اثر زمان شروع غذاهای روی رشد و بیانه لارو
(Acipenser persicus) تاسماهی ایرانی

چگیله
در این تحقیق اثر زمان شروع غذاهای (تفاوتی خارجی) از روز ۹، ۱۰، ۱۱ و ۱۲ و پس از تغذیه به یک زنده (تابلوس آرتمیا) روی رشد و بیانه لارو تاسماهی ایرانی با تراکم ۲۰۰ عدد لارو در هر ۵ مترمربع در درجه حرارت‌های ۸/۰±۲/۱ و ۸/۵±۲/۰ درجه سانتی‌گراد مورد مطالعه قرار گرفت.

نتایج این بررسی نشان داد که زمان شروع غذاهای روی طول و وزن، نسبت طول به وزن و نرخ رشد و پیوست می‌گذرده، اما تأخیر یک روز در زمان شروع غذاهای تأثیری روی بیانه لارو ندارد (۰/۰۵). همچنین تأخیر در روز در زمان شروع غذاهای تأثیری روی ضریب وضعیت (با شیب رگرسیون معادله شده) لارو تاسماهی ایرانی تأثیر ندارد. یک تا توجه به نتایج این تحقیق، طول و وزن، نسبت طول به وزن و نرخ رشد و پیوست بهتر از درصد بیانه و ضریب وضعیت می‌توانند اثربخش تأثیر در زمان غذاهای به لارو تاسماهی ایرانی را نشان دهند. در نتیجه بهتر است در درجه حرارت‌های ۸/۰±۲/۱ و ۸/۵±۲/۰ درجه سانتی‌گراد به ترتیب از روز دوازدهم و دهم پس از تغذیه، اقدام به غذاهای لارو تاسماهی ایرانی نمود، بطوریکه تأخیر بیشتر در غذاهای اثر منفی روی رشد لارو دارد.

فلات کلیدی: لارو، تغذیه خارجی، رشد، بیانه، تاسماهی ایرانی.
مقدمه

لازمی موفقیت در تثبیت و پرورش ماهی، داشتن شناخت کامل از مراحل مختلف زندگی ماهی می‌باشد. در میان مراحل مختلف مرحله ماهی، مرحله لارو که شامل جایگزینی سازگاری دوران جنینی (تغذیه با کایسه زرده و تنفس بوستی) با سازگاری دوران پس از آن (تغذیه خارجی و تنفس بدنی) است (Bisbal & Bengtson, 1995)

در تاسماهیان تشخیص به موقع زمان شروع تغذیه عمل از دو جهت اهمیت دارد. اول آگر تغذیه تاسماهیان به تأخیر افتاده، به حاطر کم غذاشی، هم‌هم خواری در ماهیان خاویار شروع پیدا کرده و سپر مرگ و میر تلفات عمده‌ای می‌گردد (فیل ماهی و تاسماهی); با اینکه ماهیها گرسنگی مانده و در اثر نبودن گذا شکست و رشد از می‌روند (شیپ و اوزن برون) (کهنه شهروی و آذر تاکامی ۱۳۴۳). تا آنگاه در تغذیه فعال لارو ماهیان خاویار از تئیپوس آرتمیا استفاده می‌شود. از آنجایی که تئیپوس آرتمیا یک گران قیمت است شروع تغذیه لارو تاسماهیان قبل از زمان واقعی تغذیه فعال موجب بالا رفت هزینه بورش می‌شود.

درجه حرارت یک عامل مهم محیطی است که ممکن است زمانی را که لارو ماهیان باشد یک تغذیه موفقیت باشند. را که لارو ماهیان باشد یک تغذیه (Bisbal & Bengtson, 1995)

(Gershanovich, 1981).

همانند سیبااری از ماهیان دیگر، نخ متالولیسم افراش می‌یابد. برای تعیین زمان شروع تغذیه فعل در لارو ماهیان خاویار از روشهای مختلف استفاده می‌شود. تغییر رفتار لارویه تاسماهی ایرانی و شیپ (کهنه شهروی و آذر تاکامی ۱۳۴۳) و تاسماهی سفید (Conte et al., 1988; Brannon et al., 1984) در مرحله شروع تغذیه فعل نکته مهمی است. این تغییر رفتار از مرحله سکون در کف به مرحله حرکت و شنااجری با چذب کیسه زرده هم‌سر بر (Brannon et al., 1984)
مواد و روش‌کار

این بررسی که در مجموعه تکثیر و پرورش ماهیان خاویاری شهید رجایی ساری انجام شد، دو بار روی لارو تاسماهی ایرانی تکرار گردید. لاروهای مورد نیاز به آزمایش از طریق تخم‌برداری الیاف شده پک ماهی مولد که با اسپرم دو ماهی نر بارور شده بود، بسته آماده، تخم‌های هر مولد پس از لاقف و رفع چسبندگی به انکوباتورهای جداگانه منتقل شدند و پس از تغییر، لاروهای استحصال شده به ظروف جدایگانه خاص که برای تحقیق طراحی شده بودند، معرفی گردیدند.

