چکیده
با کاهش سطح خلیج گرگان مانند اثری که کاهش سطح آب دریای کاسپی کارا می‌گردد، به‌شيء پرورش ماهی تغییر می‌یابد. هدف اصلی تحقیق بررسی تغییرات فاصله بهینه پرورش ماهی در سطح آب با جفت نمونه دو مزارع هیدروپنیمیک و انتقال-پیمایی از مدل‌های 21 تحت 15 متری با دو نظر گرفتن به غرب ودسترسی به سرعت و در 5 تراز مختلف می‌باشد. نتایج تاکیدی می‌شود، از مزارع گردی به دلیل تغییرات فاصله بهینه می‌تواند به‌عنوان ورودی در مدل‌های هیدروپنیمیک بکار گرفته شود. با مدل‌سازی شوروی در سال می‌توان گزارش گردد که در سال سال نوگری 2849، در تراز 15 متری، ضریب پیش‌بینی استخراج و سال سال نوگری 2849+909 کمیتی از آن در سال سال نوگری 2849 تراز 5/26 متر، ضریب استخراج می‌گردد.

واژگان کلیدی: خلیج گرگان، فاصله بهینه، کاهش سطح آب، مزارع پرورش ماهی، مدل‌سازی
خنجی گرگان به دلیل نگهداری از فردیهای هیوبرودیامابک دریابی کاسپی با استفاده و وجود یان مسمعی میان‌کاله‌ای از توجه ویژه‌ای برای گرزش مرازه‌ای بروز برخوردار گردیده است (شکل 1). در سال 1387 دوست پژوهش و سنجش استانداردهای زیستی ماهیان با دوماً کمیابی اب نشان داد که خنجی برای پرورش ماهی گیاه معمولی، ماهی رزی، قزل آل و فیل ماهی مکوری بانی و این وجود اجرای طرح فوق با به دلایل مختلفی ریتمی تا به امرز مسکوت مانده است.

دریای کاسپی که در ایران به استثنای آن را به نام یزر می‌شناخته (میود، 1361، رضا)، در طبقه‌بندی دریاهای جزری دریاهایی به‌شمار می‌رود و بیان‌داده از درهای گروتی مناسب‌یابی اصلی دیواری کاسپی در خصوص نوسان‌های سطح آب از می‌گردد. تا استفاده از پرودین‌های خبره‌ای هم‌رده، هندسه‌ای پرودین‌های خبره‌ای با گرزش‌های جزیری در اثر نوسان‌های سطح آب در دریای کاسپی دریایی تاریخ عمدتاً به علت تغییرات هیدروکلیماتولوژی حاکم بر جزیره آبخیز دریای کاسپی همیشه در حال درگردد بوده است (عکس‌الدین و همکاران، 1393). به افکار و کاهش سطح آب در دریا

3 Potential
خلاصه خانگان نهایی خانگان ایران در آب‌های سواحل جنوبی دریای کاسپی و جزو ۲۲ تالایی است که در کنارسایی رکرده شده اما از این تعداد تاً لازم می‌باشد. مساحت خانگان در سال ۱۳۹۰ و در تراز منفی ۲۶۰ متر نسبت به سطح خالی جبران بالغ بر ۶۰ کیلومتر مربع و حداکثر عمق آن ۱۳ متر بوده است (شریعتی و قائم‌پور، ۱۳۹۳).

جدول ۱: نیاز آبی خانگان در تراز‌های کاهشی

<table>
<thead>
<tr>
<th>تراز آب (متر)</th>
<th>مساحت (کیلومتر مربع)</th>
<th>نیاز آبی (متر مکعب بر ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۶</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۲۵</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۲۴</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۲۳</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۲۲</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۲۱</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۱۹</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۱۸</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۱۷</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۱۶</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۱۵</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۱۴</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۱۳</td>
<td>۲۰۰</td>
<td>۲۴۰</td>
</tr>
</tbody>
</table>

