برآوردهزمان زیتونه واثر شاخصهای هواشناسی (Penaeus merguiensis) بر میگوی موزی (Penaeus merguiensis) در آبهای ساحلی هرمزگان

محسن صفایی، احسان کامرانی، مهدی مولاهی

Mohsen Safai@yahoo.com

پژوهشکده اکولوژی خلیج فارس و دریای عمان، بندرعباس، سند کلیه بسته: 1592

چکیده

با بررسی های عمل آمده که بصورت ماهانه و در سالهای 1378-1381 توسط شناور تحقیقاتی تجلی و چهار نورونت شناور محلی و به روش مساحت جاروب شده در آبهای منطقه بندرعباس تا سیریک صورت گرفت، مشخص گردید که زمان بهبود آغاز فصل صید در استان هرمزگان در سالهای 1378، 1379، 1380 و 1381 بر ترتیب 7/8/7/12، 7/7/7/10 و 7/7/7/6 بوده و میزان زیتونه در سالهای مذکور بر ترتیب 31/71 زیتونه برای میگوی موزی (Penaeus merguiensis) در سالهای مذکور، 17/0/17، 18/0/25 و 17/0/17 تا با تغییرات ± درصد برآورده گردید.

نتایج حاصل از آزمون همبستگی پیرسون (Pearson correlation) بین میزان سر در بر واحد نشان ارتباط معنی‌دار وجود دارد. مدل معادله پیش‌بینی P value محاسبه شده (5<0.05)، نشان می‌دهد که بین میزان CPUE میگو و میزان بارندگی و تبدیل هیج (Penaeus merguiensis) زیتونه، شاخصهای هواشناسی، هرمزگان ایران.
مقدمه
توسعه یاپاداری شیلاتی و بهره‌برداری از منابع آبی کشور جهت تأمین بخشی از پروتئین مورد نیاز جامعه، نیاز به برقراری نظام مناسب مدیریتی جهت بهره‌برداری بهینه از آب‌یابی می‌باشد.
این‌جا تعداد کشور شامل خلیج فارس و دریای عمان از نظر ذخایر آبیان، از ظرفیت نسبتاً بالایی برخوردار است و از میان گونه‌های مختلف جانوری در این منطقه، میگوی آزمایش ویژه‌ای برخوردار می‌باشد.
این پژوهش میزان توده و زمان بهینه آغاز فصل صید را با روش‌های رایج در مدیریت ذخایر محاسبه نموده و میزان آن‌ها در چهار سال متوالی از سال ۱۳۸۸ تا سال ۱۳۸۱ برآورد نموده است. همچنین اثرات عوامل محیطی روی ذخایر این گونه مورد بررسی قرار گرفته است.
میگوی خانواده Penaeidae متعلق به راسته Penaeus merguiensis به دنبال مطالعات صورت گرفته، میگوی موزی نام علمی میگوی Metapeneaus affinis گونه‌ غالب است. هم‌زمان شناخته شده است سایر گونه‌ها شامل میگوی سفید (سرتری) پیش‌مرغ نام‌دهنده است. بزرگ‌ترین سرخیلی (با نام محلی چیکو) M. stebbingie میگوی برز سبز M. semisulcatus و میگوی خنجری با نام محلی پنکیک با گنگ‌کتا یا P. indicus هندی در Parapeneaopsis stylifera رده‌های بعدی از نقطه پراکنش قرار می‌گیرند (صارفی و کامرانی، ۱۳۷۷).
این پژوهش میزان توده و زمان بهینه آغاز فصل صید را با روش‌های رایج در مدیریت ذخایر محاسبه نموده و میزان آن‌ها در چهار سال متوالی از سال ۱۳۸۸ تا سال ۱۳۸۱ برآورد نموده است. همچنین اثرات عوامل محیطی بر روی ذخایر این گونه نیز مورد بررسی قرار گرفته است.
مواد و روش کار
برای نمونه برداری از صیدگاه‌های استان هرمزگان از شناور تحت‌汶ی، تجزیه و تحلیلی تجربی به یکدستی‌گاه توزین، کشف و دستگاه نقطه‌یابی ماهواره‌ای و اکوسندر استفاده گردید که مشخصات شناور و توزین آن به شرح زیر می‌باشد:

الف-مشخصات شناور:

<table>
<thead>
<tr>
<th>مشخصات شناور</th>
<th>شناور</th>
<th>متر</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول شناور</td>
<td>7/8</td>
<td></td>
</tr>
<tr>
<td>عرض شناور</td>
<td>6/78</td>
<td></td>
</tr>
<tr>
<td>ارتفاع ناکلاتن</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>آبستر</td>
<td>2/30</td>
<td></td>
</tr>
</tbody>
</table>

ب-مشخصات تور کف روب:

<table>
<thead>
<tr>
<th>مشخصات تور کف روب</th>
<th>متر</th>
</tr>
</thead>
<tbody>
<tr>
<td>انتقال چشمه بصورت کشیده در کیسه تور</td>
<td>2</td>
</tr>
<tr>
<td>انتقال چشمه بصورت کشیده در بالهای تور</td>
<td>4/4</td>
</tr>
<tr>
<td>طول طابوقمانی</td>
<td>40</td>
</tr>
<tr>
<td>طول زنجیر تحت‌تکانی</td>
<td>24</td>
</tr>
</tbody>
</table>

نمونه برداری بصورت ماهانه از خرداد ماه 1381 و از ایستگاه‌های از قبل تعیین شده بوسیله تور تراز کف و به روش مساحت جزیره شده (Swept area) صورت گرفت. مدت ماندگاری تور در آب معمولاً یک ساعت انتخاب شده و گاهی حداکثر به دو ساعت نیز رسیده است. در هر ایستگاه، اطلاعاتی از قبیل موقعیت جغرافیایی منطقه تور، رزی و تورکشی شده، عمق آب، مدت زمان تورکشی، میزان کل صید میگوی موزی و درصد وزنی آن در کل صید در فرم‌های مربوطه ثبت گردید.

محدوده عملیاتی این پژوهش از لحاظ موقعیت جغرافیایی از سیریک با موقعیت جغرافیایی ۲۴°۲۶′ عرض شمالی و ۶۰° ۵۵′ طول عرض آغاز و تا منطقه تولا و کشتی سوخته به موقعیت جغرافیایی ۳۷°۰۵′ عرض شمالی و ۶۰° ۵۰′ طول عرض اتمداد داشت که در هر ماه مورد بررسی قرار گرفت (شکل 1).

![نقشه جغرافیایی استگاه‌های واقع در منطقه بند تولای سیریک](www.SID.ir)
مزیزان توده زنده (بیوماس) آبزیان در نواحی از دریا که جنس بست آنها ترم بوده بطوریکه به راحتی بتوان در آن منطقه به عملیات تراکش پرداخت از روش مساحت جاروبردی تخمین می‌گردد که رابطه
(Sparre and Venema, 1992)
معادله ۱)که در این رابطه

\[B = \frac{(Cw/a) A}{X_1} \]

که در این رابطه

B: میزان توده زنده (بیوماس)
Cw/a: میانگین صید بر حسب وزن کل میگوی صید شده در مدت زمان یک ساعت بر مساحت تورکشی
CPUE/a: شده می‌باشد (شکل ۲) که به چای آن می‌توان از صید بر واحد تراش CPUE بر مساحت یعنی استفاده نمود.

A: کل مساحت منطقه مورد بررسی که قبل از توسط دستگاه پلیانیمتر دستی مدل ۳۱۷۳ Haff تعیین گردید (جدول ۱).

![Swept area](image)

(Sparre & Venema, 1992)
جدول ۱: مساحت ناحیه‌ها و اشکال‌های مورد بررسی

<table>
<thead>
<tr>
<th>ناحیه</th>
<th>اشکال‌های مورد بررسی</th>
<th>مجموع</th>
<th>زیراشکاب-۲:۰۲ متر</th>
<th>زیراشکاب-۱:۰۲ تا ۲ متر</th>
<th>زیراشکاب-۰:۲۰ تا ۱ متر</th>
<th>تعداد</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ناحیه ۱</td>
<td>۲۰/۱۹</td>
<td>۲۴</td>
<td>۱۷/۰۲</td>
<td>۱۷/۰۲</td>
<td>۲۴/۰۲</td>
<td>۱۷/۰۲</td>
<td>۱۷/۰۲</td>
</tr>
<tr>
<td>ناحیه ۲</td>
<td>۲۰/۱۹</td>
<td>۱۷/۰۲</td>
<td>۲۴/۰۲</td>
<td>۱۷/۰۲</td>
<td>۱۷/۰۲</td>
<td>۱۷/۰۲</td>
<td>۱۷/۰۲</td>
</tr>
<tr>
<td>ناحیه ۳</td>
<td>۲۱/۰۲</td>
<td>۱۷/۰۲</td>
<td>۲۴/۰۲</td>
<td>۱۷/۰۲</td>
<td>۱۷/۰۲</td>
<td>۱۷/۰۲</td>
<td>۱۷/۰۲</td>
</tr>
<tr>
<td>ناحیه ۴</td>
<td>۲۴/۰۲</td>
<td>۱۷/۰۲</td>
<td>۲۴/۰۲</td>
<td>۱۷/۰۲</td>
<td>۱۷/۰۲</td>
<td>۱۷/۰۲</td>
<td>۱۷/۰۲</td>
</tr>
<tr>
<td>مجموع</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

