اثر پوشش خوراکی سدیم آلفینات بر تغییرات کیفیت ماهی کیلکای سر و دم زده

شکم خالی در سردخانه

نسرین خاندان (1)* عباسعلی مطلی (2) و علی اصغر خانی پور (3)
Nasrinkh41@yahoo.com

1- دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران صندوق پستی: 19580-181
2- مؤسسه تحقیقات شیلات ایران، تهران صندوق پستی: 14156
3- مرکز ملی فرآوری آبزیان، بندر انجیلی صندوق پستی: 1650-1654

تاریخ دریافت: اردیبهشت 1389
تاریخ پذیرش: اردیبهشت 1390

چکیده

هدف از این تحقیق بررسی اثر پوشش خوراکی سدیم آلفینات بر کیفیت ماهی کیلکای سر و دم زده شکم خالی در سردخانه می‌باشد. پوشش خوراکی سدیم آلفینات در چهار غلظت مختلف (25، 50، 75 و 100 درصد) تهیه شد. کیلکاها سر و دم زده شکم خالی به مدت 4 ساعت پوشش دادند و سپس در ظروف بی‌یاتلین با پوشش سلفون، بسته می‌شدند و در دمای 18-20 درجه سانتی‌گراد نگهداری شدند. مقدار آن‌های هم‌بستگی‌دار از جمله Heme، pH، افزایش غلظت سدیم آلفینات، افزایش میانگین دارای نشان داد (P<0.05). میانگین pH نمونه‌ها فاقد اختلاف معنی‌داری بود (P>0.05). نتایج از آن‌ها نشان داد که برای دو رنگ نمونه‌ها دارای اختلاف معنی‌دار بوده است (P<0.05).

استفاده از پوشش خوراکی سدیم آلفینات بدلیل حفظ آن‌ها، و بهبود خواص ارگانولیپید می‌تواند سبب افزایش کیفیت ماهی کیلکای سر و دم زده شود.

لطف کلیدی: ماهی کیلکای، پوشش خوراکی، سدیم آلفینات، کیفیت ماهی

*نویسنده مستند

23
مقدمه
ماهی کیکلکا از خانواده Clupeidae یکی از گونه‌های اقتصادی مهم و با ارزش دریای خزر می‌باشد و بدلیل داشتن پوست‌های‌ای براقی‌خیس‌یافته به‌اشتی امنی قرار دهدهای به شکل اولیه را در محیط‌های معیشتی می‌باشد. ماهی‌هایی که مصرف کننده‌های مورد نظر در بعضی از مراحل مصرف عمده‌اند، به‌طور عمده در استان کرمانشاه و جنوب کشور توزیع می‌شوند. این ماهی همچنین در ماهی‌گیری از دریای خزر و دریای عمان مورد استفاده قرار می‌گیرد.

آنتی‌بای‌های برای گسترش مصرف مصرف‌نداز است. این ماهی از اقلیت‌های خوراکی‌های مصرف‌نداز است. (Cutter, 2006; Crapo et al., 1999; Macrocystis pyrifera (Maftoonazad et al., 2008) و Raybaudi-Massilia et al. (2008) می‌باشد.

طرح‌های خوراکی‌های مصرف‌نداز و بازیابی آب در ایندریا و دریای خزر نیز مورد ارزیابی قرار گرفته و چنین نتایجی در آزمایش‌های گروهی نشان داده شده که با یک‌نفر و یکی از این روش‌ها می‌توان به بهبود کیفیت مصرف و افزایش سطح مصرف در شرایط غیرمعنی‌داری دست یافت.

مواد و روش کار
ماهی کیکلکا تازه (طرح عملکرد مصرف‌کننده) صبح زود از استکله بندی از دریای خزر به‌کار می‌گرفت. شهید برای تهیه مخلوط مصرف‌کننده ماهی کیکلکا خریداری شد. ماهی‌ها در داخل تانک‌های مخصوص حمل ماهی در داخل تانک‌های مخصوص حمل ماهی

\[
\alpha = \frac{1}{2}(\alpha_1 + \alpha_2) 
\]

در ساختار متوالی و ترکیبات پسربازان مربوط به ویژگی‌های دریایی Clupeidae در گروه ماهی‌های دریایی است. در دو بخش D و E، در سدای دخترانه، ماهی‌های دریایی به ویژه ماهی‌های دریایی در بخش D، در سدای دخترانه، ماهی‌های دریایی به ویژه ماهی‌های دریایی در بخش D، در سدای دخترانه، ماهی‌های دریایی به ویژه ماهی‌های دریایی در بخش D