Downloaded from isfj.ir at 1:33 +0430 on Saturday May 2nd 2020

[DOI: 10.22092/ISFJ.2019.118407]
وشبل مسترخت از تاریخی کوستراژ با دقیقه یک کیلومتر و فاصله زمانی یک ساعت به صورت ثابت در مکان و متغیر در زمان استفاده شده است. نظر به فقدان داده‌های گریان سنگین در سه زمان مدل سازی نسبت به مقایسه مقدار سرعت و انگیزه گریان مسترخت از مدل سازی با نتایج استادی آن در پن‌ها خلق گرگان استفاده شده است. نمودار از ضرایب پسای داده و مقاومت بهتر جهت کالرپروسین و درستی پایند مدل هیدرودینامیک استفاده شده است. در تحقیق حاضر پس از بارا اجرای مدل و مقایسه نتایج با داده‌های مودالی (۱۹۷۵) تریب بمعادل ۹۰ و ۳۵۰ جهت دما، از ضرایب معادل ۴ و ۵ و بیکر معادل ۰/۰۵ دم و ۱ نقطه تنظیم آراییده تعیین شدند. در عمق اب استفاده شد از دما و شرایط فوران‌های للاغی آب‌ن در ۱۷۰ نقطه تعیین به مرکز ذخاب آبیزن داخلی استان سلیمان (هجوی ۱۳۹۱)، همچنین از دما و شرایط معطوف به اینکه کل حفاظت زیست استان سلیمان در ۳۱۰ نقطه درون خلیج گرگان بازه زمانی بکسین ۱۳۹۱ به گام زمانی ۳۰ تابعی به استفاده از مدل بی‌پی به‌ویژه مدل آرندت ۴۱ اقدام گردد. جهت اعمال نوسان سطح آب به مرز بزرگ در از داده‌های انستیتوی نگاره‌شده آب‌مایه تعیین به شرکت آب منطقه‌ای استان سلیمان استفاده شد. جهت اعمال مقدار دما در مرز بزرگ مدل از داده‌های مدل سطح دریا ۳۱۰ نوسان خشیدراست مسترخت از تاریخی کوستراژ و یا قوافل زمانی که از روز استانه و مدل سطح دریا در مرز بزرگ واقع در دهانه اشوارده بی‌پی، در سال ۱۳۹۰ آقازه از داده‌های تعیین به مرکز ذخاب آبیزن داخلی استان غلستان (هجوی ۱۳۹۱) و داده‌های ادای کل حفاظت زمینی استان غلستان (بی نیل ۱۳۹۱) به‌صورت ماهنامه استفاده شده است. برای اعمال بی‌پی گرگان خلیج با ژوک داده‌های رطوبت نسب و دمای هوا مسترخت از استیگا خودشانی بی‌پی، در سال ۱۳۹۰ فاصله ۱۰ دقیقه‌ای و نیز درآمدها طول موج کوتاه

1 Near Shore Wave Model
2 Coast Watch
مجله علمی شیلات ایران

مدل سازی اثرات کاهش سطح آب بر فاصله بهینه

منبع، درصد آلوپیگی در فواصل گوناگون نسبت به منبع آلوپیگی بی‌آورد خواهد شد. برای اطمینان از اینکه آلوپیگی از یک مزرعه به مزرعه دیگر نرسد، میان فاصله‌ای بین انها برگزیده گردید که در ان 99 درصد آلوپیگی رقیق شده باشد (پرک، 1396). بر این پایه مدیریتی بیماری به صورت همزمان با مدل انتقال بخش با کاهش زمین‌های 1 و 2 مزار نموده و به اجا در آمد. جهت اجرای مدل‌سازی‌ها از جمله دانشگاه علم کشاورزی و منابع طبیعی گرگان با مشخصات سخت‌افزاری و بدون سرو به‌طور ۲۰۰۸، رم ۳/۲۵ گیگا بايتر و سی‌یو دو هسته‌ای زنون ۲/۳۷ گیگا هرتز استفاده شد.

نتایج

نظر به انکه سرعت جریان یکی از عوامل مهم در انتشار و کاهش غلظت آلاینده در محیط آبی می‌باشد، لذا کاهش و یا افزایش سرعت جریان می‌تواند تاثیر زیادی در سربه‌نشت کیفیت آلاینده ایجاد کند. نتایج مستند به مدل‌سازی در خلیج گرگان منابعی، حادثه و حادثه‌ای سرعت جریان در خلیج برابر ۲۰۰۲/۰۳، ۱/۲ متر بر ثانیه مدل‌سازی نشان داشته که در استریت‌بیس به‌طور بودجه امتدات اختلاف سطح آب از سمت غرب به شرق می‌گردد. مقياس خروجی مدل با اندازه‌گیری‌های میدانی دما و شری از طرفی آزمون‌های امری در جدول ۲ ارائه شده است. در این پژوهش از شکست گرفتن شرایط شری بیان عامل قبیله و برابر ۱ منجر به هم‌سازی‌های قوی بین نتایج مدل‌سازی دما و شری بیان داده‌های میدانی گردیده است.

