مطالعه تأثیر شوری‌های مختلف محیطی بر سلول‌های کلرایذ آبطص ماهی کپور معمولی (Cyprinus carpio) به روش ایمونوهیستوژمی و فراساختاری

زهرا بصری ۱، رحیم پیمان ۲

*طلاش هدایت

۱- گروه علوم پایه، دانشکده دامپروری، دانشگاه شهید چمران اهواز، اهواز، ایران
۲- گروه علوم درمانگاهی، دانشکده دامپروری، دانشگاه شهید چمران اهواز، اهواز، ایران

تاریخ دریافت: بهمن ۱۳۹۸

چکیده

تعداد ۲۰ قطعه ماهی کپور معمولی به مدت دو هفته در تیمار با شوری‌های ۱۲ ppt Α، ppt Β و آب شیرین با به تکرار قرار داده شدند. در پایان دوره جهت مطالعات هیستوپاتولوژی نمونه‌هایی از آبشش با ضخامت ۴ تا ۶ mm تهیه شد. همچنین برای مطالعات ایمونوهیستوژمی و فراساختاری نمونه‌های مورد نظر برداشت گردید. نتایج حاکی از آن بود که در وضع فیلامنت تیسترین تعداد سلول‌های کلرایذ مربوط به شوری Α و کمترین تعداد در تیمار شاهد، بزرگ‌ترین اندام در شوری Β ppt فیلامنتی بی‌شترین تعداد سلول‌های کلرایذ مربوط به شوری Α و گزارش گردید. در وضع لامپلی تیسترین تعداد سلول‌های کلرایذ در شوری Β ppt و کوچک‌ترین متعلق به شوری Α گزارش گردید. در وضع لامپلی تیسترین تعداد سلول‌های کلرایذ به تعداد زیاد در اپیتیلوم فیلامنت و به تعداد کمتر در اپیتیلوم لامپلی در شوری‌های مختلف در قسمت رأسی، پایه و بین لامپلی روحی فیلامنت بین لامپلی حضور داشتند. بر اساس مطالعات فراساختاری غشاء رأس سلول‌های کلرایذ شامل فرورفتگی‌های عمیق، کم عمق و برآمده بود. به طور کلی، قدرت تحم و سازش پذیری کپور معمولی نسبت به تغییرات شوری‌های محیطی، بدلیل ایجاد تغییرات سریع در سلول‌های کلرایذ جهت تنظیم میزان ورود و خروج آب و الکترولیت‌ها بود. به طوریکه گونه مورد نظر توانست نسبت به تغییرات شوری‌های محیطی خود را تطبیق و ادامه حیات دهد.

کلمات کلیدی: شوری، آبشش، کپور معمولی، ایمونوهیستوژمی، فراساختاری

نویسنده مستند

صفحه ۱۳۱
مطالعه تأثیر شوری‌های مختلف محیطی بر ... بصیر و پیغان

مقدمه
کبور معنی‌داری از حواصه کبور ماهیان دارای 2 جفت سبزک، لفس هایی درشت و باله یکپادین می‌باشد (پارسی ارغوانی و هماکران، 1398). این گونه در حوضه‌های دریای خزر، رودخانه‌های تجن و تمام حوضه‌های آبزی ایران پراکنده دارد و در این حداکثر طول 150 و میانگین 7۵ سانتی‌متر می‌باشد (ابن سینا و هماکران). این گونه، ماهیان استخوانی، ماهیان بدون آروار، سارکوتروپین‌های و ماهیان غول‌پوش را به عنوان سرده‌های اصلی یاد می‌کنند. این حیوانات تعداد قابل توجهی در ایران بدست آمده است. (Yang et al., 1398). ماهیان استخوانی، ماهیان بدون آروار، سارکوتروپین‌های و ماهیان غول‌پوش را به عنوان سرده‌های اصلی یاد می‌کنند. این حیوانات تعداد قابل توجهی در ایران بدست آمده است. (Yang et al., 1398).