تعداد 600 وان پلاستیکی با قاعده بیضی شکل به مساحت 140 مترمربع و حجم آبی 30 لیتر، جهت پرورش لارو در اثاثی به ابعاد 240×250×64 متر در پنج تیمار و چهار تکرار جیوه شدند.

برای مطالعه اثر زمان شروع غذاهی روی رشد و بقاء لارو، لاروهای هر مولد ماده بطور تصادفی به تیمارهای پنجگانه که هر تیمار 4 تکرار دارد و با تراکم 400 عدد تیمار به ازای هر تکرار معرفی شدند. تیمار چهارم هر تیمار به عنوان تکرار ذخیره جهت جریان تلفات 3 تکرار اصلی هر تیمار در نظر گرفته شد. لاروهای موجود در تیمارهای 1، 2، 3، 4 و 5 به ترتیب از روزهای 9، 10، 11 و 12 پس از تغییر تغذیه شدند.

لاروها با غذای زنده (نابلیوس آرتمیا) تغذیه شدند که روزانه به میزان 100 درصد وزن نوزه زنده در 6 وعده به لاروها داده شد. در زمان غذاهی، برای سهولت درست‌سازی لاروها به غذا، جریان آب قطع و سطح آب تا ارتفاع 5 تا 6 سانتی‌متر کاهش داده می‌شد و پس از 20 دقیقه مجدداً جریان آب برقرار می‌شد.
کرده و همکاران

روزانه کافی وان ها سیفون شده و پس از خروج بقایای مواد غذایی و دفعی از وان، تلفات هر وان شمارش و ثبت می‌شود. این تلفات با لاروها موجود در تکرار ذخیره هر تیمار جریان می‌شود تا سطح نراکم در همه وان‌ها ثابت باقی بماند.

پس از معرفی لاروها به وان‌ها در روز چهارم (پس از تفریخ)، لاروها از روز چهارم هر دو روز یکبار به صورت توده‌ای توزین شدند. برای توزین توده‌ای، به طور تصادفی از وان یک نمونه حدوداً ۳۰ تا ۴۰ تایی گرفته شده، سپس حداکثر ۱۵ تا ۱۵ لیتر با هم وزن می‌شدند. از تقسیم وزن به دست آمده بر تعداد لاروها، میانگین وزن لاروها موجود در هر وان، محاسبه می‌شد. برای چرت بیشتر در تعیین میانگین وزن لاروها موجود در هر وان، این کار سه بار برای نمونه‌های هر وان تکرار می‌شد، سپس از سه میانگین بدست آمده، میانگین گرفته می‌شد که این عدد معادل وزن لاروها آن وان لحاظ می‌شود.

برای توزین لاروها از ترازوی دیجیتالی با دقت ۱/۰۰۰ گرم (یک میلی‌گرم) استفاده شد. این کار تا روزی که اولین تیمار به وزن بیش از ۸۰ میلی‌گرم برسد ادامه یافت. زیرا لاروها تانسمایی ایرانی را تا وزن ۸۸ میلی‌گرم در ونیروی پرورش می‌دهد و سپس در استخراج خاکی کشت می‌دهند (کهشه شهري و آذری تاکامی، ۱۳۵۲). در روز آخر آزمایش علاوه بر توزین توده‌ای جهت تعیین وزن نهایی بیچ ماهیان، از هر تکرار (وان)، تعداد ۱۰ تا ۱۲ عدد بچه ماهی بطور تصادفی نمونه گیری شده که پس از خشک کردن بطور انفرادی با ترازوی دیجیتالی با دقت یک میلی‌گرم توزین می‌شود. علاوه بر وزن، طول کل بچه ماهی نیز با کووالس با دقت ۵/۰۵ میلی‌متر اندازه‌گیری شد.

ضریب و وضعیت یا فاکتور وضعیت در این تحقیق به دو صورت محاسبه شد:

\[K = \frac{W_{100}}{b} \] گزارش شد (بیانگل و ویلت، ۱۹۸۸).