نتایج مستند به مدل‌سازی در خلیج گرگان به صورت مولفه‌های جابجا ای ارائه شد. اینکه مزرعه-گرگان، مزرعه دیگر، این، مزرعه دیگر، دندان‌های دشوار و شاری عامل قبیله و برابر ۱ منجر به هم‌سازی‌های قوی بین نتایج مدل‌سازی دما و شری بیان داده‌های میدانی گردیده است.

میکروفیژن	میدانی	زندگی	متوسط	گردیده	% منبع	میکروفیژن	میدانی	متوسط	گردیده	% منبع	میکروفیژن	میدانی	متوسط	گردیده	% منبع	
70/۲۵۷	۲۰۰۲/۰۳	۱/۲				۷۰/۲۵۷					۷۰/۲۵۷					

1. Pearson Correlation Coefficient
2. Root Mean Square Error
3. Mean Absolute Error
4. Relative Error Percent
5. Absolute Error

پیشنهادات و کمیتی فاصله بهینه در تراز ۴ متر پرتنی ۸۱۰ متر متر در مزرعه جنوب غربی و ۸۱ متر در مزرعه شمال شرقی می‌باشد. شکل ۲ پرتنی سرعت جریان و برنکش آب‌گرفته از مزرعه تحت ورود به مزرعه به برحسب ۳ متر بر ثانیه نشان دهد. پیشنهاد بهینه در تراز ۸/۲۵۷ متر/ثانیه در مزرعه جنوب غربی و ۷۰ در مزرعه شمال شرقی می‌باشد. در تراز ۷۰ متر فاصله بهینه در مزرعه شمال شرقی با افزایش سرعت باید بالا کاهش یافته، ولی در مزرعه جنوب غربی افزایش یافته است. بررسی نتایج مدل‌سازی در تراز منفی ۲/۷۵/۲۵۷ متر/ثانیه کاهش قابل دیدگی در مزرعه شمال شرقی و افزایش قابل ذکر در مزرعه جنوب غربی با افزایش سرعت باید همراه باشد. پیشنهاد بهینه در مزرعه شمال شرقی شکل ۲/۷۵/۲۵۷ متر/ثانیه و پیشنهاد بهینه در مزرعه جنوب غربی برابر ۳/۲۵/۲۵۷ متر/ثانیه نشان دهد که با کاهش تراز سطح آب میانگین میزان فاصله
جدول ۳: فاصله بهینه (متر) در هر تراز کاهشی متأثر از سه سرعت باد غلبه در مزرعه شمال شرقی و جنوب غربی.

Table 3: Optimum Distance (m) at each reduction level influenced by 3 speeds of prevailing wind in the northeast and southwest farm.

<table>
<thead>
<tr>
<th>موقعیت مزرعه</th>
<th>سرعت باد غربی (m/s)</th>
<th>سرعت باد غربی (m/s)</th>
<th>سرعت باد غربی (m/s)</th>
<th>سرعت باد غربی (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شمال شرقی</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>887</td>
<td>89</td>
<td>534</td>
<td>466</td>
</tr>
<tr>
<td>0.5</td>
<td>81</td>
<td>78</td>
<td>417</td>
<td>342</td>
</tr>
<tr>
<td>0.1</td>
<td>138</td>
<td>128</td>
<td>77</td>
<td>50</td>
</tr>
<tr>
<td>جنوب غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>113</td>
<td>106</td>
<td>179</td>
<td>246</td>
</tr>
<tr>
<td>0.5</td>
<td>93</td>
<td>85</td>
<td>91</td>
<td>73</td>
</tr>
<tr>
<td>0.1</td>
<td>193</td>
<td>182</td>
<td>91</td>
<td>73</td>
</tr>
</tbody>
</table>

جدول ۴: زمان میانگین شدن آلاینده (s) در هر تراز کاهشی متأثر از سه سرعت باد غلبه در مزرعه شمال شرقی و جنوب غربی.

