نقش کلیولپتوبولیت در حذف غلظت کشنده آمونیاک کل
(Oncorhynchus mykiss) در قزل آلای رنگین کمان

محمد فرهنگی (۱) و عباس مجد حاجی مراد لو (۲)
s.farhangi@yahoo.com

۱- مجتمع آموزش عالی شهرستان گنبد، صندوک پستی: ۱۶۳۲۱۲۵۲۵
۲- دانشگاه علوم کشاورزی و منابع طبیعی گرگان، صندوک پستی: ۳۸۶
تاریخ دریافت: آذر ۱۳۸۸
تاریخ پذیرش: اردیبهشت ۱۳۹۰

چکیده
این مطالعه، بر منظور سنجه کارآی زنجیره کلیولپتوبولیت در حذف غلظت کشنده آمونیاک کل در ساحل قزل آلای رنگین کمان اجرا شد. بیچ ماهیانی با وزن 21-25/۹/۳/۵ (میانگین 15 گرم) در معرض ۴ غلظت مختلف از آمونیاک کل (N-NH3) شامل: 0، 10، 15، 25 میلی گرم در لیتر فرآوری‌گر در درمدهای pH هر عدد 4 ساعت تعیین شد. تحت شرایط ثابت دما و دمای ۱۵ درجه سانتی‌گراد و pH = ۴/۷±۴/۱ در فرآوری‌گر pH یک میلی‌گرم در لیتر آمونیاک گیاهی (N-NH4) براساس دما و pH از مقادیر 0، ۱۰، ۱۵ و ۲۰ میلی‌گرم در لیتر کلیولپتوبولیت در غلظت کشنده آمونیاک کل استفاده شد. کاربرد ۱۵ گرم در لیتر کلیولپتوبولیت در غلظت کشنده آمونیاک کل توانست تلفات را به صفر برساند. پس از گذشت ۲۴ ساعت اختلاف معنی‌داری بین فاکتورهای سختی و آمونیاک کل بدست آمد (P<0/0۱). بیشترین تلفات در ساعات اولیه آزمایش رخ داد.

لیست کلیدی: قزل آلای رنگین کمان، ضایعات باتلاق، تصفیه آب، کیفیت آب
نقش کلینوپتیلوئید در هدف غلظت کشش آمونیاک کل در...
مختلف آمونیاک با استفاده از شیب خط رگرسیون غلظت‌های فرضی از آمونیاک کل از جمله ۳.۵، ۵، ۷، ۱۰، ۱۳، ۲۰ و ۴۰ مورد استفاده قرار گرفت. براساس این آزمایشات درصد تلفات از صفر تا ۱۰۰ درصد در مدت ۱۲ ساعت به‌دست آمد. بدین ترتیب غلظت‌های نهایی به‌دست آمد. پک گروه ۱۲ این‌گونه از ماهی‌ها هم بعنوان گروه شده در نظر گرفته شد. بدین‌گونه عدم کارایی هواهده در خروج آمونیاک، در آزمایشات سه‌گروهی با ۸، ۱۱ و ۱۴ گروه در انتخاب کارایی بستر مشخص کردن اثرات کلینیکالی بهبود می‌یابد. فاکتور نشان داده شد که استفاده از غلظت زیر از ۰.۵ می‌تواند اثرات کلینیکالی در شکنده آمونیاک با آن‌باقی مقایسه شنند. با استفاده از Least Significance Difference (LSD) نرم‌افزار Minitab و رگرسیون خطی مقایسه شدند.

نتایج

درصد تلفات ماهی در غلظت‌های مختلف آمونیاک کل پس از ۱۲ ساعت تحت شیب (جدول ۱) در غلظت‌های ۳.۵، ۵، ۷، ۱۰ و ۱۳ میلی‌گرم در لیتر آمونیاک کل درصد تلفات در مدت ۱۲ ساعت به‌دست آمد. بدین‌گونه نشان داده شد که استفاده از غلظت‌های نهایی به‌دست آمد. این این‌گونه از ماهی‌ها هم بعنوان گروه شده در نظر گرفته شد. بدین‌گونه عدم کارایی هواهده در خروج آمونیاک، در آزمایشات سه‌گروهی با ۸، ۱۱ و ۱۴ گروه در انتخاب کارایی بستر مشخص کردن اثرات کلینیکالی در شکنده آمونیاک با آن‌باقی مقایسه شنند. با استفاده از Least Significance Difference (LSD) نرم‌افزار Minitab و رگرسیون خطی مقایسه شدند.