در حالی که: فاکتور وضعیت از رابطه \(W_{100} = W_{b} 100 \) لغزش سانتی‌متر است و \(b \) شیب رژیسیون میان طول و وزن است. که از رابطه \(

\[\log W = \log a + b \log L \]

\[K = \frac{W_{100}}{b} \]

در حالی که: مقدار شیب رژیسیون برای ۲ در نظر گرفته شد. برای تعیین Gisbert و Williott, ۱۹۹۷ فاکتور وضعیت لاروها تاسمانی سبیروی و ۱۹۸۳ برای تعیین فاکتور وضعیت لاروهای شیب مقادیر شیب رژیسیون را برای ۳ در نظر گرفتند. با استفاده از فرمول زیر می‌توان RGR SGR(\%day^{-1}) = \frac{100}{t} (\ln W_f - L_n W_0) / W_0

که به ترتیب وزن متوسط اولیه و نهایی و یک دوره رشد به حسب روز است.
درصد بقاء بوسیله شمارش دستی ماهیان تلف شده در طی دوره آزمایش برای هر تیمار های پنجگانه محاسبه شد. درجه حرارت آب 32 تا 36 در روز اندامه گیری شده که معمولا در زمان غذاهی به لازم بود در این تحقیق از نرم افزارهای Minitab و SPSS توزیع نرمال و یکنواختی (همووزنتی) واریانس و سن نهایی، طول نهایی، نسبت طول به وزن، نرخ رشد ویژه، فاکتور و وضعیت و بقاء به ترتیب بوسیله تست کلموگروف -اسمیرونوف (test K-S) و تست یکنواختی (همووزنتی) واریانس آزمون شد. در مواردی که توزیع داده‌ها نرمال یا واریانس داده‌ها یکنواخت نبود از تبدیل داده استفاده شد، تا توزیع داده‌ها نرمال یا واریانس داده‌ها یکنواخت (هموزن) گردید، سپس این داده‌ها تبدیل شده به آنالیز واریانس شدند (زالی و جعفری 1366).

برای مقایسه تیمارها وزن نهایی، طول نهایی، نسبت طول به وزن، نرخ رشد ویژه، فاکتور و وضعیت و بقاء در یک طرح کاملا تصادفی آنانالیز واریانس شدند. هنگامی که اختلاف معنی‌داری بین تیمارها پیدا شد (P<0.05)، آزمون دانکن برای تعیین اختلاف معنی‌دار بین تیمارها انجام گرفت (بصیری، 1372).

نتایج

در آزمایش اول بر روی لاور تاسهماهی ایرانی (قره برون)، که در حرارت 17/7±0.5 درجه سانتی‌گراد انجام شد، نتایج زیری اتالیزداره‌ها با آزمون دانکن حاصل شد.

جدول 1: وزن، طول کل، نسبت طول به وزن و بقاء لاور تاسهماهی ایرانی در سری اول آزمایش

<table>
<thead>
<tr>
<th>درصد بقا</th>
<th>TL/W</th>
<th>طول کل (میلی‌متر)</th>
<th>وزن بدن (روز پس از تنفس) (میلی‌گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>94/57ab</td>
<td>0/3b</td>
<td>36/23a</td>
<td>80/41a</td>
</tr>
<tr>
<td>92/96</td>
<td>0/20a</td>
<td>26/17a</td>
<td>70/16a</td>
</tr>
<tr>
<td>96/55</td>
<td>0/30a</td>
<td>26/20a</td>
<td>80/51a</td>
</tr>
<tr>
<td>98/11a</td>
<td>0/33b</td>
<td>24/13a</td>
<td>75/50a</td>
</tr>
<tr>
<td>95/77a</td>
<td>0/36b</td>
<td>33/74a</td>
<td>80/37a</td>
</tr>
</tbody>
</table>

تیمار: زمان شروع غذاهی (روز پس از تنفس)

داده‌ها (اعداد) میانگین‌های تکرار هر تیمار مستند و آزمون در مطالعه 4 درصد انجام شد است.

نتیجه‌گیری: نتایج و جدول 1 میانگین‌های طول و وزن اختلاف معنی‌داری در وزن نهایی و طول کل، بین تیمارهای آزمایشی وجود دارد. میانگین‌های طول و وزن
لاروهای تیمار ۱، ۲، ۳ و ۴ اختلاف معنی‌داری با احتمالیت مشاهده نشده. اما میانگین طول و وزن لاروهای تیمار ۵ اختلاف معنی‌داری با تیمارهای قبلی داشته (جدول ۱).