(Cutter et al., 2005; Crapo et al., 1999, 1997; Chapman et al., 1997; Oms-Oliu et al., 2008)
گفت و گویی با امکانات ایرانی

نتایج

در بررسی این تیمارها، تفاوت آماری محسوسی در بین میانگین آن هم تیمارهای مختلف در زمانهای صفر، ۱، ۲ و ۳ هفته شناسا و دارای معنی (P<0.05) بود. همچنین در بررسی این تیمارها، تفاوت آماری معناداری بین میانگین آن هم ۰.۵

در ۱۴۲۵ هفته ماه گزارش شده است. ماهی کیکچار با مرکز میل به شکل قرار گرفتن در طبقه خاصی به جای اولین نسبت به تعداد داخل چهار تیمار ۱، ۲ و ۳ و ۴ و ۵ بانک ماهی کیکچار بوده که در دیجیتال فاصله ۳۱ گیلبریگ ماهی یک نیاک ۵۵ گیلبریگ ماهی کیکچار و به سمت دیگر یک سیستم آنتی‌بیوتیک در بهبود و مرتب

پوشش خون‌ریزی سدیم آنتی‌بیوتیک (CSW) از کلینیکهای تغییر طبقه در مراقبت‌های مافتنازاد و همکاران (۲۰۱۸)

در درصد سیدم آنتی‌بیوتیک آنها از نمونه‌های آماده به تعدادی از نمونه‌های مناسب شده. به این ترتیب آنها از نمونه‌های سیدم آنتی‌بیوتیک داریم. در مراقبت‌های پیش در دانشگاه بیمارستان تغییرات در روش غلوتومی قرار داده شد. یک از خارج کردن نمونه‌ها، حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های دوم و چهار دوره شور. سپس

در ۳۵ فاصله سانتریت با روش غلوتومی قرار داده شد. چپ از خارج کردن نمونه‌ها حدود یک دقیقه در داخل سبد

پیگیری‌های ثبتی در ماه‌های Doi:10.22092/ISFJ.2017.109972]
در بررسی اثر تیمارها، تفاوت امکانی میان داری بین میانگین رتبه تیمارهای مختلف طی 4 ماه نگهداری در سردخانه مشاهده نگردید (P > 0.05). در بررسی اثر زمانها، تفاوت امکانی میان داری بین میانگین رتبه تیمارهای مختلف طی 5 ماه نمونه داشت (P < 0.05). اثر تیمار و زمان بر رتبه تیمار در نمودار 1 نشان داده شده است.

در بررسی اثر تیمارها، تفاوت امکانی میان داری بین میانگین pH تیمارهای مختلف در زمانهای صفر، 1، 2، 3 و 4 ماه نگهداری در سردخانه مشاهده نگردید (P > 0.05). همچنین در pH بررسی اثر زمانها، تفاوت امکانی میان داری بین میانگین زمانهای مختلف در تیمار 1، 2، 3 و 4 ماه مشاهده نگردید (P > 0.05). اثر تیمار و زمان بر pH نمونه در نمودار 2 نشان داده شده است.

نمودار 1: اثر غلظت های مختلف (0/5 درصد، 2/50 درصد، 0/1 درصد و 0/12 درصد) پوشش خوراکی سدیم آلولیتی در آهون هم گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر آهون هم گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر آهون هم گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر آهون هم گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر آهون هم گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر آهون هم گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر آهون H

pH

نمودار 2: اثر غلظت های مختلف (0/5 درصد، 2/50 درصد، 0/1 درصد و 0/12 درصد) پوشش خوراکی سدیم آلولیتی بر

گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر

گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر

گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر

گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر

گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر

گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر

گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر

گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر

گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر

گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی سدیم آلولیتی بر

گوشت کیلکیسیALLOW (7/56 درصد) پوشش خوراکی S
نمودار ۳: اثر غلظت‌های مختلف (۲/۵۰/۰/۶۰ درصد، ۲/۷۵ درصد و ۲/۵۰ درصد) پوشش خوراکی سدیم آلزینات بر رتبه بندی
در ماهی کیلکای سر و دم زده شکم خالی طی ۴ ماه نگهداری در دمای ۱۸– درجه سانتی‌گراد

