برآورندی میزان زیست توده و اثر شاخص‌های هوشناصی

Penaeus merguiensis (موزی)

در آبهای ساحلی هرمزگان

محمدمصطفی سعیدی، احسان کامرانی، محمد منصوری

Mohsen Safai@yahoo.com

پژوهشکده اکولوژی خلیج فارس و دریای عمان، بندر عباس صندوق بسته: 1592

چکیده

با بررسی‌های عملی آمده‌که بصورت یک‌تایی و در سال‌های 1378 تا 1381 توسط شناور تحقیقاتی نجاتی و چهار تردد شناور محلی و به روش مساحت جلوپ شده در آبهای منطقه بندرعباس تا سیریک صورت گرفته، مشخص گردید که زمان بهینه آغاز فصل صید در استان هرمزگان در سال‌های 1379، 1380 و 1381 (Biomass) برتری ۱۷/۷/۷/۶/۱۲/۷، ۷۹/۷/۱۰ و ۸۰/۷/۲۶ توپ و میزان زیست توده *Penaeus merguiensis* در سال‌های مذکور برتری ۱۷/۷/۶/۱۲/۷، ۷۹/۷/۱۰ و ۸۰/۷/۲۶ تا ۱۵۰/۷/۲۵ تا ۱۶۰/۷۶ درصد با تغییرات ۱۵ ± درصد برآورد گردید.

نتایج حاصل از آزمون همبستگی بیرسون (Pearson correlation) بین میزان مورد بر واحد تلاقی (CPUE) ماهانه میگوی موزی و شاخص‌های هوشناصی در سال‌های مورد بررسی ارتباط معنی‌دار وجود دارد. همچنین با توجه به محاسبه P value شده (6.5/0>P)، نشان می‌دهد که بین میزان CPUE و معنی‌داری دمای و رطوبت ارتباط معنی‌داری ۵۲ درصد، در حالی که بین میزان میگو و میزان باارزشی و تبخیر هیچ گونه ارتباط معنی‌داری مشاهده نشد. *Penaeus merguiensis*، زیست توده، شاخص‌های هوشناصی، هرمزگان، ایران
موارد میزان زی تبدیل و اثر شاخص‌های مواشانستی روز ذخایر مگیوی موزی در...

صفایی و مکران

مقدمه

توسعه پایدار شیلاتی و پهربرداری از منابع آبی دو کشور جهت تأمین بهبود از پروتئین مورد نیاز جامعه به برقراری نظام مناسب مدیریتی جهت پهربرداری بهبود از آبزیان می‌باشد.

آماده‌ی جنوب کشور شامل خلیج فارس و دریای عمان از نظر ذخایر آبزیان از طرفی نسبتاً بالایی برخوردار است و از میان مگیویان مختلف جانوری در این منطقه میگیوی آزمدت و پژوهان برخوردار می‌باشند.

این پژوهش میزان توده و زمان بهبود آغاز فصل صید را با روشهای رایج در مدیریت ذخایر محاسبه نموده و میزان آن در جهار سال متوالی از 1378 تا 1381 براورد نموده است. همچنین اثرات عوامل محیطی روی ذخایر این گونه مورد بررسی قرار گرفته است.

میگیویان خانواده Penaeidae

ساحلی بوده و اغلب در نواحی گرمسیری و نیمه گرمسیری مشاهده می‌شوند. اغلب اوقات میگیو در مناطقی که تحت تأثیر دلتاها، مصب (خوراه‌ها) یا مرداداها می‌باشد و بستر آنها معمولاً گیا و گیل که جنگی از مواد آنی می‌باشد زندگی می‌کند، علاوه بر این میگیوها به خشکی چرب‌گری خود را کم و بیش در آب‌های لب شور می‌گذرانند (1981).

(Fischer & Bianchi, 1984)

چند که این امر برای تمام گونه‌های این خانواده صادق نیست (1984).

به دنبال مطالعات صورت گرفته، میگیوی موزی با نام علمی Peneaus merguiensis غلب استان میگیوی Metapenaeus affinis می‌گردد. شناخته شده است. سایر گونه‌ها شامل میگیوی سفید (سرترین) یا P. semisulcatus میگیوی بریزی سری M. stebbingi می‌باشد و میگیوی خنجری با نام محلی گنجک یا گنجک با نام P. indicus در Parapeneaopsis stylistera به نظر نشان دهنده‌ی یک نظر پراکنش قرار می‌گیرد (صفایی و کامرانی، 1377).

