بررسی امکان تشخیص جنسیت فیل ماهی

(Huso huso) با استفاده از روش PCR-RAPD

سید کیوان مشکوی(۱) ، محمد پورکاظمی(۲) و حمید رضا کلباسی(۳)

Keyvan56@yahoo.com

1- دانشگاه علوم و فنون دربای، خرمشهر، صندوق پستی: ۴۶۹
2- استنیتو تحقیقات بین المللی ماهیان خاویاری، رشت، صندوق پستی: ۴۲۶۸۶-۶۳۴۶۶
3- کروه شیر رود، دانشگاه علوم دربایی دانشگاه تربیت مدرس، تهران، صندوق پستی: ۴۴۳۱-۳۵۴۶

تاریخ ورود: اسفند ۱۳۸۲
تاریخ پذیرش: آذر ۱۳۸۲

چکیده
هدف از انجام این تحقیق مقایسه زنون فیل ماهی نر و ماده با استفاده از روش PCR و RAPD شناسایی نشان‌گرهای جنسی بود. به‌منظور پیش‌آمادگی برای اجرا DNA به روش فنی کلروفورم، دو خمایی تشخیص DNA خوانده از ماده و نر و ماده در کنار با هم چکیده و پس از استخراج DNA اندازه‌گیری اندازه‌گیری از PCR. در این تحقیق از ۲۳۰ پراپره ۴۰ دیگر هیچگونه نردیده را داشتند از ماده و نر CRC و باعث شوید جزئیاتی برای پراپرهای مذکور در زنون فیل ماهی باشند. اگرچه پراپرهای مورد بررسی به جز یک پراپر شماره ۲۹۵ در جنس DNA نر و ماده یکسان بود و هیچگونه تفاوتی مشاهده نگردید. این پراپر باندی را در خزانه فیت نمود و در زنون ایفای نقش کردند. به‌منظور مقایسه این PCR اختصاصی بودن این باند در جنس نر آزمایش گردید. در نهایت نهایت نشان داد که می‌توان مذکور نشان‌گرهای جنسی در فلاش ماهی نمایش داده شود. همچنین نتایج این تحقیق نشان داد که احتمالاً از جنسیتی فیل ماهی نمایش داده شود و در صورت وجود بودن، نتایج متمایز بسیار کمی بر روی آنها قرار دارد و یا اصولاً این جنسیت فیل ماهی دارای قابلیت

تفنیک هم‌زمان برای در جنس می‌باشد.

لینک کلیدی: فیل ماهی، RAPD، نشان‌گرهای جنسی، دریای خزر، ایران

www.SID.ir
بی‌رسی امکان تشخیص جنسیت فیل مامی با استفاده از…

کیوان شکوه و همکاران

مقدمه

در سالهای اخیر ذخایر ماهیان خاویاری که از آبی‌رنگ قدمی‌های سه‌پاها در شمالی به شمالی می‌روند (Billard & Lecointre, 2001) به دلایلی نظر صدای بر روی ویژگی‌های منطقه‌ای بسته‌بینی، میزان تولید مثل طبیعی این ماهیان با کاهش محیط‌زیست و مسدود شدن منشأهای منتهی به مناطق تولید مثل طبیعی این ماهیان با کاهش فوق العاده‌ای مواجه گردیده است (Pourkazemi et al., 1999). همچنین عواملی نظیر سن بالای بلع (5 تا بیش از 20 سال) و فاصله زمانی طولانی بین دو تولید مثل (2 تا بیش از 10 سال) آسیب‌پذیری این گونه‌ها را افزایش داده است (May et al., 1997). بطوریکه تغییرات جنگل گونه‌های ماهیان خاویاری دمی در معرض خطر افتراض شیران و گرفتناند (DeMeulenaer & Raymakers, 1996). لذا برای حفظ ذخایر این ماهیان تمدیدتبا باید در نظر گرفتن شود که از آن جمله می‌توان به تکنیک و پرورش مصنوعی و همچنین تولید خاویار برپورش اشاره کرد.