Table 4: The pollutant dilution time (s) at each reduction level influenced by 3 speeds of prevailing wind in the northeast and southwest farm.

<table>
<thead>
<tr>
<th>موقعیت مزرعه</th>
<th>سرعت باد غربی (m/s)</th>
<th>سرعت باد غربی (m/s)</th>
<th>سرعت باد غربی (m/s)</th>
<th>سرعت باد غربی (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شمال شرقی</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>99</td>
<td>1212</td>
<td>147850</td>
</tr>
<tr>
<td>0.7</td>
<td>85</td>
<td>90</td>
<td>780</td>
<td>24250</td>
</tr>
<tr>
<td>0.5</td>
<td>75</td>
<td>80</td>
<td>29100</td>
<td>24250</td>
</tr>
<tr>
<td>0.1</td>
<td>185</td>
<td>190</td>
<td>29100</td>
<td>24250</td>
</tr>
<tr>
<td>جنوب غربی</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>105</td>
<td>110</td>
<td>185</td>
<td>24250</td>
</tr>
<tr>
<td>0.5</td>
<td>95</td>
<td>100</td>
<td>29100</td>
<td>24250</td>
</tr>
<tr>
<td>0.1</td>
<td>195</td>
<td>200</td>
<td>29100</td>
<td>24250</td>
</tr>
</tbody>
</table>

شکل ۲: توزیع سرعت جریان و برآکنش آلاینده از دو مزرعه جارو خاکی در تراز ۲۶ متر.

Figure 2: Current velocity distribution and pollutant dispersion from two fish farms in 26 meters.

شکل ۳: توزیع سرعت جریان و برآکنش آلاینده از دو مزرعه جارو خاکی در تراز ۲۷.۵ متر.

Figure 3: Current velocity distribution and pollutant dispersion from two fish farms in 27.5 meters.
مجله علمی شیلات ایران

فصلنامه‌ی اثرات کاهش سطح آب بر فاصله بهینه...

میزان فاصله بهینه در تراز 28 متر در هر دو مزرعه با
افراش سرعت باد افزایش می‌یابد. در این تراز بهینه
فاصله بهینه در مزرعه شمال شرقی و جنوب غربی بترتیب
سرعت 1/5 متر ناحیه می‌باشد (شکل 4).

شکل 4: توزیع سرعت جریان و براکش آلانده از دو مزرعه بورش‌مانی در تراز 28 متر.

Figure 4: Current velocity distribution and pollutant dispersion from two fish farms in 28 meters.

بحث

الگوی پدیده‌گذاری جریان خلیج گرگان بیشتر توسط
سرعتی (130 18) و بیشتر سهمی و همانند (1396 14)
نیز گزارش شده است. در این مدل ساری وجود گرگان
پرسرعت در گرگان‌های شمال و جنوب خلیج گرگان
همچنین با ورود گرگان می‌تواند با بهبود واداد
مشاهده گردیده است که به ترتیب شریان و شعبانی
(1395 17) و (1396 14) همکاری دارد.