رهنهای بعدی از نقطه نظر پراکنش قرار می‌گیرند. در میزان توده و زمان بهبود آغاز فصل صید را با روشهای رایج در مدیریت ذخایر محاسبه نموده و میزان آن در جهار سال متوالی از 1378 تا 1381 براورد نموده است. همچنین اثرات عوامل محیطی بر روی ذخایر این گونه نیز مورد بررسی قرار گرفته است.
مواد و روش کار

برای نمونه برداری از صیدگاههای استان هرمزگان از شناور تحقیقاتی نجیب مجرز به یکدستگاه تور تراز کف و دستگاه نقطه یاب ماهوارهای و اکوسندر استفاده گردید که مشخصات شناور و تور آن به شرح ذیل می‌باشد:

<table>
<thead>
<tr>
<th>ب - مشخصات تور کف روب:</th>
</tr>
</thead>
<tbody>
<tr>
<td>اندازه چشم‌های تصویر کشیده در کیسه تور:</td>
</tr>
<tr>
<td>2 ۵/۲۶ متر</td>
</tr>
<tr>
<td>اندازه چشم‌های تصویر کشیده در بالدهای تور:</td>
</tr>
<tr>
<td>۴/۴ سانتیمتر</td>
</tr>
<tr>
<td>طول گرفت نوکرای:</td>
</tr>
<tr>
<td>۳۰ متر</td>
</tr>
<tr>
<td>طول زنجیر تحت‌نیایی:</td>
</tr>
<tr>
<td>۲۳ متر</td>
</tr>
</tbody>
</table>

الف - مشخصات شناور:

<table>
<thead>
<tr>
<th>طول شناور:</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۸/۴۶ متر</td>
</tr>
<tr>
<td>عرض شناور:</td>
</tr>
<tr>
<td>۶/۷۸ متر</td>
</tr>
<tr>
<td>وزن ناف الغای:</td>
</tr>
<tr>
<td>۸۰ کیلوگرم</td>
</tr>
<tr>
<td>آب‌سوز:</td>
</tr>
<tr>
<td>۲/۳۰ متر</td>
</tr>
</tbody>
</table>

نمونه‌برداری بصورت ماهانه از خرداد ماه ۱۳۸۱ و از استان‌هایی از قبل تعیین شده به‌وسیله تور تراز کف و هر روش ساحلت جاروب شده (Swept area) صورت گرفت. مدت ماندگاری تور در آب معمولاً یک ساعت انتخاب شد و گاهی حداقل به دو ساعت نیز رسیده است. در هر این‌گونه اطلاعاتی از قبیل موقعیت جغرافیایی منطقه تور ریزی و نورکشی شده، عمق آب، مدت زمان تورکشی، میزان کل صدها مووزی و دیده بودن آن در کل صدها مربوطه ثبت گردید.

محدوده عملیاتی این پژوهش از لحاظ موقعیت جغرافیایی از سمت جنوب ۲۴ دقیقه عرض شمالي و ۳۵ دقیقه طول شرقی آغاز و تا منطقه گران کشته سوخته به موقعیت جغرافیایی ۷۰ دقیقه عرض شمالي و ۵۰ دقیقه طول شرقی امتداد داشت که در هر ماه مورد بررسی قرار گرفت (شکل 1).

![شکل 1: نقشه جغرافیایی استان‌هایی واقع در منطقه بند‌های بسیار سیریک](www.SID.ir)
پراورده میزان زی توده و انرژی شاخه‌های موادهاترسی روی ذخایر میکوئی موزی در...

