بمنظر تعیین بهترین و یا به عبارتی مناسب‌ترین زمان آغاز فصل صید میگو در استان به‌طوریکه از

نظر بوم شناسی و زیست شناختی لطمه‌ای به جمعیت این آبزی وارد نشده و از طرفی بتوان از نظر کمیت
پیشینه و از نظر کیفیت پهپار محصول را برداشت نمود، با استفاده از مدل طراحی شده در سیستم برنامه نویسی کامپیوتری Borland C++ که براساس اندوزه بدن بیوبی گستر طول کارایی (سرسینه) میکو که پهپار معیار جهت اندازه‌گیری می‌باشد اقدام گردید (کامرانی و همکاران، ۱۳۷۵).

سپس با توجه به میانگین طول نمونه‌های بدست آمده (س) قبل از آغاز فصل صید و با استفاده از معادله دیل (Sparre & Venema، ۱۹۹۲) می‌توان زمان بهینه آزاد سازی فصل صید میکو را تعیین نمود.

\[\Delta T = T_2 - T_1 = \frac{1}{K} \ln \left(\frac{L_{\infty} - L_1}{L_{\infty} - L_2} \right) \]

(معادله سه)

\[\Delta T = T_2 - T_1 = \frac{1}{K} \ln \left(\frac{L_{\infty} - L_1}{L_{\infty} - L_{\text{opt}}} \right) \]

که در این معادله:

\[\Delta T \]

اختلاف زمان

\[T_1 \]

زمان نمونه‌گیری

\[T_2 \]

زمان بهینه جهت صید

\[L_{\infty} \]

طول نهایی آبی‌های با طول حداکثر است که ابری در صورت آب‌مکان رشد نامناسب می‌تواند داشته باشند، که برای میکو موزی ماده در طول کارایی ۸۸ میلی‌متر در سال محاسبه شده است (صفایی، ۱۳۷۹).

\[K \]

ضریب رشد آبی که نشان دهنده این است که آبی با چه سرعتی به \(L_{\infty} \) می‌رسد که برای میکو موزی ماده برابر ۱/۸ در سال محاسبه شده است (صفایی، ۱۳۷۹).

\[L_{\text{opt}} \]

میانگین طولی نمونه‌های گرفته شده در زمان \(T_1 \).

\[L_1 \]

میانگین طول بهینه در زمان \(T_2 \).

برای تعیین اثر شاخص‌های هوشمندی روی دخایر میکو، اطلاعات هوشمندی شامل میزان بارندگی، تبخیر، میانگین دما و میانگین رطوبت در مناطق بند‌ریز و میاناب به صورت ماهانه و از خرداد ماه ۱۳۷۸ تا اسفند ماه ۱۳۸۱ با میزان صید برابر وارد تا چهار گونه میکو موزی مورد بررسی قرار داده شد (جدول ۲). جهت آنالیز داده‌ها از آزمون همبستگی پیرسون و به کمک برنامه Pearson correlation SPSS.9 انجام گردید.
جدول 2: اطلاعات ماهانه شاخص‌های هوشمندی (استخراج از اداره کل هوشمندی)

<table>
<thead>
<tr>
<th>سال</th>
<th>ماه</th>
<th>شاخص‌های هوشمندی</th>
<th>نرخ (درصد)</th>
<th>میانگین رطوبت(میلی متر)</th>
<th>نرخ (درصد)</th>
<th>میانگین رطوبت(میلی متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1379</td>
<td>1/7</td>
<td>فروردین</td>
<td>1/7</td>
<td>0/5</td>
<td>1/7</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>اردیبهشت</td>
<td>3/5</td>
<td>58/5</td>
<td>0/5</td>
<td>58/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>خرداد</td>
<td>3/5</td>
<td>2/5</td>
<td>3/5</td>
<td>2/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>تیر</td>
<td>3/5</td>
<td>1/5</td>
<td>3/5</td>
<td>1/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>مرداد</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>شهریور</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>مهر</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>آبان</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>آذر</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>دی</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>بهمن</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>اسفند</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>سال</th>
<th>ماه</th>
<th>شاخص‌های هوشمندی</th>
<th>نرخ (درصد)</th>
<th>میانگین رطوبت(میلی متر)</th>
<th>نرخ (درصد)</th>
<th>میانگین رطوبت(میلی متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1378</td>
<td>1/7</td>
<td>فروردین</td>
<td>1/7</td>
<td>0/5</td>
<td>1/7</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>اردیبهشت</td>
<td>3/5</td>
<td>58/5</td>
<td>0/5</td>
<td>58/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>خرداد</td>
<td>3/5</td>
<td>2/5</td>
<td>3/5</td>
<td>2/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>تیر</td>
<td>3/5</td>
<td>1/5</td>
<td>3/5</td>
<td>1/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>مرداد</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>شهریور</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>مهر</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>آبان</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>آذر</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>دی</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>بهمن</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>اسفند</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
برآورد میزان زی توده و اثر شخصیت‌های هواشناسی روی فشار میگوی موزی در...