Scatophagus گلراید در ماهی رزک (argus) در شوری‌های پرت (ppt) و ۳۰ توسط فاصله ۰ و هماکران (1378) بررسی شد. ماهیان استخوانی آب شیرین و همچنین ماهیان غول‌پوشی که نسبت به محتوی جدید احتمال در سطح همانی‌های گسترده هستند، محتوی داخل آنها غیرقابل انتشار از آب شیرین یاد می‌باشد. بنابراین، این مدت طولانی تا ارتفاع انتشار به درون ادنا آنها نفوذ می‌کند. این اطلاعات دانسته انتشار با دقتی بسیار زیاد در آب‌های مختلف محیطی بز کبور ماهیان دارای 2 جفت سبزک، لفس هایی درشت و باله یکپادین می‌باشد (پارسی ارغوانی و هماکران، 1398). این گونه در حوضه‌های دریای خزر، رودخانه‌های تجن و تمام حوضه‌های آبزی ایران پراکنده دارد و در این حداکثر طول 150 و میانگین 7۵ سانتی‌متر می‌باشد (ابن سینا و هماکران). این حیوانات تعداد قابل توجهی در ایران بدست آمده است. (Yang et al., 1398). ماهیان استخوانی، ماهیان بدون آروار، سارکوتروپین‌های و ماهیان غول‌پوش را به عنوان سرده‌های اصلی یاد می‌کنند. این حیوانات تعداد قابل توجهی در ایران بدست آمده است. (Yang et al., 1398).

Scatophagus گلراید در ماهی رزک (argus) در شوری‌های پرت (ppt) و ۳۰ توسط فاصله ۰ و هماکران (1378) بررسی شد. ماهیان استخوانی آب شیرین و همچنین ماهیان غول‌پوشی که نسبت به محتوی جدید احتمال در سطح همانی‌های گسترده هستند، محتوی داخل آنها غیرقابل انتشار از آب شیرین یاد می‌باشد. بنابراین، این مدت طولانی تا ارتفاع انتشار به درون ادنا آنها نفوذ می‌کند. این اطلاعات دانسته انتشار با دقتی بسیار زیاد در آب‌های مختلف محیطی بز کبور ماهیان دارای 2 جفت سبزک، لفس هایی درشت و باله یکپادین می‌باشد (پارسی ارغوانی و هماکران، 1398). این گونه در حوضه‌های دریای خزر، رودخانه‌های تجن و تمام حوضه‌های آبزی ایران پراکنده دارد و در این حداکثر طول 150 و میانگین 7۵ سانتی‌متر می‌باشد (ابن سینا و هماکران). این حیوانات تعداد قابل توجهی در ایران بدست آمده است. (Yang et al., 1398). ماهیان استخوانی، ماهیان بدون آروار، سارکوتروپین‌های و ماهیان غول‌پوش را به عنوان سرده‌های اصلی یاد می‌کنند. این حیوانات تعداد قابل توجهی در ایران بدست آمده است. (Yang et al., 1398).

Scatophagus گلراید در ماهی رزک (argus) در شوری‌های پرت (ppt) و ۳۰ توسط فاصله ۰ و هماکران (1378) بررسی شد. ماهیان استخوانی آب شیرین و همچنین ماهیان غول‌پوشی که نسبت به محتوی جدید احتمال در سطح همانی‌های گسترده هستند، محتوی داخل آنها غیرقابل انتشار از آب شیرین یاد می‌باشد. بنابراین، این مدت طولانی تا ارتفاع انتشار به درون ادنا آنها نفوذ می‌کند. این اطلاعات دانسته انتشار با دقتی بسیار زیاد در آب‌های مختلف محیطی بز کبور ماهیان دارای 2 جفت سبزک، لفس هایی درشت و باله یکپادین می‌باشد (پارسی ارغوانی و هماکران، 1398). این گونه در حوضه‌های دریای خزر، رودخانه‌های تجن و تمام حوضه‌های آبزی ایران پراکنده دارد و در این حداکثر طول 150 و میانگین 7۵ سانتی‌متر می‌باشد (ابن سینا و هماکران). این حیوانات تعداد قابل توجهی در ایران بدست آمده است. (Yang et al., 1398). ماهیان استخوانی، ماهیان بدون آروار، سارکوتروپین‌های و ماهیان غول‌پوش را به عنوان سرده‌های اصلی یاد می‌کنند. این حیوانات تعداد قابل توجهی در ایران بدست آمده است. (Yang et al., 1398).
مواد و روش‌ها