جدول ۱: تغییرات تلفات ماهی در غلظت‌های مختلف آمونیاک کل (میلی‌گرم در لیتر) طی ۱۲ ساعت، حجم آب ۵۰ لیتر و تعداد ماهی در هر گروه ۱۲ عدد

<table>
<thead>
<tr>
<th>غلظت آمونیاک غیربرنامه (میلی‌گرم در لیتر)</th>
<th>درصد تلفات</th>
<th>تعداد تلفات</th>
<th>فاکتورهای غلظت آمونیاک کل (میلی‌گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۱۰۵</td>
<td>۲</td>
<td>۱۵/۳۸</td>
</tr>
<tr>
<td>۳۰</td>
<td>۲۱۷</td>
<td>۵</td>
<td>۳۵/۳۰</td>
</tr>
<tr>
<td>۸</td>
<td>۲۶۶</td>
<td>۸</td>
<td>๔/۴</td>
</tr>
<tr>
<td>۷۰</td>
<td>۲۰</td>
<td>۱۰۰</td>
<td></td>
</tr>
</tbody>
</table>

مراجع

نمودار ۱: هیستوگرام تغییرات تلفات ماهی در غلظت‌های مختلف آمونیاک کل (میلی‌گرم در لیتر) طی ۲۴ ساعت، حجم آب ۵۰ لیتر و تعداد ماهی در هر گروه ۱۳ عدد

جدول ۲: تغییرات درصد تلفات با آردنژولیت (گرم در لیتر) در مقابل غلظت کشنده آمونیاک کل (میلی‌گرم در لیتر) طی ۲۴ ساعت، حجم آب ۵۰ لیتر، تعداد ماهی در هر گروه ۱۰ عدد

<table>
<thead>
<tr>
<th>گروه</th>
<th>مقدار نژولیت (گرم در لیتر)</th>
<th>تعداد تلفات</th>
<th>درصد تلفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۱۵</td>
</tr>
<tr>
<td>۲</td>
<td>۴</td>
<td>۱۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۳</td>
<td>۶</td>
<td>۲۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۴</td>
<td>۸</td>
<td>۳۰</td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td>۱۰</td>
<td>۱۰۰</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>۱۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>۱۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td>۱۶</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نمودار ۲: منحنی رگرسیون تغییرات تلفات ماهی در غلظت‌های مختلف آمونیاک کل (میلی‌گرم در لیتر) طی ۲۴ ساعت، حجم آب ۵۰ لیتر، تعداد ماهی در هر گروه ۱۰ عدد

\[y = 3.9078x + 11.653 \]

\[R^2 = 0.9873 \]
نمودار 3: هیستوگرام تغییرات درصد بقا با آرد زنوتیت (آرد در لیتر) در مقابله غلظت کشنده آمونیاک کل (میلی گرم در لیتر) طی 24 ساعت، حجم آب 50 لیتر، تعداد ماهی در هر گروه 10 عدد.

جدول ۳: میانگین و انحراف معیار مربوط به فاکتورهای فیزیکی و شیمیایی آب طی 24 ساعت در مقایسه آرد زنوتیت

<table>
<thead>
<tr>
<th>میانگین</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>a ± b</td>
</tr>
<tr>
<td>شاهد</td>
<td>7.8 ± 0.1</td>
</tr>
<tr>
<td>15 گرم در لیتر آرد زنوتیت</td>
<td>7.7 ± 0.6</td>
</tr>
</tbody>
</table>

*پیامد منجر به اهمیت مسومیت با آمونیاک در بیستمهای پروتوزوئی و تلفات عالی از آن در آبزیان تاکون مطالب‌های زیادی است. گرفته است (Sommel & Boyd, 1993; Chen, 1992; Knoph & Thorud, 1996; Person et al., 1995). Békési et al., 1999: Ruyet et al., 1996; Alcaraz, 1999) افزایش آمونیاک به آب سیب بروز تظاهراتی در رفتار و ساختار ماهی شد که شامل خشک شدن عضلات تن به تحرکات عصبی، برخوئینی ابسته، عدم تغذیه و نهایتاً مرگ ماهی می‌باشد.