در تکنیک مصنوعی ماهیان خاویاری تشخیص جنسیت و مرحله رشدی‌گی جنسی ماهی مولود بسیار مهم است. در حالت حاضر به دلیل عدم وجود تفاوت‌های مورفولوژیکی میان افراد مرد و ماده، تشخیص جنسیت مولودین با مشکلاتی همراه است، بطوریکه گاهی ماهیان ماده نارس که رسیدگی آن درست تشخیص داده نمی‌شود، به جای مولد نر وارد کارگاه‌های تکنیک شده و در برنامه ریزی تکنیک مصنوعی اخلال ایجاد می‌نمایند (مقیم و همکاران، 1380). علاوه بر این افراد تشخیص تولید خاویار پرورشی مستلزم جداسازی ماهیان مرد و ماده قبل از رسیدن به سن بلع و ایجاد جمعیت‌های تمام ماده می‌باشد (et al., 1995).

امروزه از برخی روش‌های زننیک مولکولی به عنوان روش دقتی و بی‌خطر در تشخیص جنسیت & McClelland, 1990; Williams et al., 1990; Vos et al., 1995 موجود است. ویلیامز (Welsh

روش Random Amplified Polymorphic DNA (RAPD) روش از جمله روش‌های مداوم در شناسایی تشانگرهای جنسی بوده که در آن هدف، یافتن قطعاتی از DNA و مقایسه آنها در جنس و DNA ماده می‌باشد. اغلب این قطعات در هر دو جنس مشترک بوده ولی قطعاتی که تنها در یک جنس وجود دارد، تشانگرهای جنسی می‌باشد (Griffiths, 2000; Lessells & Mateman, 1998) با وجود اینکه
مواد و روش کار

در این تحقیق از فیل ماهیان سید شده جهت عملیات تکثیر مصنوعی در اسفند ماه 1380 در مجتمع تکثیر و پروپورش ماهیان خاویاری شهید مرجانی واقع در جنوب غربی ایران 159 کیلومتری شهر گرگان (نمونه‌برداری شد. در هنگام نمونه‌برداری از انتهای باله دمی ده عدد فیل ماهی نر و ده عدد فیل ماهی ماده نمونه بافت برداشتند و پس از نگهداری آنها در اندازه 94 درصد به آزمایشگاه ضیافتی بینملی ماهیان خاویاری دکتر دادمان در رشت منتقل گردید. استخراج DNA فیل کلروفیور همراه با تغییرات جنی انجام شد (Pourkazemi, 1996) ارزیابی کیفیت و کمیت استخراج از الکترونوروز در روز اول آگاروز بک درصد و همچنین با استفاده از دستگاه اسیستروفونتر انجام گردید. از آنجا که روش RAPD برای بررسی پیل مورفیسم طراحی شده است، ندا ممکن است باندهایی در ب وخود دیده شود که دیگر نمونه‌ها فاقد این بانده است. برای رفع مشکل سیکس از یکسان زنومی افراد ماده (هر گروه ترکیبی از یکن عدد ماده) و همچنین دو خزه‌ای از زنومی افراد نر (هر گروه ترکیبی از یکن عدد نر) تهیه گردید.

(Iturra et al., 1998)
بررسی امکان تشخیص جنسیت فیل مامی با استفاده از... کیوان شکوه و همکاران

(Cagnn) PCR بر روی زل آگاروز و مشاهده نیزی و شدت باندهای تولید شده نمایندگی داد که DNA نمونه‌های استخراج شده از کیفیت و کمیت قابل قبولی برای استفاده در آزمایشات برخوردار هستند. شکل شماره ۱ نمونه‌های نژادهای رانده شده بر روی زل آگاروز یک درصد را نشان می‌دهد. محاسبه میزان جذب در طول موج ۲۴۰ نانومتر به میزان جذب در طول موج ۸۲۰ نانومتر نیز نشان داد که این نسبت در مورد تمام نمونه‌های استخراج شده بالاتر از ۱/۲ و کمتر از ۱/۲ می‌باشد.

۱ - برای آگاهی از نواقل پرداخته‌ها به منبع کیوان شکوه ۱۳۸۱ مراجعه شود.
به منظور ظاهرسازی محصولات PCR و بررسی الگوی باندی جنس نر و ماده، در حجم ۶۰ زلی آکریلیمید ۶ درصد تهیه و پس از اتمام الکتروفرژ با استفاده از نیترات نقره رنگ آمیزی گردید. کنترل منفی، عدم آلودگی واکنش‌گرها به DNA را تضمین نموده و کنترل مثبت نجوم کارکرد واکنش‌گرها و دستگاه PCR را تأیید نمود.