میزان توده زنده (بیوماس) آبزیان در نواحی از دریا که جنس بستر آنها ترم بوده بطوریکه به راحتی
بتوان در آن منطقه به عملیات ترارکشی پرداخت، از روش مساحت جاروبردی شده تعیین می‌گردد که رابطه
آن به شرح ذیل می‌باشد (Sparre and Venema, 1992):

\[B = \frac{(Cw/a)^A}{X_1} \]
(معادله یک)

که در این رابطه:

\[B \] : میزان توده زنده (بیوماس)

\[Cw/a \] : میانگین صید بر حسب وزن کل میکوئی صید شده در مدت زمان یک ساعت بر مساحت ترارکشی

\[CPUE/a \] : شده می‌باشد (شکل 2) که به چاپ آن می‌توان از صید بر واحد تلاش CPUE بر مساحت یعنی

استفاده نمود.

A: کل مساحت منطقه مورد بررسی که قبل توسط دستگاه بلاتیمتر دستی No. 3173 مدل Haff گردید (جدول 1)

شکل 2: مساحت جاروبردی شده توسط ترارکش (اختیار از 1992)

(Sparre & Venema, 1992)
جدول 1: مساحت ناحیه‌ها و اشکله‌های مورد بررسی

<table>
<thead>
<tr>
<th>ناحیه‌ها</th>
<th>اشکله‌ها (متر)</th>
<th>1-5 متر</th>
<th>5-10 متر</th>
<th>10-20 متر</th>
<th>تعداد درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>زیرآشفته‌های 1</td>
<td>21</td>
<td>22</td>
<td>14</td>
<td>10</td>
<td>16/8</td>
</tr>
<tr>
<td>زیرآشفته‌های 2</td>
<td>17</td>
<td>21</td>
<td>21</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>زیرآشفته‌های 3</td>
<td>24</td>
<td>25</td>
<td>5</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>زیرآشفته‌های 4</td>
<td>28</td>
<td>55</td>
<td>21</td>
<td>33</td>
<td>26</td>
</tr>
<tr>
<td>مجموع</td>
<td>98</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

در مساحت منطقه نورکشی شده (شکل 3) در یک واحد تلاش (بطور مثال در یک ساعت) می‌باشد که به قرار دید مساحت می‌گردد: (Sparre & Venema, 1992)

\[a = D h X 2 , \quad D = V t \]

معادله دو)

\[a = V t h X 2 \]

که در این معادله:

\[V \] = سرعت شناور مجزه به تور تراز در زمان تور کشی

\[X \] = مدت زمان تور کشی (که بهتر است جهت کاهش میزان خطاهای مدت زمان تور کشی یک ساعت تعیین گردد).

\[h \] = طول طناپ بالایی تور تراز

\[X 2 \] = نسبت عرض تور تراز، تقسیم بر طول طناپ بالایی تور (نسبت باز شدن درجه دو به درجه یک)

(سردار دفتر مقدم، 1992)

جنسیت آسیا مقدار آن بین 4/60 تا 5/00 گزارش شده است (Sparre & Venema, 1992). آخرين پارامتر مورد انتخاب یک X 1 می‌باشد که عبارت از میزان میگویی است که در مسیر تور کشی در تور به دام افتاده‌اند. در آب‌های جنوب شرقی آسیا مقدار آن را بین 5/0 تا 15/00 یک انتخاب می‌کند.

(Sparre & Venema, 1992)

بنظر بیشین سه نیم و یا به عبارتی مناسب‌ترین زمان آغاز فصل صید میگو در استان بطوریکه از نظر بوم شناسی و زیست‌شناسی لطمه‌ای به جمعیت این آبزی وارد نشده و از طرفی بتوان از نظر کمیت 53
پیشینه و از نظر کیفیت پرده‌های محصول را برداشت نمود، با استفاده از مدل طراحی شده در سیستم برنامه نویسی کامپیوتری Borland+ براساس اندازه بدن بیوه طول کاراپیس (سربینه) می‌گوییم که بهترین معیار جهت اندازه‌گیری می‌باشد. اقدام گردید (کامران و همکاران، ۱۹۷۵). سپس با توجه به میانگین طول نمونه‌های بدست آمده (L8) قبل از اغاز فصل صید و با استفاده از معادله تیلز (Sparre & Venema، ۱۹۹۲) می‌توان زمان بهینه آزاد سازی فصل صید میگوی را تعیین نمود.

\[\Delta T = T_2 - T_1 = \frac{1}{K} \ln \left(\frac{L_{\infty} - L_1}{L_{\infty} - L_2} \right) \]

(معادله سه)

که در این معادله:

\(\Delta T \): اختلاف زمان

\(T_1 \): زمان نمونه‌گیری

\(T_2 \): زمان بهینه جهت صید

\(L_{\infty} \): طول نهایت آبی یا طول حداکثر است که ابری در صورت امکان رشد نمی‌شود. باشند که برای میگوی موزی ماده در طول کاراپیس ۲۸ میلی‌متر در سال محاسبه شده است (صافی، ۱۳۷۹).