نسبت طول کل به وزن لاروهای تیمار ۵ اختلاف معنی‌داری با لاروهای تیمار ۴ دارد. اما با لاروهای تیمارهای ۱، ۲ و ۳ اختلاف معنی‌داری دارد (جدول ۱).

نرخ بقاء لاروهای تیمار ۵ اختلاف معنی‌داری با لاروهای تیمار ۴ دارد. اما اختلاف معنی‌داری با لاروهای تیمارهای ۱، ۲ و ۳ دارد. لاروهای تیمارهای ۳ و ۵ اختلاف معنی‌داری از نظر بقاء ندارند (جدول ۱).

در نهایت، نتایج آزمایشات نشان داد که تفاوت‌های معنی‌داری در لری میانگین بیولوژیکی میانگین ندارند. این نتایج به آنها که نشان دهنده احتمالیت نوع ۵ لاروهای دیگر و وجود راه‌حل‌های دیگر برای تسهیل تولید آنها است. این نتایج نشان دهنده است که لاروهای تیمار ۵ بهترین نتایج را داشته و احتمالیت تغییر نشان دهنده احتمالیت نوع ۵ لاروهای دیگر و وجود راه‌حل‌های دیگر برای تسهیل تولید آنها است. این نتایج نشان دهنده است که لاروهای تیمار ۵ بهترین نتایج را داشته و احتمالیت تغییر نشان دهنده احتمالیت نوع ۵ لاروهای دیگر و وجود راه‌حل‌های دیگر برای تسهیل تولید آنها است. این نتایج نشان دهنده است که لاروهای تیمار ۵ بهترین نتایج را داشته و احتمالیت تغییر نشان دهنده احتمالیت نوع ۵ لاروهای دیگر و وجود راه‌حل‌های دیگر برای تسهیل تولید آنها است. این نتایج نشان دهنده است که لاروهای تیمار ۵ بهترین نتایج را داشته و احتمالیت تغییر نشان دهنده احتمالیت نوع ۵ لاروهای دیگر و وجود راه‌حل‌های دیگر برای تسهیل تولید آنها است. این نتایج نشان دهنده است که لاروهای تیمار ۵ بهترین نتایج را داشته و احتمالیت تغییر نشان دهنده احتمالیت نوع ۵ لاروهای دیگر و وجود راه‌حل‌های دیگر برای تسهیل تولید آنها است. این نتایج نشان دهنده است که لاروهای تیمار ۵ بهترین نتایج را داشته و احتمالیت تغییر نشان دهنده احتمالیت نوع ۵ لاروهای دیگر و وجود راه‌حل‌های دیگر برای تسهیل تولید آنها است. این نتایج نشان دهنده است که لاروهای تیمار ۵ بهترین نتایج را داشته و احتمالیت تغییر نشان دهنده احتمالیت نوع ۵ لاروهای دیگر و وجود راه‌حل‌های دیگر برای تسهیل تولید آنها است. این نتایج نشان دهنده است که لاروهای تیمار ۵ بهترین نتایج را داشته و احتمالیت تغییر نشان دهنده احتمالیت نوع ۵ لاروهای دیگر و وجود راه‌حل‌های دیگر برای تسهیل تولید آنها است.
جدول 2: نرخ رشد ویژه لارو تاسماهی ایرانی در سری اول آزمایش

<table>
<thead>
<tr>
<th>SGR</th>
<th>SGR</th>
<th>SGR</th>
<th>(روز پس از تفريخ) 6 تا 10 روز 6 تا 16 روز 10 تا 16 روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/40a</td>
<td>12/41a</td>
<td>17/32ab</td>
<td>9</td>
</tr>
<tr>
<td>11/51a</td>
<td>14/98a</td>
<td>7/27b</td>
<td>3</td>
</tr>
<tr>
<td>11/28a</td>
<td>14/13a</td>
<td>7/01ab</td>
<td>11</td>
</tr>
<tr>
<td>11/18a</td>
<td>13/77a</td>
<td>7/1rab</td>
<td>4</td>
</tr>
<tr>
<td>10/01b</td>
<td>11/39a</td>
<td>7/09a</td>
<td>13</td>
</tr>
</tbody>
</table>

داده‌ها (اعدازاد). میانگین سه تیمار هستند و آزمون در سطح 0.05 درصد انجام شده است.