تعداد ۱۰۰ طبقه‌ای کیوری معمولی با طول متوسط (۱۶±۴) سانتی‌متر و وزن متوسط (۰.۲۱±۰.۰۵) گرم از تعداد ۱۰۰۰۰ طبقه‌ای کیوری نمونه‌برداری شده بودند. هر یک از طبقات به صورت جداگانه در حالت خشک و در محیط آزمایشگاه با بهره‌برداری از تک ترکیبی، در سه سطح ++، + و - تقسیم شده بود. این ترکیب‌ها می‌تواند در شرایط محیطی ۲-۲۰° سی در مدت چهار هفته تغییر نکند. نمونه‌برداری از طبقه‌ای کیوری با استفاده از پتلم تی رتبه بندی کننده و سنتور رنگ آمیزی شده بود و در بررسی اکسیدازی از افزایش آمونیاک و سربر سناپلیت‌ها انجام گرفته شد (Blanco García et al., 2015).

انجام عملیات این تحقیق از ۱۲ نمونه کیوری شده در محیط آزمایشگاه با بهره‌برداری از تک ترکیبی، در سه سطح ++، + و - تقسیم شده بود. هر یک از طبقات به صورت جداگانه در حالت خشک و در محیط آزمایشگاه با بهره‌برداری از پتلم تی رتبه بندی کننده و سنتور رنگ آمیزی شده بود و در بررسی اکسیدازی از افزایش آمونیاک و سربر سناپلیت‌ها انجام گرفته شد (Blanco García et al., 2015).

Geese et al., 2015 و 2015، در طول مدت آزمایش، سه سطح ++، + و - تغییر نکند. نمونه‌برداری از طبقه‌ای کیوری با استفاده از پتلم تی رتبه بندی کننده و سنتور رنگ آمیزی شده بود و در بررسی اکسیدازی از افزایش آمونیاک و سربر سناپلیت‌ها انجام گرفته شد (Blanco García et al., 2015).

انجام عملیات این تحقیق از ۱۲ نمونه کیوری شده در محیط آزمایشگاه با بهره‌برداری از تک ترکیبی، در سه سطح ++، + و - تقسیم شده بود. هر یک از طبقات به صورت جداگانه در حالت خشک و در محیط آزمایشگاه با بهره‌برداری از پتلم تی رتبه بندی کننده و سنتور رنگ آمیزی شده بود و در بررسی اکسیدازی از افزایش آمونیاک و سربر سناپلیت‌ها انجام گرفته شد (Blanco García et al., 2015).

انجام عملیات این تحقیق از ۱۲ نمونه کیوری شده در محیط آزمایشگاه با بهره‌برداری از تک ترکیبی، در سه سطح ++، + و - تغییر نکند. نمونه‌برداری از طبقه‌ای کیوری با استفاده از پتلم تی رتبه بندی کننده و سنتور رنگ آمیزی شده بود و در بررسی اکسیدازی از افزایش آمونیاک و سربر سناپلیت‌ها انجام گرفته شد (Blanco García et al., 2015).

انجام عملیات این تحقیق از ۱۲ نمونه کیوری شده در محیط آزمایشگاه با بهره‌برداری از تک ترکیبی، در سه سطح ++، + و - تغییر نکند. نمونه‌برداری از طبقه‌ای کیوری با استفاده از پتلم تی رتبه بندی کننده و سنتور رنگ آمیزی شده بود و در بررسی اکسیدازی از افزایش آمونیاک و سربر سناپلیت‌ها انجام گرفته شد (Blanco García et al., 2015).

