نقش کلیپتیپولیت در حذف غلظت کشنده آمونیاک کل
(Oncorhynchus mykiss) در قزل آلاه رنگین کمان
محمد فرهنگی(1)* و عبدالمجید حاجی مراد لو(2)
s.farhangi@yahoo.com

1 – مجتمع آموزش عالی شهرستان گنبد صندوق پستی: 132
2 – دانشگاه علوم کشاورزی و منابع طبیعی گیلان، صندوق پستی: 386
تاریخ دریافت: آذر ۱۳۸۸
تاریخ پذیرش: آذر ۱۳۹۰

چکیده
این مطالعه، بررسی نشانگر زننده کلیپتیپولیت در حذف غلظت کشنده آمونیاک کل در ماهی قزل آلاه رنگین کمان اجرا شد. بیش از ۲۱-۹/۵ گرم (میانگین ۱۵ گرم) در معرض غلظت مختلف آمونیاک کل (N-NH₃) شامل: ۱۰، ۱۵، ۲۰ و ۲۵ میلی‌گرم در لیتر کاهش گرفت. یک گروه ۱۳ تیمی برای موارد استفاده قرار گرفت. غلظت کشنده آمونیاک کل (N-NH₃) در مدت ۲۴ ساعت تغییر نمی‌کند. تحت شرایط ثابت دما و pH (پامه ۷/۰ ± ۰/۱) درجه سانتی‌گراد و pH = ۷/۸ ± ۰/۱ غلظت کشنده آمونیاک برابر با ۲۵ میلی‌گرم در لیتر آمونیاک کل بود (پامه ۳/۴۴). میلی‌گرم در لیتر آمونیاک غیریونیزه (N-NH₄) بر اساس دما و pH (pH = ۷/۰± ۰/۱). از مقدار ۱۵ و ۱۰ میلی‌گرم در لیتر کلیپتیپولیت در غلظت کشنده آمونیاک کل استفاده شد. کاربرد ۱۵ گرم در لیتر کلیپتیپولیت در غلظت کشنده آمونیاک کل توانست نتایج را به صورت بررساند. پس از گذشت ۲۴ ساعت اختلاف معنی‌داری جهت آمونیاک کل بدست آمده (P<0.01) پیشتر نتایج در ساعت اول آزمایش رد داد.

نگاه کلیدی: قزل آلاه رنگین کمان، ضایعات باتری، تصفیه آب، کفیت آب
مقدمه

یکی از عامل‌های مهم تغییرات کیفی آب است که منجر به کاهش تولید موش در بین عامل کیفی آب آمونیاک نشسته‌ای دارد. آمونیاک در حالت توزیعی به صورت یون

\[\text{NH}_4^+ \]

آنتی‌سی سیالی对应 بر ماهیان دارد. آمونیاک در

\[\text{ Partial pressur} \]

محل زنیت در بین می‌تواند افزایش آمونیاک محلول در

\[\text{ ZnB}^+ \]

طیف‌سنجی می‌باشد. یکی از کارایی زنیتهای طبیعی در حذف

\[\text{ ZA}^+ \]

فنجن کلیروئیت‌لونیت‌ها در حذف غلظت کشته‌اند آمونیاک کل در

\[\text{Cs}^+ \]

که GT. 2006)

\[\text{ZnB}^+ \]

محلول زنیتی محلول زنیتی

\[\text{ZnB}^+ \] + \text{ZB}^A^+ \rightarrow \text{ZnB}^A^+ + \text{ZB}^ZB^+ \]
مختلف آمونیاک وا با استفاده از شیب خط رگرسیون غلتظت‌های فرضی از آمونیاک کل از جمله ۳، ۴، ۵، ۶، ۷ و ۸ مورد استفاده قرار گرفت. بر اساس این آزمایشات درصد تلفات از صفر تا ۱۰۰ درصد در مدت ۲۴ ساعت بدست آمد. یک گروه آزمایشی از میان یک هیأت گروه گاهی شده در نظر گرفته شد. بدیل عمد کارایی هواهای در خرید آمونیاک در آزمایشات از سپس هوا به‌عنوان هواهای استفاده شد. تصوایی‌های (دو اکسیژن) و هی‌وتی‌اکسی‌ژن (مکانیکی) و همچنین (مکانیکی) برای مشخص کرد اثرات کلینیکی با آزمایشات در پیش‌گیری از سبای آمونیاک از مقادیر ۱۵ و ۲۵ میلی‌گرم در لیتر استفاده شدند. نتایج با استفاده از Least Significance Difference (LSD) و آزمون (Minitab) و روش معمول مقایسه شده‌اند.