در این پژوهش همبستگی دما معادل 155 بود که بانگر
همبستگی میانگین بین تاریخ مدلسازی و داده‌های میدانی
تغییر کرد. در میانگین بیشتر گرگان بهینه در دو
بند می‌باشد. در حالیکه در پژوهش انجام شده توسط
Hadjizadeh و Ranjbar (1397 15) این میزان برای
برآورد گردهای بود آسیب دیگر، همبستگی گرگان برای
(16) و گرگان میانگین مدت خطا شریان برای 1/6
به دست آمد. در این مدل ساری داده‌های بهینه و در
(14) جذر میانگین
Hadjizadeh و Ranjbar (1397 15) 1/6 بوده است. مهمترین عامل بررسی داده‌های بیشتر در
جاگرایی جریان‌های پر سرعت مواردی به سواحل به سمت کرانه‌های ساحلی با کام مسیر رود آب و اثر آن در
الگوی انشار اینترنت از مراحل مختلف، شامل گربه
چرخه‌های کوچک میانی در برخی از اینها و از بین
رفن رفع این دوگه درک تأثیر بر انتظاری تغییرات فاصله
به‌ییه مراز تحت بررسی داشته است.
در مزرعه جنوب غربی کاهش سطح آب بر افزایش
جاگرایی آلایند به سمت جنوب رابطه مستقیمی داشته
است. این موضوع متأثر از رزیم ویژه حاکم بر منطقه و
ویژگی‌های زمین و دست‌کلید خاجی‌گران در هر گونه کاکه
می‌باشد. تحقیقات الکلینیکی مدل‌سازی به خوبی‌نی شان داده است
که افزایش سرعت با یک تری حرفی و ۲۰۷/۹۵ در تراز ۲۸/۹۷ متر بر
تایه در تراز خاجی‌گران آلایندبه سمت شرق رابطه مستقیمی داشته است. ولی
جاگرایی آلایند به سمت غرب در تراز ۲۶/۹۷ متر متأثر از
جنوب‌های پرسرعت غربی در بخش مرکزی خاجی‌گران
و در تراز ۲۷/۹۷ متر متأثر از جاگرایی جریان‌های پر سرعت
کرمانی به بخش‌های تردیدی به مزرعه منطق از کاکه
عمق می‌باشد.
با کاهش سطح آب، میزان فاصله بهبود در مزرعه شمال
فاصله آلایند می‌باشد. ولی نقش مدل‌سازی پانگش کاهش
پارامتر بانگش بهبود در تراز ۲۷/۹۷ متر به
تایه است. بررسی
الگوی جریان در تراز مزارک نشان داد که تکمیل یک
جرخ‌کوچک جریان در مجاور جریان‌های شماری مزرعه
نسبت به در فایان رفیق‌شاغلی آلایند در آب و در
نهایت کاهش میزان فاصله بهبود می‌گردد. به طور کلی
بررسی اثر آلایند در مزرعه شمال شرقی نشان داده
است که میزان جاگرایی آلایند در استفاده بر سر به
مراتب پیش‌تر از جاگرایی آلایند در استفاده غرب به شرق
بوده است. تأثیرات این آلایند به سمت جنوب در مزرعه شمال
शرقی به مقاومت با مزرعه جنوب غربی کوپر می‌باشد.
پیش از این پژوهش، یاری‌های گروه‌های (۱۳۹۷) فاصله
بهبود میزان مزارع می‌باشد. در نظر گرفتن اثرات تأثیر
امواج و تندال‌ها به‌صورت سطحی و نهایت استفاده از
پاره‌کوشا درست ۵ ماه برای استرداد ضریب شوری از
۳۵

Modeling the effects of water level decreases on the optimum distance of fish pens in Gorgan Bay

Sharbaty S.*

*s_sharbaty@yahoo.com

Department of fishery, Gorgan University of agricultural sciences and natural resources, Iran

Abstract
By reducing the water level in the Gorgan Bay, as a result of the decreasing in the Caspian Sea water surface, the optimum distance will change between fish farms. The purpose of this study was to investigate the optimal distance variation due to water level reduction, Hydrodynamic and Transport modules of the Mike 21 model was implemented under 15 scenarios by considering western prevailing wind and in 5 levels. Wave radiation tension was implemented using the Near Shore Wave module in 15 scenarios and used as input in hydrodynamic models. Dispersion coefficient was extracted by salinity modeling in the year 2012 and at a level of 26.5 m and used it in other models. The modeling results in most scenarios indicate that the pollutant displacement is in the direction of the dominant wind from west to east in the southwest farm and was from east to west in the northeastern farm opposite to the dominant wind. Mostly, wind speed increasing and water levels decreasing will increase the optimum distance and will reduce time to dilute pollutants. The maximum mean optimum distance in the northeast and southwest farms were 487 and 2615 meters in level of 28 meters, respectively. The minimum mean optimum distance in the northeast and southwest farms were 194 and 999 m in level of 26.5 and 26 meters, respectively. In order to reduce the ecological and economic disasters caused by the effects of the Caspian Sea level reduction on the optimal distance between farms in future, it is recommended to restructure fish farms in the Gorgan Bay.

Keywords: Gorgan Bay, Optimum Distance, Water Level Decrease, Fish Farms, Modeling

*Corresponding author