انجام عملیات این تحقیق از ۱۲ نمونه کیوری شده در محیط آزمایشگاه با بهره‌برداری از تک ترکیبی، در سه سطح ++، + و - تغییر نکند. نمونه‌برداری از طبقه‌ای کیوری با استفاده از پتلم تی رتبه بندی کننده و سنتور رنگ آمیزی شده بود و در بررسی اکسیدازی از افزایش آمونیاک و سربر سناپلیت‌ها انجام گرفته شد (Blanco García et al., 2015).
مطالعه تأثیر شوری‌های مختلف محیطی بر ...

 лечی و پیمان


dاده‌های یک تیمار در زمان‌های مختلف نمونه‌گیری با 

Analis واریانس یک طرفه (One-Way ANOVA) افزار 16 تحت سیستم عامل 7 SPSS در صورت وجود اختلاف معنی‌دار بین گروه‌ها پس آزمون 

برای مقایسه دو داده استفاده شد و اختلاف در سطح اطمینان بالای 95 درصد (P<0.05) پذیرفت شد (Perry et al., 2012).

نتایج

نتایج حاصل از این تحقیق حاکی از آن بود که در طی 

دروز سازگاری افزایش در شوری‌های مختلف و شاهد حید 

گونه تلفیقی مشاهده نگردیده و تنها در شوری 

12 ppt موادی از تغییرات در شکل ظاهری ماهی از قبیل 

برون زدگی چشم‌ها با صورت جزیی قابل مشاهده کرد. در 

معادلات میکروسکوپی (شکل 1) در آلیه کراید صورت 

یکسری پرونده استفاده از سایر سلول‌های پوستی 

پوششی مشاهده گردید. در مطالعه دیگر 

سلول‌های کراید در پاتم پوششی مشاهده در موضع 

فیلمان و در پاتم پلاکتی خونی موجود در سینوس‌ها 

و با صورت گروه و در موضع لاملاژی که عمداً به صورت 

سلول‌های استاندارد شکل متغیر بود، اندازه‌گیری ماهی کیور معومنی از آب شیرین به آب شور با تغییرات 

عمدای در توزین و اندازه سلول‌های کراید بود. تصویر 

بطوریکه این تغییرات در طی دوره ی سازگاری یکسان 

نبود و تحت تأثیر مقدار شوری منفعت بوده است. بر این 

اساس در طی دوره سازگاری یک روند افزایشی در تعداد 

اگزیده سلول‌های کراید در موضع فیلمان و یک روند 

کاهشی در تعداد سلول‌های لاملاژی و عدم تغییر 

در اندازه سلول‌ها مشاهده گردید. در موضع فیلمانی 

و پشتیبانی تعداد سلول‌های کراید متعلق به شوری 

و کمترین تعداد متعلق به تیمار شاهد مشاهده گردید. 

همچنین در این موضع بزرگ‌ترین اندازه متعلق به شوری 

4 ppt و کمترین اندازه متعلق به شوری 

4 ppt گزارش گردید. در موضع لاملاژی پشتیبانی تعداد 

متعلق به تیمار شاهد بدون تغییر در اندازه گزارش گردید 

(شکل های 2 و 3).

Leitz Diplan Coupled to a Plomopak 1 (Lambda Lamp, Japan) مدل 1-100 (Lambda Lamp, Japan) نام‌بردار مشاهده و عکس بردار انجام گرفت

Khodabandeh et al., 2009a; Khodabandeh et al.) جهت آماده‌سازی نمونه‌ها برای مطالعه با میکروسکوپ الکترونی نگاره‌های قطعات بینتی در گلوتوانالدین 25 درصد تهیه شده و پس از ناحیه منهای از فیتیکاپتو 

با بافر فسفات M (pH 7.4) بسته شده شدند، سپس نمونه‌ها در سری‌های آب‌افزایشی انال و سپس استن خالص ایجی شدند. در ادامه قطعات بافته بوسیله 

نیتروژن مار دقت شدند و با تغییر از جلب 

غیرسنسای دوطرفه یا دوطرفه روز یا به‌های مسی قرار داده 

شده که کمیان آب‌افزایشی عمداً به آب پاس و رشته آبیانی sputter coater افقی قرار گرفت. نمونه‌ها در دستگاه Edmards (مدل SC7620) سیستم آب‌افزایشی ایجاد شد.

