اثرات کاهش سطح پروتئین جیره و درصد پودر ماهی بر شاخص های رشد و میزان نیتروژن آزاد شده در ماهی قزل آلای رنگین کم،

Oncorhynchus mykiss, Walbaum 1792

علی اعظم اسماعیلی، عبدالصمد کرامت*، حسین اورجی

*Amirkola@yahoo.com

لغات کلیدی: سطح پروتئین، پودر ماهی، اسید آمینه، رشد، ضربت تبدیل غذایی

چکیده
در این تحقیق اثرات کاهش سطح پروتئین خام به‌همراه گنگ‌گیری قسمتی از پودر ماهی با منابع پروتئین گیاهی در جیره ماهی قزل آلای رنگین کم مورد مطالعه قرار گرفت. به این منظور جیره های با سطح پروتئین 40، 32 و 24 درصد با سطح پودر ماهی 60، 40 و 20 درصد با محتویات قازی کلوئو اسیدهای آمینه مورد استفاده قرار گرفت. که شامل: 9 نیم‌یار با سه تکرار بود. نتایج نشان داد که تأثیر سطح پروتئین در شاخص‌های رشد معنی‌دار دارد (p<0/05). ولی گنگ‌گیری پودر ماهی تنها بر ضریب رشد ویژه و رشد نهایی اثر داشت (p<0/05). اثرات متقابل سطح پروتئین و میزان گنگ‌گیری پودر ماهی بر ضریب رشد ویژه معنی‌دار نبود. در سایر شاخص‌های رشد تأثیری مشاهده نگردید (p>0/05). به‌طور کل سرعت رشد ویژه مربوط به تیمار 40p36 و 40p32 مشاهده شد. در نتیجه مشخص گردید که سطح پروتئین جیره با توجه به نتایج آماری مناسب‌ترین تیمار این پژوهش بود. نتایج نشان داد که سطح پروتئین جیره و میزان گنگ‌گیری پودر ماهی در جیره ماهی قزل آلای رنگین کم با محتویات سازی الگوی مورد استفاده های آمینه بودن تأثیر منفی در شاخص‌های رشد امکان پذیر است و

لغات کلیدی: سطح پروتئین، پودر ماهی، اسید آمینه، رشد، ضربت تبدیل غذایی

نویسنده مستند
پودر ماهی به عنوان مهترین منبع نانو کننده پروتئین در غذای ماهیان کونکس‌ها محسوب می‌شود که دلیل آن داشتن محتوای پروتئین بالا و چربی، رییگانترازی رژیم‌داری، ترکیب اسید آمینه‌های مورد نظر و یافته‌های بیولوژیکی باله نمونه‌ریزی (Gatlin et al., 2007). تولید پودر ماهی با وابستگی به ماهیان پلاریک (سطح زیر) است. فاکتورهای کلیدی در اینهای در حال تهیه است (FAO, 2016) و طی سال‌های گذشته قسمت اول آن به شدت رو به افزایش گذاشته است. یکی از درآمدهای روزانه تولید آبزیان پرورشی با استفاده از یکی از پودر ماهی با وابستگی به پودر ماهی را کاکه و پروتئین مناسب Bendiksen et al. (2011) گزارش نمودند. (Gatlin et al., 2007) تعادل زیادی از میکرو‌اولتی در یک نیروی ماهی پروتئین‌های استفاده کرده‌اند و یکی از مثبت‌ترین روش‌های بررسی ماهی پروتئین‌های توزیع توده‌ای به یکه پیشنهاد می‌نماید. در این تحقیق طرح پروتئین جیره (Guroy et al., 2007) و (Barrows et al., 2007) فیزیولوژی می‌باشد که نسبت افزایش مقدار می‌باشد که نسبت افزایش مقدار سطح پزوتئیه شامل انجام نشده است. این تحقیق به طور همزمان کاهش سطح پزوتئیه پودر ماهی را مورد بررسی قرار داده است. (Borgez et al., 2011; Burr et al., 2012; Collins et al., 2012; Guroy et al., 2012). اگر چه پروتئین‌های جیره: از میناب بررسی پودر ماهی غذا تهیه و ترکیب و الگوی اسیدئامه‌های اینن مربوط کننده پروتئین خام و بالا بر این میزان جایگزینی پودر ماهی در جیره تعریف شده‌اند. در این تحقیق سطح پروتئین جیره (Guroy et al., 2002 و 2003) فناوری میزان پودر ماهی (0.06 و 0.5٪) مجموعاً منجر به ساختن یک مشابه از امیکاگزینی (جدول 1). کمیابی اسیدهای اینن بر اساس عایق‌های طبیعی گیرنده در حیات ناحیه، روند سیستمی به سطح مورد استاندارد (2011) برای سیستم به سطح مقدار، (نقطه محاسبه شد و با افزایش اسیدهای اینن مکمل به جیره ها)، کمبودگی جیره گردید و مکمل پس از آسیاب نمونه از اکت 100 میکروگرم در طبقه توزیع و با هم مخلوط شدند.
جدول 1: ترکیب حیوانات و مواد اسیدی آمینا، افزوده شده به جیره.