شکل ۱: نمونه‌ای از DNA های رانده شده بر روی زل آگاروز پیک درصد

در این تحقیق مشخص گردید که از ۳۱۰ پراپریمر مورد استفاده، ۷ عدد از آنها که شامل پراپریمرهای شماره ۲۷۳، ۲۷۲، ۲۷۱، ۲۷۰، ۱۷۶ و ۱۷۷ می‌باشد، هیچگونه باندی تولید نکرده‌اند. در نتیجه، Annealing (آزمایش‌های با استفاده از پراپریمرهای مذكور در سه دمای متغیر اتصال) به درجه ۳۶ و ۲۸ درجه سانتی‌گراد تکرار گردید که در هیچکدام از شرایط دما موارد آزمایش، عمل اتصال پراپریمرهای تولید باند انجام نشد، در حالی که نمونه‌های HA قابلیت کنترل مثبت (پراپریمر شماره ۲۳۰) در هر سه دمای اتصال، باندی مسکنی تولید نمود.

سایر پراپریمرهای آزمایش شده باندهای مشخصی را تولید نمودند که اندازه تقریبی باندها مذکور بین
بررسی امکان تشخیص جنسیت قبل مامی با استفاده از... كوانوکوه و همکاران

50 تا 1900 گفت باید باشد. هر پرایمر بطور متوسط 13 باند تولید نمود و در مجموع 3146 باند شمارش گردید که پرایمر شماره 66 کمترین تعداد باند (4 باند) و پرایمر شماره 88 بیشترین تعداد باند (31 باند) را تولید نمودند.

شکل 2: الگوی باندی پرایمر کبیر (OPT - 17) را در جنس نر (ستون 2) و ماده (ستون 3) نشان می‌دهد.

ستون 1 مارکر 50 گفت بازی می‌باشد.

الگوی باندی کلیدی پرایمرهای مورد بررسی به جز پرایمرهای مورد بررسی به جز پرایمر شماره 295 در دو جنس نر و ماده یکسان بود و هیچگونه تفاوتی مشاهده نگردید. این پرایمر باندی با اندامه تقریبی 450 گفت باز را در خزانه زنگی افراد نر تولید کرده بود که در الگوی باندی جنس DNA

www.SID.ir
ماده مشاهده نمی‌شد (شکل ۲). به منظور اطمینان از اختصاصی و تکراری‌پذیر بودن این باند در جنس نر، آزمایش PCR با استفاده از پرایمر مذکور و بر روی DNA غیر ترکیبی پنج عدد فیل ماهی نر و پنج عدد ماده تکرار گردید. پس از بررسی و مشاهده الگوی باندی افراد مستقل مشخص گردید که باند مذکور در یکی از ماهیان نر و یکی از ماهیان ماده به خوبی قابل تشخیص بوده و مربوط به تنوع فردی ماهیان مورد مطالعه می‌باشد (شکل ۳).

شکل ۳: الگوی باندی پرایمر شماره R۹۵۵ را در ماهیان نر (ستون ۱ تا ۵) و ماهیان ماده (ستون ۷ تا ۱۱) و مارکر ۵۰ حفظ بازی (ستون ۶) را نشان می‌دهد.

بحث:
در این تحقیق ۳۳ پرایمر از ۳۱ پرایمر آزمایش شده، باندهای واضح و مشخص تولید نموده ولی ۷ پرایمر دیگر هیچگونه باندی را تولید نکرده‌ند. عدم تولید باند توسط پرایمرهای مذکور می‌تواند به دلیل نامناسب بودن شرایط واکنش باشد. اما با توجه به اینکه آزمایش‌های PCR با استفاده از پرایمرهای مذکور
کووون شکوه و همگرا

بررسی امکان تشخیص چندین فیل ماهی با استفاده از...

در سه دما متفاوت اتصال (34، 36 و 38 درجه سانتی‌گراد) تکرار گرددی و در هر سه دما نکرات نمونه حاوی انتظار مناسبی انتخاب و به نمونه‌هایی دسته‌بندی کردند. این
عمل اتصال برای بررسی و تولید باند انجام گردید. در هر سه تکرار نمونه حاوی انتظار مناسبی انتخاب و به
احتمالاً غلظت پرایمرها به اندازه کافی تهیه نشده بود. تولید باند‌های واضح توسط اکثر پرایمرها نشان
در دهده که نمونه‌های DNA استخراج شده از کیفیت مناسبی برخوردار بوده و روش رنگ-کلروفم
روش مناسبی برای استخراج DNA در آزمایش‌های
می‌باشد.