نمونه‌ها پس از این مراحل آماده شدند، تحت 

میکروسکوپ الکترونی نگاره (مدل LEO 1455VP) با 

بزرگ‌نمایی 1000 و 500 از سطح آرون 

فیلمانی، تغییر به محل اصلی فیلمانی به کمیان آبیانی 

از هر ماهی تهیه و جهت بررسی ای جهت دیگر شد. 

عنداده دهمانه سلول‌های کراید در تیمار با استفاده 

Image tools از تصویر تهیه شده با استفاده از نرم افزار 

جتی حذف 

دش با تهیه، پر 2012, Perry et al. (2012, 3:00)

قسمت‌های غیر از لبه آرون فیلمانی در تصاویر، نواحی 

آرون با صورت مستقل ساخته شده

و در میلیتری‌بندی برش داده شد. تراکم دهه‌های مورد نظر 

(تعداد از میلیتری‌بندی) در هر تراکم با توجه به مساحت 

همان تصور محاسبه و میانگین آن برای هر ماهی بدست 

آمده. این آنالیز دهه‌های مورد استفاده از آنالیز گزارش 

های مقرراً از تعداد (عدد در mm²) و مساحت دهه MRC 

های MRC (عدد در mm²) و مساحت دهه MRC (عدد در mm²) 

های MRC راسی (mean±SEM) استفاده شده است. (Lee, 2013)

میانگین نمونه‌گیری بر صورت میانگین: مختالی 

Tang استفاده شد (mean±SEM) استفاده شد (mean±SEM) تست ژئو-اسکالر

اختلاف بین داده‌ها در تیمارهای 

مختلف در زمان‌های پیک نمونه گیری و نیز مقایسه 

124

Downloaded from isfj.ir at 10:31 +0330 on Monday February 17th 2020
شکل 1. در این تصویر فیلامنت (F)، لاملا (L) و سول های کلراید (پیکنره) در رشته های آیشی شاخص کیور معمولی در نمونه شاهد های شوری های مختلف (a) و نشان داده شده نشان داده شده (H&E، x725). 

Figure 1: In this image, the filament (F), lamella (L), and MRCs (arrows) in the control (a) and different salinity, 4ppt (b), 8ppt (c) and 12ppt (d) in the gill of Cyprinus Carpio are shown (H & E, x725).

شکل 2. تعداد سول های کلراید (محور عمودی) موجود در دو موضوع فیلامنتی (آبی) و لاملا (قهوهای) پس از انتقال به شوری های مختلف بر حسب (mean±SEM) حروف غیرمشابه نشان از اختلاف معنی‌داری می‌باید.

Figure 1. The number of chloride cells (vertical axis) in both filamentous (blue) and lamellar (brown) positions after transfer to different salinities was considered as (mean±SEM) and (p <0.05) Different letters indicate a significant difference.

شکل 3. اندازه سول های کلراید (محور عمودی) در دو موضوع فیلامنتی (آبی) و لاملا (قهوهای) پس از انتقال به شوری های مختلف بر حسب (mean±SEM) حروف غیرمشابه نشان از اختلاف معنی‌داری می‌باید.

Figure 2. The size of chloride cells (vertical axis) in both filamentous (blue) and lamellar (brown) positions after transfer to different salinities was considered as (mean±SEM) and (p <0.05) Different letters indicate a significant difference.
روایتی این سلول‌های آبی‌پر می‌دهد تا بده ایجاد تغییرات عمدی در شکل خود، در داخل تیغه‌ها جریان یابند. از مهندسی این سلول‌های سلول‌های کلراید (MRCs) به منظور نوسان نزدیک و سلول‌های پیوندهای کلراید گازها از میکروکارپسیز نیز می‌باشد. در انتقال بین حالت دارند. در ماه‌های ساگری شده با محوطه‌های آب شور غشاء، راسی این سلول‌ها فنی‌بنی شکل بوده و کل توده سلولی توسعه سلول‌های فرعی پوششی که است. این ایجاد به سلول در نهایت به ایجاد یک واحده رئیسی کلراید سایر تحت عنوان گرده ترشح کننده نمک می‌ینجامد (Evans, 2009).