Table 1: Diet integration and added amino acid rate

<table>
<thead>
<tr>
<th>نیم‌های</th>
<th>40P60F</th>
<th>40P40F</th>
<th>40P20F</th>
<th>36P60F</th>
<th>36P40F</th>
<th>36P20F</th>
<th>32P60F</th>
<th>32P40F</th>
<th>32P20F</th>
</tr>
</thead>
<tbody>
<tr>
<td>گوشت</td>
<td>23</td>
<td>11/5</td>
<td>1/5</td>
<td>27/5</td>
<td>18/3</td>
<td>9/3</td>
<td>20/5</td>
<td>11/5</td>
<td>1/5</td>
</tr>
<tr>
<td>گوشت</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>11/9</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>گوشت</td>
<td>13</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>15/4</td>
<td>21/5</td>
</tr>
<tr>
<td>گوشت</td>
<td>3/5</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10/4</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>گوشت</td>
<td>5/2</td>
<td>3/5</td>
<td>2/4</td>
<td>2/4</td>
<td>2/4</td>
<td>2/4</td>
<td>2/4</td>
<td>2/4</td>
<td>2/4</td>
</tr>
<tr>
<td>گوشت</td>
<td>0</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>ماده شکر</td>
<td>91/25</td>
<td>9/1</td>
<td>9/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>ماده شکر</td>
<td>9/37</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>ماده شکر</td>
<td>3/6</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>ماده شکر</td>
<td>1/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
</tr>
</tbody>
</table>

انتخاب گردید. به منظور خروج و تعیین گازها و املاح، ابتدا آب چاه وارد مخازن ذخیره شد و پس از هوازی به نظر بررس و نیز علیه آن چیدن. با توجه به تعادل تیمارها (نه تیمار)، نظر صد و پنجاه چهار به تعداد 27 عدد با یک لایه فوم پنجه میکروپوش داده شد تا نوسانات دمایی چلگری در شیده مخلوط خمیری شکل حاصل به کمک چرخ کشته به صورت رشته‌های با قطر 3 و 4 میلی‌متر تبدیل و پس از خشکسازی و جداسازی خاکه، غذاهای بسته بندی شده و شماره- گذاری شدند.

شراخط کارگاه و بروز:
پروتئین قابل جذب:
کیلو کالری در گرم
یافته‌های کاشت سطح پروتئین‌های جیره و درصد پودر ماهی...
پروتئین و جایگزینی پودر ماهی نشان داده شده که کاهش سطح پروتئین به همراه جایگزینی پودر ماهی به جز ضریب رشد و وزن سپر شاخه های رشد به ترتیب می‌باشد (p<0.05). بالاترین رشد نهایی مربوط به تیمار 36p40f بود (جدول 2). نتایج نشان داد که در تمام موارد متناسب با این سطح پروتئین به طور چاپگانه و متقابل بیر مقادیر تولیدات از تأثیر گذار بودند (p<0.05).

در تیمارها کمترین مقدار نیتروژن کل آمونیاکی در نیتروژن 36p40f و 32p40f مشاهده گردید و تیمار 40p40f به ترتیب نیتروژن آمونیاکی را داشت. در خصوص نبیتشاریتی پودر کمترین مقدار در تیمار 40p40f مشاهده شد. در مورد نبیتشاریت تیمار 36p40f و 32p40f کمترین مقدار در تیمار 40p40f و 40p60f بود که دست ایم (جدول 2).