اولین گام در تشخیص جنسیت یک موجود با استفاده از نشانگرهای DNA وجود سیستم تعیین
جنسيت زننگی در آن گونه می‌باشد (Griffiths, 2000). به عنوان مثال در گونه‌های که نرها هستوگامات
و ماده‌ها هپموگامت (XY) باشند، احتمال بیانی چنین نشانگرهایی در DNA افراد نر وجود دارد، (XY)
چرا که کروموزوم Y تنها در افراد نر دیده می‌شود. در برخی از گونه‌های کروموزوم‌های جنسی کاملاً تکامل
یافته و متغیر است و در برخی دیگر یک جفت از کروموزوم‌های آنتوزورمی به عنوان کروموزوم‌های جنسی
عمل نموده و از نظر مورفولوژیک بکسان می‌باشد (Tave, 1993). وجود کروموزوم‌های جنسی متغیر
تنها در کاربودتایی 17 گونه از ماهیان گزارش گردیده است. در حالیکه تاکنون بیش از 165 گونه ماهی
از نظر سیستمیکی مورد مطالعه قرار گرفته‌اند (Delvin & Nagahama, 2002). از آن‌جا که سیستم تعیین
Van Eenennaam از کروموزوم‌های فیل ماهی با استفاده از تکنیک‌های DNA استخوانی شناخته شده نیست
(et al., 1999 و همچنین مطالعات سیستمیکی و وجود کروموزوم‌های جنسی در ماهیان خاوباری زبان ندارد است (Van Eenennaam et al., 1998). نتایج این تحقیق
Fontana & Colombo, 1974 ; Van Eenennaam et al., 1999 می‌تواند احتمال‌مند باشد. از عدم وجود کروموزوم‌های جنسی در فیل ماهی (سیستم تعیین جنسیت
آنتوزورمی) و یا شیب‌های بسیار زیاد کروموزوم‌های جنسی آن باشد. چرا در این تحقیق با کاربرد بیش از
200 بار این کروموزوم Y در گونه‌های مختلف از پستانداران و بین‌نواز‌شناسی گردیده است. در
مطالعات تشخیص جنسیت. جنین نشانگر وابسته به

www.SID.ir
علامت نمودن‌که با استفاده از ۲۰۰ برایام مختلف و بررسی الهگوی بنایی ماهی آزاد ایوانوس اطلس، تفاوتی را در دو جنس نر و ماده مشاهده نکردند. محققین مذکور بر این عقیده‌اند که با در نظر گرفتن غیرقابل تشخیص بودن کروموموزوم‌های جنسی در کاریوتایپ‌های این ماهی، احتمال دارد زنی که جنسیت این گونه را تعیین می‌کند دو آلفا و جزء زنیای آنتونومی باشد. اسی و همکاران (۲۰۰۲) نیز با استفاده از سه روش مطالعه گسترده‌ای را به منظور شناسایی نشانگرهای جنسی در زنوم B.غم‌ماهی سازمان دادند. ایشان با استفاده از ۲۳۰۰ برایام و بررسی بعضی قابل توجهی از زنوم پیش‌آمیز احتمال داندن که کروموموزوم‌های جنسی در این گونه وجود نداشته و یا اینکه نقاط متمایز بسیار کمی بروی این کروموموزوم‌ها وجود دارد.

از لحاظ تئوری، نیافتن نشانگرهای جنسی می‌تواند دلیل بر عدم وجود سیستم تعیین جنسیت زننیکاو و فعال بودن سیستم تعیین جنسیت محیطی در گونه مورد مطالعه نیز باشد (Li et al., 2002). که در جنین حالتی حاوی مقدار پراکنده موتور و محیطی نظیر درجه حرارت، مدت زمان ناپایین‌یابی pH، شوری، و سایر متغیرهای محیطی، جنسیت یک فرد را تعیین می‌نماید (Delvin & Nagahama, 2002; Tave, 1993). بنابراین از نظر تئوری، عدم وجود سیستم تعیین جنسیت زننیکاو در فیزیولوژی ماهی نیز معقول است. اما این فرضیه تنها زمانی قابلیت می‌پذیرد که با انجام مطالعات دقیق، چگونگی تعیین جنسیت این گونه (زننیکاو، فیزیولوژیکی و می‌تواند مورد آزمون قرار گیرد.