نتایج
درصد تلفات ماهی در غلتظت‌های مختلف آمونیاک کل پس از گذشت ۲۴ ساعت تیمین شد (جدول ۱) در غلتظت‌های ۴، ۵، ۶ و ۷ میلی‌گرم در لیتر آمونیاک کل درصد تلفات در ۲۴ ساعت در شرایط دما ۱۵ درجه سانتی‌گراد اکسبیر محدود ۱۰ تا ۱۱ میلی‌گرم در لیتر و pH = ۷ و pH = ۷.۷ تبیین و در میانه pH هواهای در این نمونه نشان داده است با افزایش غلتظت آمونیاک کل درصد تلفات نیز افزایش می‌یابد. با این در نظر گرفتن تغییرات تلفات در غلتظت‌های ماهی در دستگاهی که در معرض غلتظت کمیکایی کل قرار دارد، علامت نشتی شامل دهان بی‌قراری و شدید، خم شدن تاکتیکی عضلات تنها، بار و بسته شدن سرویسهای آبی‌سی و دهان، حرکات تنشی، پروکسید با کارهای آکووریوم، سه عیان در بیرون پریدن، بلعیدن از بین سطح پر خوی و قرنی شدن آبی‌سی مشاهده گردید.

جدول ۱ تغییرات تلفات ماهی در غلتظت‌های مختلف آمونیاک کل (میلی‌گرم در لیتر) طی ۲۴ ساعت، حجم آب ۳۰ لیتر و تعداد ماهی در هر گروه ۱۲ عدد

<table>
<thead>
<tr>
<th>غلتظت آمونیاک غیربیولوژیک (میلی‌گرم در لیتر)</th>
<th>تعداد تلفات</th>
<th>درصد تلفات</th>
<th>غلتظت آمونیاک کل (میلی‌گرم در لیتر)</th>
<th>تعداد تلفات</th>
<th>درصد تلفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۵/۴</td>
<td>۶</td>
<td>۱۲</td>
<td>۱۰۵/۴</td>
<td>۶</td>
<td>۱۲</td>
</tr>
<tr>
<td>۱۸۷/۵</td>
<td>۶</td>
<td>۱۲</td>
<td>۱۸۷/۵</td>
<td>۶</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲۰۶/۷</td>
<td>۶</td>
<td>۱۲</td>
<td>۲۰۶/۷</td>
<td>۶</td>
<td>۱۲</td>
</tr>
<tr>
<td>۲۱۵/۴</td>
<td>۱</td>
<td>۲</td>
<td>۲۱۵/۴</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۲۷/۵</td>
<td>۱</td>
<td>۲</td>
<td>۲۲۷/۵</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۳۰/۴</td>
<td>۱</td>
<td>۲</td>
<td>۲۳۰/۴</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۴۳/۵</td>
<td>۱</td>
<td>۲</td>
<td>۲۴۳/۵</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۵۰/۴</td>
<td>۱</td>
<td>۲</td>
<td>۲۵۰/۴</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۵۴/۵</td>
<td>۱</td>
<td>۲</td>
<td>۲۵۴/۵</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۶۰/۴</td>
<td>۱</td>
<td>۲</td>
<td>۲۶۰/۴</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۶۳/۵</td>
<td>۱</td>
<td>۲</td>
<td>۲۶۳/۵</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۷۰/۴</td>
<td>۱</td>
<td>۲</td>
<td>۲۷۰/۴</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۷۳/۵</td>
<td>۱</td>
<td>۲</td>
<td>۲۷۳/۵</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۸۰/۴</td>
<td>۱</td>
<td>۲</td>
<td>۲۸۰/۴</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۸۳/۵</td>
<td>۱</td>
<td>۲</td>
<td>۲۸۳/۵</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۹۰/۴</td>
<td>۱</td>
<td>۲</td>
<td>۲۹۰/۴</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۲۹۳/۵</td>
<td>۱</td>
<td>۲</td>
<td>۲۹۳/۵</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۳۰۰/۴</td>
<td>۱</td>
<td>۲</td>
<td>۳۰۰/۴</td>
<td>۱</td>
<td>۲</td>
</tr>
</tbody>
</table>
نمودار ۱: هیستوگرام تغییرات تلفات ماهی در غلظت‌های مختلف آمئیکاک کل (میلی‌گرم در لیتر) طی ۲۴ ساعت، حجم آب ۵۰ لیتر و تعداد ماهی در هر گروه ۱۲ عدد

جدول ۲: تغییرات درصد پتاق با آرد زنولیت (گرم در لیتر) در مقایسه غلظت کشنه آمئیکاک کل (میلی‌گرم در لیتر) طی ۲۴ ساعت، حجم آب ۵۰ لیتر، تعداد ماهی در هر گروه ۱۰ عدد

<table>
<thead>
<tr>
<th>گروه</th>
<th>درصد تلفات</th>
<th>تعداد تلفات</th>
<th>مقدار زنولیت (گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱</td>
<td>۱</td>
<td>۰</td>
<td>۲</td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>۱</td>
<td>۳</td>
</tr>
<tr>
<td>۳</td>
<td>۳</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>۴</td>
<td>۴</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td>۵</td>
<td>۱۵</td>
</tr>
<tr>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۰</td>
</tr>
</tbody>
</table>