صفای و همکاران

براساس رفتار میگوها، پویه میگوی موزی و پراکنش آنها بعد از زمان پارگشته شلائی نسل جدید (recruitment) که بیشتر در مناطق ساحلی مشاهده می‌شود، ایشکوب‌های ۲ ۵ تا ۱۰ تا ۲۵ متر از ناحیه سیریک تا هوا نشته دریایی منطقه از نوع مکاترون و با مقدار ۱۷۵۰۰۰۰ تعداد گردید. سپس با استفاده از مساحت‌های هر ایشکوب در هر ناحیه که اطلاعات آن در جدول یک آورده شده است و همچنین با توجه به اطلاعات مربوط به نمونه‌برداری در صید‌گاه‌ها، میزان توده زنده (CPUE) تخمینی و سنی (لنجه‌های محلی) و میانگین میزان صید بر واحد تلاش آنها (بيوماس) بر حسب تن در هر زیر ایشکوب با استفاده از معادله شماره دو محاسبه گردید.

نتایج

اطلاعات مربوط به برآورد میزان توده زنده (بر حسب تن) و همچنین آمار میزان میگوی غیر سرتیز صید شده که توسط اداره کل شیلات استان هرمزگان ارائه شده است در طی سالهای ۱۳۷۸ تا ۱۳۸۱ در جدول شماره ۲ آورده شده است.

جدول ۳: میزان برآورد توده زنده میگوی موزی و میانگین صید شده آن در طی سالهای ۱۳۷۸ تا ۱۳۸۱

<table>
<thead>
<tr>
<th>میزان صید (الزمان)</th>
<th>توده زنده</th>
<th>سال</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۷۸</td>
<td>۹۶۴</td>
<td></td>
</tr>
<tr>
<td>۱۳۷۹</td>
<td>۱۵۰۹</td>
<td></td>
</tr>
<tr>
<td>۱۳۸۰</td>
<td>۱۰۰۹</td>
<td></td>
</tr>
<tr>
<td>۱۳۸۱</td>
<td>۱۸۳۱</td>
<td></td>
</tr>
</tbody>
</table>

براساس فرمول صید قابل مجاز (T.A.C) و همچنین در نظر گرفتن صید غیر مجاز قابیت‌ها میزان موزی با تغییرات ۵ درصد به عنوان میزان قابل پره برداری تعیین و به بخش اجزاء اعلام گردید.

براساس میانگین طول کارایی برأی جنس ماده میگوی موزی در منطقه‌ی یک (سریک تا کوه‌ستک) در زمان نمونه‌برداری و از طرفی مقادیر پارامترهای L50 برای میگوی موزی و همچنین طول بهینه...
کارآفرینی میکرو موزی ماده جهت ازارسایی فصل صید که برای ۲۷ میلیمتر و براساس ارزش زیستی (Biovalue) برای ۲۸ میلیمتر می‌باشد، زمان بهینه آغاز فصل صید میگو در منطقه یک (سرپرک تا کوهلستک) در سال‌های ۱۳۷۸، ۱۳۷۹، ۱۳۸۰ و ۱۳۸۱ پرتوی نتایج تاریخ‌های ۱۳۸۵/۸/۸ و ۱۳۸۶/۸/۸ بیشتر گردید.

نتایج حاصل از آزمون همبستگی پیرسون Pearson correlation بین میزان صید بر واحد تالش میگو موجود یا پارامترهای هواشناصی شامل میزان بارندگی، تبخیر، میانگین دما و رطوبت در جدول شماره ۴ آورده شده است.

جدول ۲: نتایج حاصل از آزمون همبستگی پیرسون بین میزان صید بر واحد تالش میگو موزی و شاخص‌های هواشناصی

<table>
<thead>
<tr>
<th>شاخص‌های هواشناصی</th>
<th>میانگین رطوبت</th>
<th>میانگین دما</th>
<th>تبخیر</th>
<th>صید بر ساعت</th>
<th>ضریب همبستگی</th>
<th>P. value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۰/۱۲۵</td>
<td>۰/۱۰۷</td>
<td>۰/۲۹</td>
<td>۰/۲۳۵</td>
<td></td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td></td>
<td>۰/۱۳۲</td>
<td>۰/۱۳۵</td>
<td>۰/۴۰</td>
<td>۰/۱۵۲</td>
<td></td>
<td>۰/۱۰۲</td>
</tr>
</tbody>
</table>

یک تطایفه معمول می‌گردد مقدار P value محاسبه شده در موارد میزان بارندگی و تبخیر همواره بزرگر از سطح آزمون (۰/۰۵) بوده و نشان دهنده این است که هیچکانه ارتباط معنی‌داری بین مقادیر بارندگی و تبخیر با میزان صید بر واحد تالش میگو موزی مشاهده نمی‌شود.

در حالیکه مقادیر P value محاسبه شده در موارد میانگین دما و رطوبت نشان دهنده این است که در سطح آزمون ۹۵ درصد ارتباط معنی‌داری بین مقادیر میانگین صید بر واحد تالش میگو موزی وجود دارد. نتیجه قابل توجه معنی‌دار دارد ارتباط بین میانگین دما با میزان CPUE حتی در سطح ۹۹ درصد می‌باشد.