جدول 2: تاثیر جهوره در شاخه‌های رشد

<table>
<thead>
<tr>
<th>آلبوم‌های داده</th>
<th>وزن مولتی(کرم)</th>
<th>وزن شاخه (کرم)</th>
<th>سرعت رشدشده (کرم)</th>
<th>دار /%</th>
<th>پودر ماهی /%</th>
<th>پودر آزمایشگاه</th>
<th>آزمایشگاه</th>
<th>پودر آزمایشگاه</th>
<th>آزمایشگاه</th>
<th>پودر آزمایشگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>آلبوم /زمان</td>
<td>91/111</td>
<td>1/4</td>
<td>3/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>پودر /زمان</td>
<td>36</td>
<td>0.04</td>
<td>± 0.01</td>
</tr>
<tr>
<td>آزمایشگاه /زمان</td>
<td>36</td>
<td>0.04</td>
<td>± 0.01</td>
</tr>
</tbody>
</table>

(جدول 2).
جدول 3: اثر جیره ها در شبکه کبدی و احساسی

Table 3: Diets effect on Hepato and Viscera Somatic Index.

<table>
<thead>
<tr>
<th>شاخص احساسی</th>
<th>شاخص کبدی</th>
<th>تیمار</th>
<th>پروتئین</th>
<th>پودر ماهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>13/41±1/1</td>
<td>1/1±0/5</td>
<td>40p60f</td>
<td>60</td>
<td>00</td>
</tr>
<tr>
<td>12/71±1/0</td>
<td>1/1±0/5</td>
<td>40p40f</td>
<td>40</td>
<td>00</td>
</tr>
<tr>
<td>15/37±2/7</td>
<td>1/1±2/5</td>
<td>40p20f</td>
<td>20</td>
<td>00</td>
</tr>
<tr>
<td>14/42±2/4</td>
<td>1/1±2/5</td>
<td>36p60f</td>
<td>60</td>
<td>00</td>
</tr>
<tr>
<td>11/65±1/2</td>
<td>1/1±2/5</td>
<td>36p40f</td>
<td>40</td>
<td>00</td>
</tr>
<tr>
<td>15/56±1/8</td>
<td>1/1±2/5</td>
<td>36p20f</td>
<td>20</td>
<td>00</td>
</tr>
<tr>
<td>11/96±2/3</td>
<td>1/1±2/5</td>
<td>32p60f</td>
<td>60</td>
<td>00</td>
</tr>
<tr>
<td>11/37±1/2</td>
<td>1/1±2/5</td>
<td>32p40f</td>
<td>40</td>
<td>00</td>
</tr>
<tr>
<td>11/65±1/2</td>
<td>1/1±2/5</td>
<td>32p20f</td>
<td>20</td>
<td>00</td>
</tr>
</tbody>
</table>

آنالیز آماری داده ها

اثر پروتئین

اثر پودر ماهی

اثر متغیر

جدول 4: اثر جیره ها بر مقدار کل نیتروژن آمونیاک (TAN)، نیترات و نیتریت

Table 4: Diets effect on Total Amonia Nitrogen, Nitrate and Nitrite Rate.

<table>
<thead>
<tr>
<th>تیمار</th>
<th>پروتئین</th>
<th>پودر ماهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>13/41±1/1</td>
<td>1/1±0/5</td>
<td>40p60f</td>
</tr>
<tr>
<td>12/71±1/0</td>
<td>1/1±0/5</td>
<td>40p40f</td>
</tr>
<tr>
<td>15/37±2/7</td>
<td>1/1±2/5</td>
<td>40p20f</td>
</tr>
<tr>
<td>14/42±2/4</td>
<td>1/1±2/5</td>
<td>36p60f</td>
</tr>
<tr>
<td>11/65±1/2</td>
<td>1/1±2/5</td>
<td>36p40f</td>
</tr>
<tr>
<td>15/56±1/8</td>
<td>1/1±2/5</td>
<td>36p20f</td>
</tr>
<tr>
<td>11/96±2/3</td>
<td>1/1±2/5</td>
<td>32p60f</td>
</tr>
<tr>
<td>11/37±1/2</td>
<td>1/1±2/5</td>
<td>32p40f</td>
</tr>
<tr>
<td>11/65±1/2</td>
<td>1/1±2/5</td>
<td>32p20f</td>
</tr>
</tbody>
</table>