\(K \): ضریب رشد آبی که نشان دهنده این است که آبی با چه سرعتی به \(L_{\infty} \) می‌رسد. که برای میگوی موزی ماده برابر ۱/۸ در سال محاسبه شده است (صافی، ۱۳۷۹).

\(L_8 \): میانگین طول نمونه‌های گرفته شده در زمان \(T_1 \).

\(L_{opt} \): میانگین طول بهینه در زمان \(T_2 \).

برای تعیین اثر شاخص‌های هوشمندسازی روی ذخایر میگو، اطلاعات هوشمندسازی شامل میزان پارندگی، تبخیر، میانگین دما و میانگین رطوبت در مناطق بندی‌رسایی و میزان بی‌صورت ماهانه و از خردسالی ماه ۱۳۷۸ لغایت مهر ماه ۱۳۸۱ با میزان صید بر واحد تلاقی برای گونه میگوی موزی مورد بررسی قرار داده شد (جدول ۲). جهت آنالیز داده‌ها از آزمون همبستگی پیرسون و به کمک برنامه Pearson correlation SPSS.9 انجام گردید.
جدول ۲: اطلاعات ماهانه شاخص‌های هوشمندی (استخراج از اداره کل هوشمندی)

<table>
<thead>
<tr>
<th>ماه</th>
<th>شاخص‌های هوشمندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>فروردین</td>
<td>۵۹</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>۵۹</td>
</tr>
<tr>
<td>خرداد</td>
<td>۲۵</td>
</tr>
<tr>
<td>تیر</td>
<td>۳۵</td>
</tr>
<tr>
<td>میانه</td>
<td>۱۵</td>
</tr>
<tr>
<td>شهریور</td>
<td>۷۷</td>
</tr>
<tr>
<td>بهمن</td>
<td>۶۲</td>
</tr>
<tr>
<td>اسفند</td>
<td>۶۲</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>سال ۱۳۷۹</th>
<th>ماه</th>
<th>شاخص‌های هوشمندی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>فروردین</td>
<td>۱۸۷</td>
</tr>
<tr>
<td></td>
<td>اردیبهشت</td>
<td>۱۱۰/۸</td>
</tr>
<tr>
<td></td>
<td>خرداد</td>
<td>۱۱۰/۷</td>
</tr>
<tr>
<td></td>
<td>تیر</td>
<td>۵۵</td>
</tr>
<tr>
<td></td>
<td>میانه</td>
<td>۱۱۰/۶</td>
</tr>
<tr>
<td></td>
<td>شهریور</td>
<td>۵۵</td>
</tr>
<tr>
<td></td>
<td>بهمن</td>
<td>۵۵</td>
</tr>
<tr>
<td></td>
<td>اسفند</td>
<td>۵۵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>سال ۱۳۷۸</th>
<th>ماه</th>
<th>شاخص‌های هوشمندی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>فروردین</td>
<td>۲۲۱/۶</td>
</tr>
<tr>
<td></td>
<td>اردیبهشت</td>
<td>۲۲۱/۶</td>
</tr>
<tr>
<td></td>
<td>خرداد</td>
<td>۲۲۱/۶</td>
</tr>
<tr>
<td></td>
<td>تیر</td>
<td>۲۲۱/۶</td>
</tr>
<tr>
<td></td>
<td>میانه</td>
<td>۲۲۱/۶</td>
</tr>
<tr>
<td></td>
<td>شهریور</td>
<td>۲۲۱/۶</td>
</tr>
<tr>
<td></td>
<td>بهمن</td>
<td>۲۲۱/۶</td>
</tr>
<tr>
<td></td>
<td>اسفند</td>
<td>۲۲۱/۶</td>
</tr>
</tbody>
</table>
برآورد میزان زی توده و آثار مشابه‌های موادی ریوی در گیری میکرو موزی در...