یکی دیگر از عواملی که می‌تواند در عدم شناسایی نشانگرهای جنسی دخالت داشته باشد وجود تنوع بیش از حد در میان‌افراد مورد مطالعه می‌باشد (Li et al., 2002) و همکاران (1998) با استفاده از روش RAPD، شناسایی ماهیان نر (9) ra در یکی از نزاده‌های قزل آالی رنگین کمان شناسایی نمودند که ماهیان ماده مورد مطالعه وقت آن بودند. استفاده از این نشانگر (Mount Lassen) در تفکیک جنسیت ماهیان قزل آالی نزاد اسکاتلندی نشان داد که نواحی یکنواحی بر ماهیان نر در زنوم ۲۴ درصد از ماهیان ماده نیز یافته می‌شود. این شک از توجه به نتایج بدست آمده گزارش نمودن‌که نشانگرهای جنسی قزل آالی رنگین کمان تنها در زنوم نزاده‌های مورد مطالعه قابل شناسایی بوده و در سطح جمعیتی دیگر قابل استفاده نیستند. که دلیل آن نیز تفاوت زیاد میان جمعیت‌های مختلف ماهیان برورشی می‌باشد. از آنجا که فیل ماهیان مورد مطالعه در این تحقیق در دو سال متفاوت و از مناطق www.SID.ir
کیوان شکوه و همکاران

بررسی امکان تشخیص جنسیت قبل ماهی با استفاده از RAPD و سایر روش‌های مولکولی

نتایج حاصل از این پژوهش نشان می‌دهد که تفکیک جنسیت فیل‌های ماهی در مورد ماهی به استفاده از RAPD (Amplified Fragment Length Polymorphism) AFLP نظیر (Amplicon) با استفاده از تواپیه‌های جنسی شناخته شده در ماهیان و سایر گونه‌های جانوری به عنوان کاوشگر (Probe)، زننده فیل ماهی و ماهی مورد بررسی قرار گیرد. همچنین با توجه به ناشناخته بودن مکانیسم تغییر جنسیت در فیل ماهی، انجام مطالعات بنیادی در این زمینه ضروری می‌باشد.

بررسی مکانیسم تغییر جنسیت در ماهیان با استفاده از RAPD نشان داد که استفاده از روش‌های مختلف نظیر محاسبه نسبت جنسی نتایج حاصل از تلاش‌های مختلف و انجام دستگاه‌های کروموزومی نظیر ماده‌ای امکان‌پذیر است (Delvin & Nagahama, 2002).

تشکر و قدردانی

از مؤسسه تحقیقات شیلات ایران و دانشگاه تربیت مدرس به جهت تأمین اعتبارات مالی این طرح تشکر می‌گردد. همچنین از همکاران آفای مقدمی، رئیس مجموعه تک‌گان و پرورش ماهیان خاویاری شهید مرجمان در نمونه‌برداری نیز سپاسگزاریم. از کلیه کارکنان محروم استیتو تحقیقات بین‌المللی ماهیان خاویاری بخصوص بخش زنتیک که برازی انجام این پروژه را فراهم نمودند تشکر بعمل می‌آید. همچنین
منابع

کیوان شکوه، س. ، ۱۳۸۱. بررسی امکان تشخیص جنسیت فیل‌ماهی با استفاده از روشهای PCR-RAPD. پایان نامه کارشناسی ارشد شیلات. دانشگاه تربیت مدرس، دانشکده مینابع طبیعی و علوم دریایی، ۴۴ صفحه.

مقیم، م.; وجهی، ع.; وشکنی، ع. و مسعودی فرد، م. ، ۱۳۸۰. تعیین جنسیت ناس ماهی ایرانی (Acipenser Persicus) بوشیله اولتراسونوگرافی. مجله علوم شیلات ایران، شماره ۳، سال دهم. صفحات ۷۱-۸۷.

DNA polymorphism amplified by arbitrary primers are useful as genetic markers.

Nucleic Acid Research, Vol. 18, pp.6531-6535.