نمودار ۴: اثر غلظت‌های مختلف (۲/۵۰/۰/۶۰ درصد، ۲/۷۵ درصد و ۲/۵۰ درصد) پوشش خوراکی سدیم آلزینات بر رتبه
بندی در ماهی کیلکای سر و دم زده شکم خالی طی ۴ ماه نگهداری در دمای ۱۸– درجه سانتی‌گراد

بحث
نتایج بررسی حاضر نشان داد که بین میانگین آهنگ میزان تیمارهای مختلف در زمان‌های مختلف (۳، ۴ و ۵ ماه اختلاف می‌بیند. زمان‌های مختلف در تیمار ۱ و ۴ (نمونه شاهد) دارای کمترین مقدار بوده و با افزایش غلظت سدیم آلزینات در نمونه‌های پوشش‌دار تفاوت داشته است. همچنین بین میانگین آهنگ میزان تیمارهای مختلف در بین تیمارها

۲۷
مقدار آهن هم می‌آید، بنابراین با کاهش رنگ‌های میخواینی با گذشته مقدار آهن هم زیر کاهش می‌آید (روزی‌شهری، 1997; Clark et al., 1997). در مورد کاهش کلیکی، فیلم خوراکی سیدم آلزاینت برتغیرات کیفی ماهی‌...


منابع
رضایی، م. سحری، مع. و معینی، س. - 3885. ارزیابی کفی
چربی ماهی کیلگاه آجیچی طی پک‌بندی و انجماد در دماهای
مختلط. مجله علمی و فنون کشاورزی و ماناب طبیعی، سال دهم،
شمار چهارم (ب)، صفحات 424-444
رضوی شیرازی، ح. - 1380. تکنولوژی فراورده‌های دهی
فراوری (2). انتشارات نش مهر. 242 صفحه.
کاظمی اسلامی، غ. - 1382. فرهنگ اکلیپسی - فارسی علوم
و مهندسی صنایع غذایی. انتشارات مؤلف. 568 صفحه.
مرادی، غ. - 1380. بررسی عملکرد برایه، فراوری و پازایشی
ماهی کیلگاه مانیدنی و صنایع شیلاتی. 47 صفحه.
Analytical Chemists, Washington DC, USA.

Chapman K.W., Xiaowen L.U., Weilmeier D. and
Regenstein JM., 1997. Edible films on fish
seafood safety, processing and biotechnology. 47:139-150.

Craco C., Himelboom B., Pfutzenreutev R. and
Lee C., 1999. Texture modification processes
for giant grenadier fillets. Journal of Aquatic

Cutter C.N., 2006. Opportunities for bio-based
packaging technologies to improve the quality
and safety of fresh and further processed

Clark E.M., Mahoney A.W. and Carpenter C.E.,
1997. Heme and total iron in ready-to – eat
chicken. Journal of Agricultural and Food

Edible films and coatings: A review. Critical Reviews in Food
Science, 38:299-313.

Hoke M.E., Jahncke M.L., Siva J.L., Hearnsberger
Stability of washed frozen mince from canal
Effects of edible film of sodium alginate on quality changes of dressed kilka in frozen storage

Khanedan A. (1)*; Motallebi A.A. (2) and Khanipour A.A. (3)

Nasrinkh41@yahoo.com

1- Islamic Azad University, Science and Research Branch, P.O.Box: 19585-181 Tehran, Iran
2- Iranian Fisheries Research Organization, P.O.Box:14155-6116 Tehran, Iran
3- Aquatics Fish Processing Research Center, P.O.Box:43145-1655 Bandar Anzali, Iran

Received: May 2010 Accepted: May 2011

Keywords: Kilka fish, Edible coating, Sodium alginate, Fish quality

Abstract

The likely effects of sodium alginate edible coating on the quality of dressed kilka fish in the frozen storage was investigated. Sodium alginate edible coating was prepared in four concentrations (0.25, 0.75, 1.25, and 1.75%). Then, dressed kilka fish were coated with sodium alginate for 1h, packed in polyethylene dishes with cellophane blanket and stored at -18°C. The amount of hem iron, pH, percent lipid and organoleptic characteristics (odor, color) were assessed within 0, 1, 2, 3 and 4 months (sample size: 125 packs of 250g). Results showed a significant difference between the mean hem iron and percent lipid and increase in sodium alginate concentration (P<0.05). The pH of samples showed no significant difference (P>0.05) with different levels of coating. Organoleptic results showed that the mean color and odor value of the samples were affected significantly by different levels of coating (P<0.05). Use of sodium alginate edible coating to protect hem iron and improve organoleptic properties can increase the quality of kilka in frozen storage up to 4 months.

*Corresponding author