قانون ذیل محاسبه می‌گردد: (Sparre & Venema, 1992)

\[a = D^*h^*X^2 \]
\[D = V*t \]

(معادله دو)

یا

\[a = V*t^*h^*X^2 \]

که در این مyle:

\[V = \text{سرعت شناور مجزه به تور ترال در زمان تور کشی} \]

\[X = \text{طول طناب بالایی تور ترال} \]

\[X = \text{نسبت عرض تور ترال، تقسیم بر طول طناب بالایی تور (نسبت باز شدگی دهانه تور) که در آب‌های جنوب شرق آسیا مقدار آن بین ۴/۳ تا ۶/۴ را دارد شده است} \] (Sparre & Venema, 1992)

آن‌های پارامتر معادله یک X1 می‌باشد که عبارت از میزان میگوهایی است که در مرز تورکشی در نور به دام افتاده‌اند. در آب‌های جنوب شرقی آسیا مقدار آن را بین ۵/۵ تا یک انتخاب می‌کنند (Sparre & Venema, 1992)

بنظر تعبیر بهترین و یا به عبارتی مناسب‌ترین زمان آغاز فصل سیب میگو در استان بطوریکه از نظر بوم شناسی و زیست شناختی لطمه‌ای به جمعیت این آبزی وارد نشده و از طرفی بتوان از نظر کمیت
پیشترین و از نظر کیفیت بهترین محصول را برداشت نمود، با استفاده از مدل طراحی شده در سیستم برنامه نویسی کامپیوتری Brigham به روش شناسی طول بُرونی گسیشتی کاراپاس (سرکنسیون) می‌گویند که بهترین معیار جهت اندازه‌گیری می‌باشد اقدام گردد (کامرانی و همکاران، ۱۳۷۵). سپس با توجه به میانگین طول نمونه‌های بدست آمده (ل) قیل از آن‌ها فاصلهٔ صید و با استفاده از معادلهٔ سیل (Sparre & Venema، ۱۹۹۲) نمونه‌برداری آزاد سازی فصل صید می‌گویم را تعیین می‌کنیم.

\[\Delta T = \frac{T_2 - T_1}{1} \ln \left(\frac{L_\infty - L_1}{L_\infty - L_2} \right) \]

(معادله سیل)

که در این معادله:

- \(\Delta T \) اختلاف زمان
- \(T_1 \) زمان نمونه‌گیری
- \(T_2 \) زمان بهینه جهت صید

طول بهینه جهت استفادهٔ کاری در صورت امکان رشید نامناسبی می‌تواند داشته باشد، که برای میکوی موزی ماده در طول کاراپاس ۸۰ میلی‌متر در سال محاسبه شده است (صفایی، ۱۳۷۹).

ضریب رشد آبی که نشان دهندهٔ این است که آبی با چه سرعتی به \(L_\infty \) رسید که برای میکوی موزی ماده برابر ۱/۸ در سال محاسبه شده است (صفایی، ۱۳۷۹).

\[L = \text{میانگین طولی نمونه‌های گرفته شده در زمان} \]

برای تعبیه اثر شایع‌های هوشمندی روی ذخایر میکو، اطلاعات هوشمندی شامل میزان بارندگی، تبخیر، میانگین دما و میانگین رطوبت در مناطق بندرسایی‌ها و مینابه به صورت ماهانه و از خرداد ماه ۱۳۷۸ لگیت مهر ماه ۱۳۸۱ با میزان صید بر واحد تلاقی برای گونه میکوی موزی مورد بررسی قرار داده شد (جدول ۳). جهت آنالیز داده‌ها از آزمون همبستگی پیرسون و به کمک برنامه Pearson correlation SPSS.9 انجام گردید.
جدول ۲: اطلاعات ماهانه شاخص‌های هوشمندی (استخراج از اداره کل هوشمندی)