این امر با پایتختی سایر محققین مطابقت دارد. بعد از گذشته 24 ساعت غلظت کشنده کاملاً آمونیاک کل برای ماهی قابل اثر نیست. 25 میلی گرم در لیتر درصد آرد باعث نیمه‌درجه آزاد شد که با این حال از منحنی تغییرات درصد تلفات در غلظتهای مختلف آمونیاک و معدله خطا

بحث

با توجه به اهمیت مسومیت با آمونیاک در بیستمهای پروتوزوئی و تلفات عالی از آن در آبزیان تاکون مطالب‌های زیادی است. گرفته است (Sommel & Boyd, 1993; Chen, 1992; Knoph & Thorud, 1996; Person et al., 1995). Békési et al., 1999: Ruyet et al., 1996; Alcaraz, 1999) افزایش آمونیاک به آب سیب بروز تظاهراتی در رفتار و ساختار ماهی شد که شامل خشک شدن عضلات تن به تحرکات عصبی، برخوئینی ابسته، عدم تغذیه و نهایتاً مرگ ماهی می‌باشد.

این امر با پایتختی سایر محققین مطابقت دارد. بعد از گذشته 24 ساعت غلظت کشنده کاملاً آمونیاک کل برای ماهی قابل اثر نیست. 25 میلی گرم در لیتر درصد آرد باعث نیمه‌درجه آزاد شد که با این حال از منحنی تغییرات درصد تلفات در غلظتهای مختلف آمونیاک و معدله خطا

مرکز علمی شیلات ایران
سال بیستم/شماره 11/بهار 1390
Muir (Ictalurus Punctatus) Solea sp.) Turbot Chen

Maximum Acceptable Toxicant Concentration (MATC)

Alcaraz (LC50)

Penaus setiferus Ruyet (LC50)

Turbot (LC50)

Sommai & Boyd; Farhangi, 2010; Farhangi & Hajimoradloo, 2009; Sommai & Boyd, 2001; Bayabani et al., 2001; Boyd et al., 2001; Farhangi & Hajimoradloo, 2001; Farhangi & Hajimoradloo, 2000)

Freth Danny J. (2016) "Some Chemicals in Fish Bones..." ISFJ 2017 109979

The effect of zeolite (Clinoptilolite) in removing ammonia lethal concentration in Rainbow Trout (Oncorhynchus mykiss)

Farhangi M. (¹)* and Hajimoradloo A.M. (²)

s.farhangi@yahoo.com

1- Higher Education Complex of Gonbad City, P.O.Box: 163 Gonba, Iran
2- Gorgan University of Agricultural Sciences and Natural Resources, P.O.Box: 386 Gorgan, Iran

Received: December 2009 Accepted: May 2011

Keywords: Tissue lesions, Water refining, Water quality

Abstract

Clinoptilolite efficiency on absorption of ammonia in rainbow trout was studied. The fish specimens weighted 9.5-21g and were exposed to four different concentrations of total ammonia as N-NH₄ including: 10, 15, 20, and .25mg/l. A group of 13 fish was considered as control. Lethal concentration was determined after 24 hours. Under stable temperature and pH conditions (T= 16±1 °C, pH= 7.7±1), the lethal concentration of total N-NH₄ was 25mg/l (as ionized N-NH₃=0.44mg/l based on temperature and pH). In lethal concentrations of ammonia, different amounts of zeolite (2, 5, 10, 13 and 15g/l) were used. Application of 15g/l of the zeolite prevented mortalities in the fish. A significant difference was found in reduction of total ammonia and total hardness through application of zeolite after 24 hours (P<0.01). The maximum mortalities occurred in early time of experiment. The histopathological lesions of gill, kidney and liver were studied.

*Corresponding author