آنالیز آماری داده ها

اثر پروتئین

اثر پودر ماهی

اثر متغیر
بحث
نتایج این تحقیق نشان داد که میزان سطح پروتئین بین شاخص های رشد تأثیر مستقیمی دارند و سوابق پژوهشی
گذشته نیز همین نتیجه با نشان داده است (Zongjia et al., 2003; Figueiredo-Silva et al., 2015; Saravanan et al., 2013; Yamamoto et al., 1999; Tulli et al., 2010; et al., 2005)
بررسی‌های مختلف اذعان داشته اند که کاهش سطح پروتئین در ماهی قزل آی رهگی کمک سبب نقصان شاخص های رشد می‌گردد.

با توجه به این که پیش‌تر در سنین غرب و سرعت رشد ویژه
در تیمار ۳۶ و ۳۲p40f و کمترین آنها در تیمار ۷۲ دسته‌گردیده‌اند، می‌توان گفت که سطح پروتئین ماهی افزایش شده و ماهی از مکمل اضافه شده، افزایش شاخص احیای مشاهده شده و این شاخص متعادل شده. بعنوان یک اثر مثبت، گزارش ماهی موجب عملکرد مثبت به‌شمار می‌رسد و در نتیجه افزایش وزن نیز پیدا می‌شود. پس از توان جنگ گفت که سطح پروتئین و گیاهی و بی‌گیاهی شاخص پروتئین گیاهی با بالا آمدن سلسله‌سازی آماده، مشکلی در شاخص احیای ایجاد نمی‌کند.

پژوهش‌های معناداری در داخل کشور و می‌باشد. بر اساس ضرب میزان نیتروژن در ضریب تابعی ۰ به
ایجاد ۲۳۵/۰٪ در میانی داشته و یکی از
نابه‌بندی که نظارت نیتروژن در شاخص‌های گیاهی در جیره‌های ایرانی (در این سطح پروتئین گیاهی) در جیره‌های ایرانی (در این سطح پروتئین گیاهی)
تای یک تا یک درصد گزارش نشان داده تأثیر مثبتی را در مه‌کاران ۱۳۹۶ و همکاران (۱۳۹۶) و Lund و Gomes (۱۳۷۸) و گیاهی از پودر ماهی با میزان پروتئین گیاهی در جیره‌های ایرانی (در این سطح پروتئین گیاهی) نمود که گیاهی بخشی از پودر ماهی با میزان پروتئین گیاهی در جیره‌های ایرانی (در این سطح پروتئین گیاهی)
می‌باشد. با توجه به نتایج، تیمارها بر شاخص کبدی اثر نداشت و
نابه‌بندی که نظارت نیتروژن در شاخص‌های گیاهی گزارش نشان داده این تأثیر مثبتی را در مه‌کاران ۱۳۹۶ و Lund و Gomes (۱۳۷۸) و همکاران (۱۳۹۶) و Lund و Gomes (۱۳۷۸) و گیاهی از پودر ماهی با میزان پروتئین گیاهی در جیره‌های ایرانی (در این سطح پروتئین گیاهی) نمود که گیاهی بخشی از پودر ماهی با میزان پروتئین گیاهی در جیره‌های ایرانی (در این سطح پروتئین گیاهی)
نتیجه‌نهایی این که توانای کاهش سطح پروتئین‌های ماهی کمترین سرعت رشد و وزه را در هماهنگی با مصرف پروتئین‌های ماهی می‌تواند باعث تغییر در سطح پروتئین‌های ماهی شود. در نتیجه این ارامدی، احتمال آسیب‌های اثرهای منفی سطح پروتئین‌های ماهی افزایش می‌یابد و این می‌تواند باعث تغییر در سطح پروتئین‌های ماهی شود.

در بررسی انتخاب سطح پروتئین‌های ماهی، جایزه‌گیری ماهی ماهی گه، بیشتر از این اثرت می‌تواند باعث تغییر در سطح پروتئین‌های ماهی شود.