<table>
<thead>
<tr>
<th>سال</th>
<th>۱۳۷۶</th>
<th>۱۳۷۷</th>
<th>۱۳۷۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص‌های هوشمندی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فرودی</td>
<td>52</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>ارزه‌پرست</td>
<td>59</td>
<td>58</td>
<td>60</td>
</tr>
<tr>
<td>خرداد</td>
<td>39</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>تیر</td>
<td>65</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>مرداد</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>شهریور</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>سال</th>
<th>۱۳۷۶</th>
<th>۱۳۷۷</th>
<th>۱۳۷۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص‌های هوشمندی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فرودی</td>
<td>52</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>ارزه‌پرست</td>
<td>59</td>
<td>58</td>
<td>60</td>
</tr>
<tr>
<td>خرداد</td>
<td>39</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>تیر</td>
<td>65</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>مرداد</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>شهریور</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شاخص‌های هوشمندی</th>
<th>۱۳۷۶</th>
<th>۱۳۷۷</th>
<th>۱۳۷۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>فرودی</td>
<td>63</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>ارزه‌پرست</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>خرداد</td>
<td>37</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>تیر</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>مرداد</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>شهریور</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شاخص‌های هوشمندی</th>
<th>۱۳۷۶</th>
<th>۱۳۷۷</th>
<th>۱۳۷۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>فرودی</td>
<td>63</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>ارزه‌پرست</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>خرداد</td>
<td>37</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>تیر</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>مرداد</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>شهریور</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
</tbody>
</table>
برآورد میزان توده و اثر مشخصه‌های مواشناسی روی ذخایر میکو موزی در...

صفائی و همکاران

براساس رفتار میگوها، پویزه میگوی موزی و پراکنش آنها بعد از زمان بازگشت شناخت نسل جدید (recruitment)) که بیشتر در مناطق ساحلی مشاهده می‌شود، اشکوه‌بای‌های ۲، ۵، ۱۰ و ۲۰ نا۵۷۵۰۰۰
کاراکتر میکوی موزی ماده جهت آزادسازی فصل صید که برابر 27 میلی‌متر و براساس ارزش زیستی (Biovalue) برابر 28 میلی‌متر می‌باشد، زمان بهینه اغاز فصل صید میگو در منطقه یک (سری‌ریک‌تا کوه‌ستان) در سال‌های 1378، 1379، 1380 و 1381 بترتیب تاریخ‌های 27/6/1378، 27/7/1379، 27/6/1380 و 27/6/1381 پیش‌بینی گردید.

نتایج حاصل از آزمون همبستگی پیرسون Pearson correlation بین میزان صید بر واحد تلاقی میگو و موزی با یک‌نمره‌های هواشناصی شامل میزان بارندگی، تبخیر، میانگین دما و رطوبت در جدول شماره 2 آورده شده است.

جدول 2: نتایج حاصل از آزمون همبستگی پیرسون بین میزان صید بر واحد تلاقی میگو و موزی و شاخص‌های هواشناصی

<table>
<thead>
<tr>
<th>شاخص‌های هواشناصی</th>
<th>میانگین رطوبت</th>
<th>میانگین دما</th>
<th>تبخیر</th>
<th>صید بر واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب همبستگی</td>
<td>0/1325</td>
<td>0/1027</td>
<td>0/125</td>
<td>0/236</td>
</tr>
<tr>
<td>P. value</td>
<td>0/1299</td>
<td>0/1027</td>
<td>0/125</td>
<td>0/236</td>
</tr>
<tr>
<td>تعداد</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

همانطور که ملاحظه می‌گردد مقدار P value محاسبه شده در موارد میزان بارندگی و تبخیر همواره بزرگ‌تر از سطح آزمون (5/000) بوده و نشان دهنده این است که هیچ‌کچه‌نتیجه ارتباط معنی داری بین مقادیر بارندگی و تبخیر با میزان صید بر واحد تلاقی میگو موزی مشاهده نمی‌شود.

مقدار P value در حالیکه مقادیر محاسبه شده در مورد میانگین دما و رطوبت نشان دهنده این است که در سطح آزمون 15 درصد ارتباط معنی‌داری بین این مقادیر با میزان صید بر واحد تلاقی میگو موزی وجود دارد. نکته قابل توجه دار بودن ارتباط بین میانگین دما با میزان CPUE حتی در سطح 99 درصد می‌باشد.