صالح و همکاران

براساس رفتار میگوها، پیوشه میکرو موزی و پراکنش آنها بعد از زمان بازگشت شیلاتی نسل جدید (recautment) که بیشتر در مناطق ساحلی مشاهده می‌شوند، اشکوهای ۲ تا ۵ تا ۱۰ تا ۲۰ متر از ناحیه سریکت تا طولا بر روی نقشه دریاپیش منطقه از نوع مرکات و با میزان ۱۷۵۰۰۰۰ تعداد گردید. سپس با استفاده از مساحی‌های امن خطر در هر ناحیه که اطلاعات آن در جدول یک آورده شده است و همچنین با توجه به اطلاعات مربوط به نمونه‌برداری در صیدگاه‌های مختلف توسط شناورهای تحقیقاتی و سنتی (انجهای محلی) و میانگین میزان صید بر واحد تلاقی آنها (CPUE) میزان توده زنده (بیومس) بر حسب تن در هر زیر اشکوب با استفاده از معادله شماره دو محاسبه گردید.

نتایج

اطلاعات مربوط به برآورد میزان توده زنده (بر حسب تن) و همچنین آمار میزان میگوهای غیر سریکت صید شده که توسط اداره کل شیلات استان هرمزگان ارائه شده است در طی سال‌های ۱۳۸۱ الی ۱۳۷۸ در جدول شماره ۱ آورده شده است.

جدول ۲: میزان برآورد توده زنده میکرو موزی و میزان صید شده آن در طی سال‌های ۱۳۸۱ الی ۱۳۷۸

<table>
<thead>
<tr>
<th>سال</th>
<th>میزان صید (بر حسب تن)</th>
<th>توده زنده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۸۱</td>
<td>۱۳۸۰/۰۵</td>
<td>۱۲۵۰/۰۶</td>
</tr>
<tr>
<td>۱۳۸۰</td>
<td>۱۳۸۰/۰۰</td>
<td>۱۲۵۰/۰۶</td>
</tr>
<tr>
<td>۱۳۷۹</td>
<td>۱۳۷۹/۰۰</td>
<td>۱۲۵۰/۰۶</td>
</tr>
<tr>
<td>۱۳۷۸</td>
<td>۱۳۷۸/۰۰</td>
<td>۱۲۵۰/۰۶</td>
</tr>
<tr>
<td>۱۳۷۷</td>
<td>۱۳۷۷/۰۰</td>
<td>۱۲۵۰/۰۶</td>
</tr>
</tbody>
</table>

براساس فرمول صید قابل مجاز (T.A.C و همچنین در نظر گرفتن میزان صید غیر مجاز قابل‌های تاکومس (T.A.C میکرو موزی با تغییرات ۲۰ درصد به عنوان میزان قابل پره برداری تعیین و به بخش اجزاء اعلام گردید.

براساس میانگین طول کارایی برای جنس ماده میکرو موزی در منطقه یک (سریکت تا کوهستان) در زمان نمونه‌برداری و از طریق مقادیر پارامترهای L ۵۰ برای میکرو موزی و همچنین طول پهنه
کاراکترهای میکوی موزی ماده جهت آزادسازی فصل صید که پیاز ۲۷ میلیمتر و براساس ارزش زیستی (Biovalue) برای ۲۸ میلیمتر می‌باشد، زمان بهره‌برداری آغاز فصل صید میگو در منطقه‌ی یک (سری‌بان‌ها) در سال‌های ۱۳۷۸، ۱۳۷۹ و ۱۳۸۱ بترتیب تاریخ‌های ۱۷/۸/۱۳۷۸، ۲۷/۸/۱۳۷۹ و ۲۷/۸/۱۳۸۰ و ۲۷/۸/۱۳۸۱ به‌شناسه گردید. نتایج حاصل از آزمون همبستگی پیرسون موزی بین پارامترهای هواشناسی شامل میزان بارندگی، تبخیر، میانگین دما و رطوبت در جدول شماره ۴ آورده شده است.