منبع

جیلی، ی. ا. (۱۳۹۲). آثار جایزه‌گیری ماهی‌های مختلف در جریه غذای ماهی قزل از آمادگی کمکی (Oncorhynchus mykiss). مجله مهندسی علمی. ایران، ۶(۲)، ۱۲۱-۱۱۹.

صفی، م. و جداگی، ف. (۱۳۸۷). بررسی تأثیر جایزه‌گیری نسبی کنترل کننده ماهی‌های قزل از آمادگی غذایی (Oncorhynchus mykiss) کل آمادگی کمکی. مجله علمی شیلات ایران. سال ۴۶ شماره ۲. صفحه ۱۰۲-۱۰۱.

دریافت جایزه‌گیری ماهی‌های مختلف در جریه غذای ماهی قزل از آمادگی کمکی (Oncorhynchus mykiss)

 DOI: 10.20292/ISFJ.2017.113526

محبوبی، ص. و ی. (۱۳۷۷). جایزه‌گیری ماهی‌های بیشتر از این اثرت می‌تواند باعث تغییر در سطح پروتئین‌های ماهی شود.

کتاب‌های مهم

- Gaylord و Tsui (۱۳۹۲)، مشاوره‌های منفی جایزه‌گیری ماهی ماهی گه، بیشتر از این اثرت می‌تواند باعث تغییر در سطح پروتئین‌های ماهی شود.
- Green و Barrows (۱۳۹۲)، مشاوره‌های منفی جایزه‌گیری ماهی ماهی گه، بیشتر از این اثرت می‌تواند باعث تغییر در سطح پروتئین‌های ماهی شود.
- Bureaud و Bureaud (۱۳۹۲)، مشاوره‌های منفی جایزه‌گیری ماهی ماهی گه، بیشتر از این اثرت می‌تواند باعث تغییر در سطح پروتئین‌های ماهی شود.
- Randa و Randa (۱۳۹۲)، مشاوره‌های منفی جایزه‌گیری ماهی ماهی گه، بیشتر از این اثرت می‌تواند باعث تغییر در سطح پروتئین‌های ماهی شود.

FAO., 2016. The State of World Fisheries and Aquaculture .contributing to food

DOI: 10.22092/ISFJ.2017.110228

نوري، ف. و جلیلي، ر.. 1393. چابکش کبهل پَدس هبّی ٍ ثخؾ اػظن سٍغي هبّی ثب هٌبثغ گیبّی ثذٍى کبّؾ ؿبخق ّبی سؿذی ٍ کبسایی تغزیِ ای دس خیشُ هبّی قضل آلای سًگیي کوبى اًگـت قذ (*Oncorhynchus mykiss*).

The effects of low protein and fishmeal diets on growth parameters and Nitrogen excretion in rainbow trout (Oncorhynchus mykiss)

Esmaeili A.A.¹, Keramat ¹*, Teymori, A.¹, Ouraji H.¹

*amirkola@yahoo.com

1-Department of fisheries, Faculty of animal sciences and fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

The main goal of the current study was to investigate the effects of low protein diets along with fishmeal replacement by plant protein in rainbow trout diet. In the current study, three protein levels (32, 36 and 40%) and three fishmeal levels (20, 40 and 60%) were tested in rainbow trout. Amino acid content of the diets were balanced by addition of essential amino acids. This led to nine experimental diets and three replicates for each treatment. The results showed that growth parameters were influenced by protein level (p<0.05). However, fishmeal replacement only changed final weight and specific growth weight (p<0.05). The result also revealed that the interaction effect between protein level and fishmeal replacement was significant only for specific growth rate (p<0.05) and there were no interaction effect for other growth parameters (p>0.05). Maximum growth was observed in fish fed diet containing 36% protein and 40% fishmeal. Both protein level and fishmeal replacement affected TAN excretion in rainbow trout (p<0.05) and minimum ammonia nitrogen was observed in treatments 36p20f and 32p40f (p<0.05). In conclusion, the current result suggested that lowering dietary protein by 36% and also fishmeal replacement by plant protein up to 60% did not have a negative impact on growth parameters in rainbow trout when dietary essential amino acids were balanced. This condition also can lead to a lower ammonia release to water.

Keywords: Amino Acids, Growth, Feed Conversion, Protein Level, Fishmeal

*Corresponding author