بحث

براساس آخرين بررسی‌های تحقیقاتی انجام شده و براساس نمونه‌برداری‌های که توسط شناور تحقیقاتی تجلی و شناور‌های محلی از صید‌گاه‌های استان و به‌روش مساحط جاری‌شده در اعماق ۲ تا 57
برآورد میزان زی توده و اثر شاخص‌های هوشمندی روی ذخایر میگوی موزی در...

صماین و ممکان

۲۰ متری انتخاب گردد. میزان توده زندگی میگو در طی سال‌های ۱۳۷۸، ۱۳۷۹،۱۳۸۰ و ۱۳۸۱ براورد گردید. در نظر گرفتن فرمول T.A.C و همچنین در نظر گرفتن صدای غیرمجزا قایق‌های که در تمامی طول سال و بیشتر قبل از آغاز فصل صید میگو در استان انجام می‌گیرد و با توجه به اهمیت حفظ ذخایر این گونه کوتاه عمر و میزان صید قابل بهره برداری میگوی موزی با تغییرات ۱۰ درصد افزایش گردید.

آمار و اطلاعات زور روز صید میگوی در طول فصل صید دروسط واحد طرح و برنامه اداره کل شیلات ارائه گردید. (گزارش عملکرد صید میگو در سال‌های ۱۳۷۸، ۱۳۷۹،۱۳۸۰ و ۱۳۸۱ اداره کل شیلات هرمزگان)، میزان صید میگوی غیر سریز در طی فصل صید میگو در سال‌های مذکور را نشان می‌دهد. با توجه به آمار صید ارائه شده و بررسی‌های کارشناسان این پژوهش که با استقرار بر روی شناورهای فعال میگوی در طول فصل صید اقدام به بررسی ترکیب و درصد صید میگوی موزی، است. می‌توان به موارد زیر اشاره کرد:

جمع‌آوری میگوی غیرسرتیز که خود شامل میگوهای موزی (P. merguiensis) و سفید هندی (P. indicus) و درصد اندکی از میگوهای سفید (سرتیز) درشت می‌باشد. توسعه کاربرد گرین آموز حکم نمایندگان بسیاری (میکویی) در طول فصل صید صید میگوی است.

بررسی‌های عملکرد میکویی در طول فصل صید میگوی در استان نشان می‌دهد که میکویی بسیاری و با توجه به درصد صید آنها در طول فصل صید به ترتیب ۱۹۲،۷۷ و ۱۵۴ درصد است. میکویی استحصال شده در سال‌های ۱۳۷۸،۱۳۷۹،۱۳۸۰ و ۱۳۸۱ ۱۱۴ درصد میکویی استحصال شده در استان را به خود اختصاص داده است. از طرفی میکویی هندی نیز درصد پایینی از میکویی غیر سریز در استان را به خود اختصاص می‌دهد. همچنین میزان ناهنجاری از میکویی غیرسرتیز بارزی جمع آوری شده، شامل میگوهای درشت سفید (سرتیز) بوده که اکثراً در طول فصل صید توسط شناورهای بسیار مشترک و بر نظر به پیشگیرداری و عدم اگاهی ملوانان آنها، این امر صورت گرفته است.