نشان دهنده نتایج وجود اختلاف معنی‌دار بین تیمارها در آزمون دانگن

= a,b,ab

جدول 3. فاکتور وضوع لارو تاسماهی ایرانی در سری اول آزمایش

<table>
<thead>
<tr>
<th>K(*)</th>
<th>K(b=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(روز پس از تفريخ) 16 روز</td>
<td>(روز) 16 روز</td>
</tr>
<tr>
<td>0/01a</td>
<td>0/47a</td>
</tr>
<tr>
<td>0/65a</td>
<td>0/47a</td>
</tr>
<tr>
<td>0/88a</td>
<td>0/47a</td>
</tr>
<tr>
<td>0/37a</td>
<td>0/47a</td>
</tr>
<tr>
<td>0/67a</td>
<td>0/47a</td>
</tr>
</tbody>
</table>

داده‌ها (اعدازاد). میانگین سه تیمار هستند و آزمون در سطح 0.05 درصد انجام شده است.

* : مقدار 6 (شیب رگرسیون) جهت بدست آوردن K از رابطه رگرسیونی بین طول و وزن محاسبه شده است.

در آزمایش دوم بر روی لارو تاسماهی ایرانی (قره برون) که در جرارت ۴/۴±۱۸/۱ درجه سانتی‌گراد انجام شد، نتایج زیری آنالیز داده‌ها با آزمون دانگن حاصل شد.

اختلاف معنی‌داری در وزن نهایی بین تیمارها مختلف وجود دارد، بطوری که حتی تیمار در وزن نهایی بین تیمارها وارد نمدیده شد. میانگین وزن لاروها تیمار ۱ بیشتر

از لاروها سایر تیمارها بود (جدول ۴).

میانگین طول کل لاروها که در سنت مختلف (روز پس از تفريخ) تغذیه شدند اختلاف معنی‌داری با

www.SID.ir
کردنگ و همکاران

اثر زمان شروع غذاهای روی بیشتر و

یکدیگر دارد. بیشترین میانگین طول مربوط به تیمار ۱ است. اما اختلاف معنی‌داری میان طول کل لاروهای تیمار ۲ و ۳ وجود ندارد (جدول ۴).

آنالیز نسبت طول کل به وزن نشان داد در بین تمام تیمارهای آزمایشی اختلاف معنی‌داری وجود دارد، و کمترین مقدار این نسبت مربوط به تیمار ۱ می‌باشد (جدول ۴).

درصد بقای لاروهایی که از روزهای ۹ و ۱۰ پس از تفیخ تغذیه شدند، اختلاف معنی‌داری با لاروهایی که از روزهای ۱۱ و ۱۲ پس از تفیخ تغذیه شدند، دارد. لازم به ذکر است درصد بقای لاروهای دو تیمار مذکور بیشتر از سایر تیمارها می‌باشد (جدول ۴).

جدول ۴: رشد (وزن)، طول کل، نسبت طول کل به وزن و بقای لاروهای سایه‌ای ایرانی در سرو دوم

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نسبت طول کل به وزن</th>
<th>وزن بدن (میلی‌گرم)</th>
<th>طول کل (روز پس از تفیخ) (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۸/۲۶۰</td>
<td>۹۶/۲۶۰</td>
<td>۲۲/۲۶۰</td>
<td>۲۷/۲۶۰</td>
</tr>
<tr>
<td>۹۷/۴۷۰</td>
<td>۹۶/۴۷۰</td>
<td>۲۵/۴۷۰</td>
<td>۲۸/۴۷۰</td>
</tr>
<tr>
<td>۹۷/۰۸۰</td>
<td>۹۶/۰۸۰</td>
<td>۲۵/۰۸۰</td>
<td>۲۸/۰۸۰</td>
</tr>
<tr>
<td>۸۲/۳۵۰</td>
<td>۸۱/۳۵۰</td>
<td>۲۲/۳۵۰</td>
<td>۲۵/۳۵۰</td>
</tr>
</tbody>
</table>

داده‌ها (اعدا). میانگین سه تکرار هر تیمار هستند و آزمون در سطح ۵ درصد انجام شده است.

نرخ رشد ویژه لاروهای تیمار ۱ بیشتر از لاروهای سایر تیمارها بود. اختلاف معنی‌داری در نرخ رشد ویژه لاروها در بین روزهای ۶ تا ۱۰ وجود داشت. بطوریکه در طی این دوره بیشترین سرعت رشد در لاروهایی که از روز تیمار پس از تفیخ تغذیه شدند، مشاهده شد. نرخ رشد لاروها بین روزهای ۱۰ تا ۱۴ نشان می‌دهد که در تیمار ۲ و ۱ اختلاف معنی‌داری با هم ندارند، از طرفی این دو تیمار بیشترین نرخ رشد ویژه را دارند. نرخ رشد ویژه بین روزهای ۶ تا ۱۰ پس از تفیخ اختلاف معنی‌داری را در تمام تیمارها نشان می‌دهد (جدول ۵).