جدول ۴: نتایج حاصل از آزمون همبستگی پیرسون بین میزان صید بر واحد تلاقی میگو موزی و شاخص‌های هواشناسی

<table>
<thead>
<tr>
<th>شاخص‌های هواشناسی</th>
<th>میزان بارندگی</th>
<th>میانگین دما</th>
<th>میانگین رطوبت</th>
<th>تبخیر</th>
<th>صید بر ساعت</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب همبستگی</td>
<td>۰/۲۳۵</td>
<td>۰/۲۰۷</td>
<td>۰/۲۰۷</td>
<td>۰/۲۰۷</td>
<td>۰/۲۰۷</td>
</tr>
<tr>
<td>P. value</td>
<td>۰/۲۰۷</td>
<td>۰/۲۰۷</td>
<td>۰/۲۰۷</td>
<td>۰/۲۰۷</td>
<td>۰/۲۰۷</td>
</tr>
<tr>
<td>تعداد</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
</tr>
</tbody>
</table>

همانطور که ملاحظه می‌گردد مقدار P value محاسبه شده در موارد میزان بارندگی و تبخیر همواره بزرگتر از سطح آزمون (۵% > P) بوده و نشان دهنده این است که به‌طور کل میزان ارتباط میانگین دما و مقدار بارندگی و تبخیر با میزان صید بر واحد تلاقی میگو موزی مشاهده نمی‌شود.

در حالتی مقادیر P value محاسبه شده در موارد میانگین دما و رطوبت نشان دهنده این است که در سطح آزمون ۹۵ درصد ارتباط معناداری بین این مقادیر با میزان صید بر واحد تلاقی میگو موزی وجود دارد. نکته قابل توجه دارد که میزان ارتباط بین میانگین دما با میزان CPUE حتی در سطح ۹۹ درصد می‌باشد.

بحث
براساس آخرين بررسی های تحقیقاتی انجام شده و براساس نمونه‌برداری های که توسط شناور تحقیقاتی تجیی و شناورهای محلی از صیدگانه‌های استان و به روش مساحت جاروبردی‌های اکتشاف در اعماق ۲ تا
جارود میزان زی توده و اثر شاخص‌های هوشمندی روز ذخایر میگوی موزی در...

مطالعه شده برای میگوی موزی در مورد دو شاخص هوشمندانی (P. value) با توجه به مقادیر P

شامل میزان بازدهی و برخورداری که به ترتیب ۲۱ و ۲۰۰ می‌باشد، هیچگونه ارتباط معنی‌داری بین
شاخص‌های فوق با میزان CPUE میگوی موجود ندارد. این در حالت‌های مطالعات انجام شده در این
زمینه نشان می‌دهد که شاخص‌هایی از قبیل میزان بازدهی، روز مهاجرت و در نهایت میزان ذخایر
میگوی جوان تأثیر زیادی دارند، بطوریکه این میزان به تقابل نا بیش از ۰ درصد بر روی نرخ
مهاجرت‌های میگوی مجوزی گونه موزی P. merguiensis ناتوان بوده است. هیچگونه این
مطالعات که در چهار سال در منطقه جنوب شرقی خلیج کارپاتیبایا در کشور استرالیا صورت گرفته است.
مشخص می‌سازد که اغلب مهجورتهای میکو در ماه‌های بین اوایل دی تا اوایل فروردین و ماه‌های زمانی که از طرفی مطالعات (Staples & Vance, 1986) درصد از پاتریدگی سالانه وجود دارد، صورت می‌گیرد در خصوص اثر پاتریدگی بر روی فراوانی و میزان صد میکوی موزی دو اثر مختلف را نشان می‌دهد. مورد اول این اثر پاتریدگی و پنداری آن ورود بیشتر آب رودخانه به دریا است که سبب کاهش نرخ بقای بست لوانه‌های میکو که به تازگی نشست کرده‌اند (روود به مرحله زندگی کننده) می‌شود. چه در نهایت سبب کاهش صید این گونه شده است و اثر دوم، نقش منابع پاتریدگی در افزایش مهاجرت افراد جوان و بیوستو آنها به جمعیت مادری آنها در آب‌های دور از ساحل می‌باشد (Evans et al., 1997) با توجه به موارد فوق مشاهده شده که اثر پاتریدگی بر روی مهاجرت جوانان میکو به آب‌های دور از ساحل میزان مهاجرت نسل جدید می‌باشد. این در حالیست که با توجه به شرایط اقلیمی استان هرمزگان و با این فرض که میکویی که تولید شده در هر بیار در زمانی که در قبیل زمانی خردبند ماه تن می‌برد می‌باشد. مادربستان (مهاجرت از خوزستان به سمت دریا) می‌پیوندد، ولی مشاهده می‌شود که در این ماه‌ها بیشتر در مشاهده ماه ابتدای سال و در طی مدت مورد بررسی است (سال 1387 آذر 1381،) میزان پاتریدگی در حداقل میزان هنوز در طول سال بوده است و همین امر شاید یکی از دلایل اصلی عدم مشاهده ارتباط بین میزان پاتریدگی و میزان CPUE میکوی فوق الذکر بوده باشد.