بحث

پس از بررسی نتایج الگویی انجام شده و براساس نمونه‌برداری‌های که توسط شناور تحقیقاتی تجلی و شناورهای محلی از صیدگاه‌های استان و به روش مساحت جاروبردی در اعماق ۲ تا
پیروزی میزان زی توجه و اثر شاخص‌های هوش‌سنجی روم، ذخایر میکوئی موزی در..."}

"سایبان و ممکنات"
مشخص می‌سازد که اغلب مهاجرت‌های میگو در ماه‌هایی بین اوایل دی تا اوایل فروردین ماه‌های زمانی به در فشرده‌ترین‌ترین صورت گرفته در خصوص اثر بارندگی در وقایع و میزان صد میگوی موزی دو اثر مختلفcreating نشان می‌دهد. مورد اول اثرات بارندگی و بدنانگی ابر ورودی چرخه‌های در با است که سبب کاهش ترخ بقاء بست و به روز میگوی که به تاریکی نشست کرده (ورود به مرحله زنگی) کننده می‌شود که در نهایت سبب کاهش صید این گونه شده است و اثر دوم، نقش مشت بارندگی در افراد مهاجرت افراد حوان و بیوسن آنها به جمعیت مادره اینها در آب‌های دور از ساحل می‌باشد (Evans et al., 1997) با توجه به موارد فوق مشاهده می‌شود که اثر بارندگی بیشتر روی مهاجرت افراد حوان میگوی به آب‌های دور از ساحل میزان مهاجرت نسل خود می‌باشد. این در حالیست که با توجه به شرایط اقلیمی استان هرمزگان و با این فرض که میگوی تولید شده در فصل بی‌بار در فصلی ماهان خردسال ماه تا مرداد ماه احتمالاً به جمعیت مادرشان (مهاجرت از خوزستان به سمت دریا) می‌پیوندند، ولی مشاهده می‌شود که در این ماه‌ها بی‌بار است و شتر ماهی این‌بله سال و در طی مدت مورد بررسی (از سال 1379 تا 1381) میزان بارندگی در حداکثر میزان خود در طول سال بوده است و همین‌طور شاید یکی از دلایل اصلی عدم مشاهده ارتباط بین میزان بارندگی و میزان CPUE میگوی فوق الذکر بوده باشد.

در خصوص سایر شاخص‌ها مشخص می‌شود که بین پارامترهای دما، رطوبت ماهانه و میزان CPUE میگوی موزی ارتباط معنی‌داری مشاهده می‌شود. مشخص شده که فاکتورهای محیطی متفاوت می‌تواند بر روی مهاجرت و نهایتاً توزیع و پراکنش میگویی جوان تأثیرگذار باشد و با این‌حال شدت که به عوامل خود نیز دارای اثرات منفی روی هم هستند. همچنین مشاهده شده که چرخه‌های خشک‌دما روی بسیاری از خصوصیات جمعیت میگویی از جمله نوسانات در توزیع عمق آنها، پراکنش نسبی جنسیتی و حتی نگهداری در الگو و رفتارهای گروهی میگوی تأثیرگذار بوده است (Garcia & Le Reste, 1981).
جانبه خود امکان اجراء این پژوهش را فراهم نمودند و گرددانی می‌نمایم. همچنین از سرکار خانم
اله عباسی که زحمت نابی این مقاله را داشته‌اند کمال تشکر را داریم.

منابع
صفایی، م. و کامرانی، ا.، ۱۳۷۷. گزارش نهایی پژوهش پژوهش اعلام زمان شروع و خاتمه سیزد و تعبین بوماس
میگو میکروکلاسیکال استان هرمزگان در سال ۱۳۷۷، مجموعه تحقیقات و آموزش شیلات ایران، مرکز
تحقیقات شیلاتی دریای عمان، صفحات ۱ و ۲.

صفایی، م.، ۱۳۷۹. گزارش نهایی پژوهش مدیریت ذخایر میگو در استان هرمزگان، پژوهشکده اکولوژی خلیج فارس و
دریای عمان (فاز ۱). مجموعه تحقیقات و آموزش شیلات ایران، پژوهشکده اکولوژی خلیج فارس و
دریای عمان. ۱۳۷۸-۸۱. معاونت صید و بنادر صیادی اداره کل
شیلات هرمزگان.

prawn Penaeus merguiensis (de man) in the gulf of Papue: estimation of maximum
sustainable yield and modelling of yield, effort and rainfall, national fisheries authoritative,
research and management branch, part moreshy, NCD.

Fischer, W. and Bianchi, G. , 1984. FAO species identification sheets for fishery purposes

Garcia, S. and Le Resete, L. , 1981. Life cycles, dynamics, exploitation and management of

Sparre, P. and Venema, C. , 1992. Introduction to tropical fish stock assessment, food and

Staples, D.J. and Vance, D.J. , 1986. Emigration of juvenile banana prawns Penaeus
merguiensis from a mangrove estuary and recruitment of offshore areas in the wet-dry
tropics of the Gulf of carpentaria, Australia, Marine Ecology-Progress series, Vol.27,
pp.239-252.