متغیرهای بیشترین SGR در فاصله ۶ تا ۱۴ روز پس از تفیخ مربوط به لاروها است که از روز هم پس از تفیخ تغذیه شدند (جدول ۵).
جدول 5: نرخ رشد ویژه لارو تربرون (سری دوم) در طی آزمایش

<table>
<thead>
<tr>
<th>SGR</th>
<th>SGR</th>
<th>SGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1248da</td>
<td>10/50a</td>
<td>11/70a</td>
</tr>
<tr>
<td>1276cb</td>
<td>10/70a</td>
<td>3/77b</td>
</tr>
<tr>
<td>1176eb</td>
<td>11/10c</td>
<td>3/50c</td>
</tr>
<tr>
<td>8/74d</td>
<td>12/7ac</td>
<td>3/84c</td>
</tr>
<tr>
<td>6/7be</td>
<td>13/5ad</td>
<td>3/87c</td>
</tr>
</tbody>
</table>

(روز‌های تخم‌برداری)

دیتا (اعداد)، میانگین‌های تکرارهای تیمارهای نمونه‌برداری و آزمون در سطح 5 درصد انجام شده است.

با توجه به جدول 6 در حالتی که شیب رگرسیون محاسبه شده برای بدست آوردن فاکتور وضعیت استفاده شد، فاکتور وضعیت تیمارهای مختلف اختلاف معنی‌داری را از خود نشان دادند، به طوری که فاکتور وضعیت لاروهای تیمار 1 و 2 و 3 اختلاف معنی‌داری با هم نداشتند. اما اختلاف معنی‌داری را با لاروهای تیمار 4 و 5 نشان دادند. در میزان پوزه‌بندی پس از تخم‌برداری، جهت شروع تغذیه تیمار سوم، تلفات در تیمارهای سوم، جهان‌های پنجم که هنوز تغذیه نشده‌اند، بطور قابل ملاحظه‌ای کاهش می‌یابد، اما تلفات در تیمار سوم پس از شروع غذادهی بطور قابل توجهی کاهش می‌یابد. تلفات ناشی از همبستگی خواری است، لاروهای قوی به لاروهای ضعیف حمله می‌کند و تلاش می‌کند با ضربه‌های کفین خود (دهان) آنها را قطعه قطعه کنند، اما اگر دندان ندارند، موجب مرتزک لارو می‌شوند. حتی پس از مرگ نیز لاروهای قوی به اجساد لاروهای مرده حمله می‌کنند و در صورت خوردن آنها بر می‌آیند. در برخی موارد مشاهده شد که نیمه‌ی عقیب لارو در دهان لارو قوی تک قرار دارد و عمل هم‌وفور خواری به وضع مشخص است.

جدول 6: فاکتور وضعیت لارو مدل‌سازی ایرانی در سری دوم آزمایش

<table>
<thead>
<tr>
<th>K(4)</th>
<th>K(b=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14 روز)</td>
<td>(14 روز)</td>
</tr>
<tr>
<td>0/792a</td>
<td>0/510a</td>
</tr>
<tr>
<td>0/795a</td>
<td>0/382a</td>
</tr>
<tr>
<td>0/882a</td>
<td>0/483b</td>
</tr>
<tr>
<td>0/542b</td>
<td>0/474a</td>
</tr>
<tr>
<td>0/423b</td>
<td>0/749a</td>
</tr>
</tbody>
</table>

(روز‌های تخم‌برداری)

دیتا (اعداد)، میانگین‌های تکرارهای تیمارهای نمونه‌برداری و آزمون در سطح 5 درصد انجام شده است.

* مقدار b (شیب رگرسیون) به نسبت خود در طول رابطه‌گزینی بین لارو و ویژه محاسبه شده است.

نتیجه‌گیری: نتایج موجود با عدم وجود اختلاف معنی‌دار بین تیمارها در آزمون دانکن a,b
بحث

در کارگاه‌های تکنیک و پرورش ماهیان تعبین زمان روی آوردن لاورها به تغذیه فعال بسیار مهم است.

بیداری است زمان تغذیه لازم به حرارت آب بستگی دارد (کریستی، 2013).

نتایج مطالعه حاضر نشان داد، تأخیر در زمان شروع غذاهای غذاهای (تفنیج خارجی) روی وزن بدن، طول نیازی است تغذیه لازم و در نهایت نسبت طول بدن به وزن و نرخ رشد وزن را (ویژه) تأخیر می‌گذارد. اما تأخیر یک روز در شروع غذاهای لاورها روی بقاء و تأخیر دو روز در شروع غذاهای لاورفاکتور و ضعیف لاورها (با شیب رگوسیونی محاسبه شده) تأثیر ندارد.