محاسبه شده برای میکوی موزی در مورد دو شاخص هوشمندی (P. value) با توجه به مقادیر P می‌باشد که میکویی انتخاب می‌شود، همچنین انتخاب معنی‌داری بین شاخص‌های فوق با میران می‌باشد. در حالت ساده، میکویی وجود می‌دارد. این در حالی است که مطالعات انجام شده بین زمینه‌های میکویی از قبلی میزان بارندگی، روز مهارته و در نهایت میزان ذخایر میکویی جوان تأثیر زیادی دارد. بطوریکه این میزان به تباهی تا بیش از ۷۰ درصد بر روی نرخ مهاجرت‌های میکویی جوان گونه میکوی موزی (P. merguiensis) نتایج‌گذاری پایدار است. همچنین این مطالعات که در چهار سال در منطقه جنوب شرقی خلیج کارپاتیا در کشور استرالیا صورت گرفته است.
مشخص می‌سازد که اغلب مهاجرت‌های میکو در ماه‌هایی پس از آوایل دو تا پایان فروردین ماه بین زمانی که درصد از بارندگی سالانه وجود دارد صورت می‌گیرد (Staples & Vance, 1986) از طریق مطالعات صورت گرفته در خصوص اثر بارندگی بر روی فراوانی و میزان صد میکوی موزی دو اثر مختلف را نشان می‌دهد. مورد اول اثرات بارندگی و بدنانی آن و رود بیشتر اب رودخانه به دریا است که سبب کاهش نرخ بقای بست لوراهای میکو که باتن کمترین نشست کردند (رود به مرحله زندگی کفی) می‌شود، که در نهایت سبب کاهش صید این گونه شده است و اثر دوم، نقش منبت بارندگی در افزایش مهاجرت افراد جوان و بیوسن آنها به جمعیت مادری آنها در آب‌های دور از ساحل می‌باشد (Evans et al., 1997) با توجه به موارد فوق مشاهده می‌شود که اثر بارندگی بر روی مهاجرت جوان میکویی به آب‌های دور از ساحل بیان مهاجرت نشل بعدی می‌باشد. این در حالیست که با توجه به شیار هندی و استان هرمزگان و با این فرض که میکوهای تولید شده در فصل بهار در فاصله زمانی خردسالی ماه تا مروارده ماه احتمالاً به جمعیت مادرانشان (مهاجرت از خوزستان به سمت تربیت) می‌پیوندند، ولی مشاهده می‌شود که در این ماه‌ها باید در شش ماهه این در سال و در مدت مورد بررسی (از سال 1378 88 تا 1381 18) میزان بارندگی در حداقل میزان خود در طول سال بوده است و همین امر شاید یکی از دلایل اصلی عدم مشاهده ارتباط بین میزان بارندگی و میزان CPUE میکوی فوق الذکر بوده باشد. در خصوص سایر شاخص‌ها مشخص می‌شود که بین یاربتره‌های دما، رطوبت ماهه و میزان CPUE میکوی موزی ارتباط معنی‌داری مشاهده می‌شود. مشخص شده که فاکتورهای محیطی متعددی می‌تواند بر روی مهاجرت و نهایتاً توسعه در پراکنش روزهای میکوهای جوان تأثیرگذار باشد و با این عوامل نیز دارای اثرات معنی‌داری هستند. همچنین مشاهده شده که چرخه‌های فصلی دما روزی بسیاری از خصوصیات جمعیت میکوها از جمله نوسانات در توسعه عمق آنها، پراکنش نسبی جنس‌ها و حتی تغییرات در اکو و رفتار دو گروهی میکوها تأثیرگذار بوده است (Garcia & Le Reste, 1981).
جانبه خود امکان اجراء این پژوهش را فراهم نمودند تشكیر و قدردانی مي‌نمایيم. همچنين از سرار خانم
الله عباسی که زحمت ناپایين مقاله را داشته‌اند کمال تشکر را داريم.

منابع

صفاتي، م. و کامراني، ا.، 1377. گزارش نهایي پروژه اعلام زمان شروع و خاتمه صيد و تعیين بوماس
میگوهاي تجاری استان هرمزگان در سال 1377، مؤسسه تحقیقات و آموزش شيلات ايران، مركز
تحقیقات شيلاتی درپلا عمان، صفحات 1 و 2.

صفاتي، م.، 1379. گزارش نهایي پروژه مدیریت ذخایر میگوهاي مهم تجاری با تأکید بر عوامل مؤثر
هوانسابي (فزار 1). مؤسسه تحقیقات و آموزش شيلات ايران، پژوهشگاه اکولوژي خليج فارس و
درپلا عمان.

گزارش عملکرد صيد میگو در استان هرمزگان، 1378-81، معاونت صيد و بنادر صيد، اداره کل
شيلات هرمزگان.

prawn Penaeus merguiensis (de man) in the gulf of Papue: estimation of maximum
sustainable yield and modelling of yield, effort and rainfall, national fisheries authority,
research and management branch, part moreshy, NCD.

Fischer, W. and Bianchi, G. , 1984. FAO species identification sheets for fishery purposes

Garcia, S. and Le Resete, L., 1981. Life cycles, dynamics, exploitation and management of

Sparre, P. and Venema, C., 1992. Introduction to tropical fish stock assessment, food and

Staples, D.J. and Vance, D.J., 1986. Emigration of juvenile banana prawns Penaeus
merguiensis from a mangrove estuary and recruitment of offshore areas in the wet-dry
tropics of the Gulf of carpentaria, Australia, Marine Ecology-Progress series, Vol.27,
pp.239-252.