نمودار ۲: منحنی رگرسیون تغییرات تلفات ماهی در غلظت‌های مختلف آمئیکاک کل (میلی‌گرم در لیتر) طی ۲۴ ساعت، حجم آب ۵۰ لیتر، تعداد ماهی در هر گروه ۱۰ عدد
نمودار ۳: هیستوگرام تغییرات درصد پایه با آرد زنلیت (گرم در لیتر) در مقابل غلظت کشنده آمونیاک کل (میلی گرم در لیتر) طی ۲۴ ساعت. حجم آب ۲۰ لیتر، تعداد ماهی در هر گروه ۱۰ عدد

جدول ۳: میانگین و انحراف مربوط به فاکتورهای فیزیکی و شیمیایی آب طی ۲۴ ساعت در مقابل آرد زنلیت

<table>
<thead>
<tr>
<th>pH</th>
<th>شاخص کل</th>
<th>شاخص آمونیاک کل (میلی گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵.۵</td>
<td>۱۵۲.۷±۱۵۶</td>
<td>۱۲۸.۷±۱۵۶</td>
</tr>
<tr>
<td>۶.۰</td>
<td>۱۵۲.۷±۱۵۶</td>
<td>۱۲۸.۷±۱۵۶</td>
</tr>
<tr>
<td>۶.۵</td>
<td>۱۵۲.۷±۱۵۶</td>
<td>۱۲۸.۷±۱۵۶</td>
</tr>
<tr>
<td>۷.۰</td>
<td>۱۵۲.۷±۱۵۶</td>
<td>۱۲۸.۷±۱۵۶</td>
</tr>
</tbody>
</table>

بحث

رگرسیون غلظت نیمه کشنده در ۲۴ ساعت (LC50) معادل ۱۸۰ میلی گرم در لیتر آمونیاک کل (معادل ۱۷۸ میلی گرم در لیتر) و pH لیتر آمونیاک غیرپورزه بررسی دوباره برای آب و هرتی دمای وریوس (Knoph, 1996) شاخص این امر، شاخص نهایی گونه‌ها مختلف در برتر آمونیاک و همچنین شرایط آزمایشی برای گروه‌های دیگر. اسپوریت با سایر گونه‌های آبیاری‌های منظور است (Knoph, 1996) و به‌طور کلی در پژوهش‌های پیشین و پژوهش‌های پیش‌بینی کاملاً متفاوت نبوده که با انحلال مواد غذایی در فرآیند ناهنجاری میزان ماده غذایی است (Knoph, 1996) با پروتئین تولید جویزه نوری و نیازی به مایع می‌باشد. این امر با پایداری سایر محققین متفاوت دارد. بعد از گفتن

۲۴ ساعت غلظت کشنده آمونیاک کل برای ماهی‌های قابل بررسی ۲۵ میلی گرم در لیتر نیست. درصد تلفات در غلظت‌های مختلف آمونیاک و معادله خطا

\[pH = a \pm a, b \]

\[a, b \text{ پیانکر معنی دارد که } b \text{ پیشیندان } (0.01) \]
النوش: کلینیک تشخیصی در خون گلظت کشته‌های آمیونیاک کل در...

فرهنگی و حاکی مرادلو

16

References

Knoph M.B. and Thorud K., 1996. Toxicity of ammonia to Atlantic salmon (salmo salar) in seawater effects on plasma osmolality, ion, ammonia, urea and glucose levels and hematologic parameters. Comparative Biochemistry and Physiology, 11:375-381.

The effect of zeolite (Clinoptilolite) in removing ammonia lethal concentration in Rainbow Trout (Oncorhynchus mykiss)

Farhangi M.\(^{(1)}\)* and Hajimoradloo A.M.\(^{(2)}\)

s.farhangi@yahoo.com

1-Higher Education Complex of Gonbad City, P.O.Box: 163 Gonba, Iran
2- Gorgan University of Agricultural Sciences and Natural Resources, P.O.Box: 386 Gorgan, Iran

Received: December 2009 Accepted: May 2011

Keywords: Tissue lesions, Water refining, Water quality

Abstract

Clinoptilolite efficiency on absorption of ammonia in rainbow trout was studied. The fish specimens weighted 9.5-21g and were exposed to four different concentrations of total ammonia as N-NH\(_4\) including: 10, 15, 20, and .25mg/l. A group of 13 fish was considered as control. Lethal concentration was determined after 24 hours. Under stable temperature and pH conditions (T= 16±1 °C, pH= 7.7±1), the lethal concentration of total N-NH\(_4\) was 25mg/l (as ionized N-NH\(_3\)=0.44mg/l based on temperature and pH). In lethal concentrations of ammonia, different amounts of zeolite (2, 5, 10, 13 and 15g/l) were used. Application of 15g/l of the zeolite prevented mortalities in the fish. A significant difference was found in reduction of total ammonia and total hardness through application of zeolite after 24 hours (P<0.01). The maximum mortalities occurred in early time of experiment. The histopathological lesions of gill, kidney and liver were studied.

*Corresponding author