غذاهای لاور تاسماهی ایرانی در حرارت اتوماتیک و در زمان شروع غذاهای گراد قابل از روز دوازدهم پس از تفنیج تأثیری بر روی طول، وزن و نرخ رشد ویژه لاورها ندارد. شروع تغذیه لازم از روز سیزدهم پس از تفنیج کاهش رشد عامل قرارا سبب می‌گردد، اما روز بقاء لاورفاکتور و ضعیف لاورها ندارد.

در حرارت 4 درجه سانتی‌گراد نیز رشد طول، وزن و نرخ رشد ویژه لاورها بهره روز تأخیر در زمان شروع غذاهای نسبت به روز نهم پس از تفنیج کاهش می‌یابد. اما تأخیر 2 و 3 روز در زمان شروع غذاهای پس از تفنیج تأثیری روی بقاء و فاکتور و ضعیف لاورها ندارد. قابل ذکر است تأخیر بیش از یک روز در زمان شروع غذاهای لاور تاسماهی ایرانی (در حرارت 4 درجه سانتی‌گراد) باعث کاهش درصد بقاء لاورها می‌شود. بطوریکه نرخ بقاء لاورها تیمار پنجم که تغذیه آنها با 4 روز تأخیر آغاز شده، به 2/13 درصد کاهش می‌یابد.

از مطالعه این مقاله بحث در تأخیر حداکثر یک روز در زمان شروع غذاهای تأثیری روی نرخ بقاء و فاکتور و ضعیف لاورها ندارد. اما تأخیر به سرانجام روی رشد طول، وزن و نرخ رشد ویژه لاورها دارد. این نتایج با مطالعات که روی لاور تاسماهی سیرپی (Acipenser baeri) در حرارت 3 درجه سانتی‌گراد و در پس از تفنیج 2 و 3 روز در زمان شروع غذاهای نسبت به روز نهم پس از تفنیج تأثیری روی رشد طول، وزن و نرخ رشد ویژه لاورها ندارد. این نتایج با مطالعات که روی لاور تاسماهی سیرپی بدون تأخیر بود (Gisbert & Williot, 1997) بنا بر رشد لاورها می‌شود. سپس، لاورها را به مدت ۲۴ ساعت جهت حصول وزن مورد نظر برای کشت در استخراج خاکی و راه‌سازی در رودخانه، نه تنها در ویژگی و استخراج خاکی نگهداری کرد. در این
امرو قابلیت پایداری و مقاومت بیچه‌هاین را کاهش می‌دهد (اسلامی پوروز، ۱۳۷۵).

با توجه به توصیبات فوق بحرانی رسیده، فاکتورهای طول، وزن، نسبت طول به وزن و نرخ رشد ویژه بهتر می‌تواند آثار تأخیر در زمان غذاهایی به لازم تاسماهی ایرانی را در مقایسه با بقای و فاکتور وضعيت نشان دهد که در اینصورت بهتر است تغذیه لازم تاسماهی ایرانی در دامای ۱۸٪±۰/۳۱ و ۱۸۱٪±۰/۱۷ درجه سانتی‌گراد بترتیب از روز دوازدهم و نهم پس از تفریخ آغاز شود؛ که بسیار نزدیک به زمان شروع تغذیه فعل لازم تاسماهی سیبری است. که در درجه حرارت ۱۷۵٪± از روز دهم (Gisbert & Williot, ۱۹۹۵) و دمای ۳/۰±۱ درجه سانتی‌گراد از روز نهم (۱۹۹۷) به تغذیه می‌گند.

در روز و شش پس از تفریخ وزن لازم در دمای ۱۸٪±۰/۷۷ درجه سانتی‌گراد (جدول ۷) کمتر از وزن لازم تاسماهی ایرانی در حواله ۹۲/۱٪±۰/۱ درجه سانتی‌گراد (جدول ۸) است. به نظر می‌رسد درجه حرارت در زمان شروع تغذیه فعل و اختلاف وزن در مراحل پس از تغذیه فعل مؤثر است. بطوریکه لازم‌هایی که در دماه بالاتر پورش یافته و نهایاً فعالیت آنها آغاز شده، در نتیجه رشد طول و وزن آنها بیشتر شده و زودتر به وزن مورد نظر جمع‌شده کشت در استخراج پورش می‌رسند. از طرفی نشان داده‌اند افزایه تخم تاسماهی سیبری روشی رشد (اندازه‌طول و وزن) اثر دارد Gisbert et al., ۲۰۰۰

اما روز به دو اثری ندارد.