در خصوص سایر شاخصها مشخص می‌شود که بین پامرهای دما، رطوبت ماهانه و میزان CPUE میکوپوزیتی امر دیجیتالی مشاهده می‌شود. مشخص شده که فاکتورهای محیطی متعددی می‌توانند بر روی مهاجرت نهایتاً توزیع و پراکنش میکویی جوان تأثیرگذار باشند و با بیان مکمل‌شده که این عوامل خود نیز دارای اثرات نسبی هستند. همچنین مشاهده شده که چرخه‌های فصلی دما روزی بسیاری از صورت همکاری میکویی از جمله نوسانات در توزیع عمده آنها، پراکنش نسبی جنس‌ها و حتی تغییرات در گروه و رفتارهای گروهی میکویی تأثیرگذار بوده است (Garcia & Le Reste, 1981).

تشکر و قدردانی

از جنب‌آقای دکتر عباسعلی استندت محقق مختصر پژوهشگری اکولوژی جلبی فارس و دریای عمان به دلیل راهنمایی ارزشی علمی و مساعدتهای لازم در اجرای این پژوهش، آقای مهندس زرتشتی معاونت مختصر پژوهشگری اکولوژی جلبی فارس در این استفاده از شناورهای، از آقای مهندس رضا دهقانی مسئول مختصر بخش مدیریت ذخایر آبیان و همچنین از کلیه آقایان مهندس تکلیف پور، سالاری‌پور، بهزادی، درویشی، کلیه عزیزان که با همکاری هر دو مهم
جانبه خود امکان اجرای این پژوهش را فراهم نمودند. تشكیر و قدردانی می‌نماییم. همچنین از سرکار خانم
الهه عباسی که زحمت ناپای این مقاله را داشته‌اند کمال تشکر را داریم.

منابع
صفایی, م. و کامرانی, ا. , 1377. گزارش نهایی پروژه اعلام زمان شروع و خاتمه سی و دومین بیوماس
میگو در استان هرمزگان در سال 1377, مؤسسه تحقیقات و آموزش شیلات ایران, مرکز
تحقیقات شیلاتی دریایی عمان, صفحات 1 و 2.
صفایی, م. و 1379. گزارش نهایی پروژه مدیریت ذخایر میگو در استان هرمزگان, مؤسسه تحقیقات و آموزش شیلات ایران, تاکید بر عوامل مؤثر
هراسانی (فاز 2). میگو در استان هرمزگان, پژوهشکده اکولوژی خلیج فارس و
دریای عمان.
گزارش عملکرد صید میگو در استان هرمزگان, 1378-81, معاونت صید و بنادار صنایع اداره کل
شیلات هرمزگان.

prawn Penaeus merguiensis (de man) in the gulf of Papua: estimation of maximum
sustainable yield and modelling of yield, effort and rainfall, national fisheries authoritative,
research and management branch, part moreshy, NCD.

Fischer, W. and Bianchi, G. , 1984. FAO species identification sheets for fishery purposes

Garcia, S. and Le Resete, L. , 1981. Life cycles, dynamics, exploitation and management of

Sparre, P. and Venema, C. , 1992. Introduction to tropical fish stock assessment, food and

Staples, D.J. and Vance, D.J. , 1986. Emigration of juvenile banana prawns Penaeus
merguiensis from a mangrove estuary and recruitment of offshore areas in the wet-dry
tropics of the Gulf of carpentaria, Australia, Marine Ecology-Progress series, Vol.27,
pp.239-252.