در نتیجه برای نشان دادن اثرات تأخیر در زمان غذاهایی به لازم تاسماهی ایرانی، فاکتورهای رشد طول، وزن، نسبت طولی که به وزن و نرخ رشد ویژه مناسب‌تر از درصد بقای و فاکتور وضعيت می‌باشد؛ پس با توجه به فاکتورهای فوق بهتر است غذاهایی به لازم تاسماهی ایرانی (قمری‌رون) در درجه حرارت‌های ۲±۰/۱۷۸٪±۰/۱۸٪±۰/۱۷ درجه سانتی‌گراد به ترتیب از روز نهم و دوازدهم پس از تفریخ آغاز شود، بطوریکه تأخیر بیشتر در زمان غذاهای باغ تکثیر کاهش رشد لازم‌روها می‌شود.
جدول 7: تغییرات میانگین وزن لارو تاسماهی ایرانی در سری اول آزمایش

<table>
<thead>
<tr>
<th>تیمار</th>
<th>روز هشتم پس از تغییر</th>
<th>روز دوازدهم پس از تغییر</th>
<th>روز شانزدهم پس از تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31/6/7 ± 0/18</td>
<td>48/1/2 ± 0/15</td>
<td>38/9/5 ± 0/17</td>
</tr>
<tr>
<td>2</td>
<td>31/3/6 ± 0/17</td>
<td>45/7/6 ± 0/17</td>
<td>32/1/1 ± 0/12</td>
</tr>
<tr>
<td>3</td>
<td>31/3/6 ± 0/17</td>
<td>45/7/6 ± 0/17</td>
<td>32/1/1 ± 0/12</td>
</tr>
<tr>
<td>4</td>
<td>31/3/6 ± 0/17</td>
<td>45/7/6 ± 0/17</td>
<td>32/1/1 ± 0/12</td>
</tr>
<tr>
<td>5</td>
<td>31/3/6 ± 0/17</td>
<td>45/7/6 ± 0/17</td>
<td>32/1/1 ± 0/12</td>
</tr>
</tbody>
</table>

جدول 8: تغییرات میانگین وزن لارو تاسماهی ایرانی در سری دوم آزمایش

<table>
<thead>
<tr>
<th>تیمار</th>
<th>روز هشتم پس از تغییر</th>
<th>روز دوازدهم پس از تغییر</th>
<th>روز شانزدهم پس از تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31/6/7 ± 0/18</td>
<td>48/1/2 ± 0/15</td>
<td>38/9/5 ± 0/17</td>
</tr>
<tr>
<td>2</td>
<td>31/3/6 ± 0/17</td>
<td>45/7/6 ± 0/17</td>
<td>32/1/1 ± 0/12</td>
</tr>
<tr>
<td>3</td>
<td>31/3/6 ± 0/17</td>
<td>45/7/6 ± 0/17</td>
<td>32/1/1 ± 0/12</td>
</tr>
<tr>
<td>4</td>
<td>31/3/6 ± 0/17</td>
<td>45/7/6 ± 0/17</td>
<td>32/1/1 ± 0/12</td>
</tr>
<tr>
<td>5</td>
<td>31/3/6 ± 0/17</td>
<td>45/7/6 ± 0/17</td>
<td>32/1/1 ± 0/12</td>
</tr>
</tbody>
</table>
منابع

اسلام پرویز، ح. 1375. استانداردهای بجه ماهیان خاویاری کارگاه‌های تکثیر و پرورش. ماهنامه آبیزیان، آبان ماه. صفحات 34تا 40.

بعضی، ع. 1377. طرح آزمایشات کشاورزی. چاپ پنجم، انتشارات دانشگاه شیراز، 595 صفحه.

زالی، ع. و جعفری شیبستری، ج. 1366. مقدمه‌ای بر احتمالات و آمار (ترجمه). انتشارات دانشگاه تهران، 472 صفحه.

کرامندیسیکی، ان.ذ. 1393. روش‌های تشخیص شروع تغذیه فعال در لارو تاسماهیان. ترجمه: سیدمحمد صدرا نژاد. 1376. معاونت تکثیر و پرورش آبیزیان، اداره کل آموزش و تربیت، نشریه داخلی، صفحه 24.

کهنه شهروی، م. و آذری تاکامی، ح. 1353. تکثیر مصنوعی و پرورش ماهیان خاویاری. دانشگاه تهران، 298 صفحه.