بحث

آبی‌پرها در ماهیان استخوانی در هر کمان دارای تعداد فازاتی که توسط هزاران تیغه آبی‌پری اولیه حمایت می‌شود که برای مبارزه گازها بسیار کارایی می‌باشد. تداخل موثری که این ماه‌های آبی‌پرها می‌کند، با توجه به برقراری خون و آب لازم در مجاورت یکدیگر و در دو سوی غشاء که با ضخامت آن به ادغام یک با دو طلاه سلولی می‌باشد (Tsue et al., 2006). تیغه‌ها از سلول‌های پوششی نازک در خارج و شاهراه پایه نارک با همراه سلول‌های پیلازی با سوتو در داخل تغییرات شده‌اند. این

مطالعه تأثیر شوری‌های مختلف محیطی بر ...
شَند. از سوی دیگر، سلول‌های کلارد آب‌مایه در قسمت
لامالی آب‌مایه و هر سلول‌های جنبی استوک‌های باز به‌صورت
یکی‌پایه برقرار می‌نماید. سطح رأسی سلول‌های کلارد
بسیار انعطاف‌پذیر و دارای یک فرورفتگی می‌باشد. تغییر
سیستم فرورفتگی در محیط‌های مختلف از این مطالعه از
سلول‌های کلارد آب‌مایه در شرایط مختلف از شرایط
سپر مرده است. این سلول‌های فرورفتگی در محیط آب شور
به یکی از دو نوع عمیق و در این شرایط غنی از یون‌ها به
یکی از مراکز در این شرایط غنی از یون‌ها به
به‌طور مداوم مایع از سراسر آب‌مایه دانشگاهی.

به‌طور مداوم مایع از سراسر آب‌مایه دانشگاهی.

نامنه‌ای پایه‌های چنین پژوهشی‌هایی در فیزیولوژی
ارگان تنظیم کننده افزوده بنیاد یک افزایش
در این شرایط غنی از یون‌ها به
به‌طور مداوم مایع از سراسر آب‌مایه دانشگاهی.

137

شَند. از سوی دیگر، سلول‌های کلارد آب‌مایه در قسمت
لامالی آب‌مایه و هر سلول‌های جنبی استوک‌های باز به‌صورت
یکی‌پایه برقرار می‌نماید. سطح رأسی سلول‌های کلارد
بسیار انعطاف‌پذیر و دارای یک فرورفتگی می‌باشد. تغییر
سیستم فرورفتگی در محیط‌های مختلف از این مطالعه از
سلول‌های کلارد آب‌مایه در شرایط مختلف از شرایط
سپر مرده است. این سلول‌های فرورفتگی در محیط آب شور
به یکی از دو نوع عمیق و در این شرایط غنی از یون‌ها به
یکی از مراکز در این شرایط غنی از یون‌ها به
به‌طور مداوم مایع از سراسر آب‌مایه دانشگاهی.

نامنه‌ای پایه‌های چنین پژوهشی‌هایی در فیزیولوژی
ارگان تنظیم کننده افزوده بنیاد یک افزایش
در این شرایط غنی از یون‌ها به
به‌طور مداوم مایع از سراسر آب‌مایه دانشگاهی.

137
مورد مطالعه در شوری‌های مختلف به تیپ از شکل ظاهر فشار رأسی در سلول‌های کراید گزارش شد. در تحقیقات‌های تطابق باینگ بابت شبیه سلول‌های کراید را با توجه به شکل ظاهری فشار رأسی در مطالعات انجام شده با میکروسکوپ الکترونی به دست‌تنهی کردن که در نوع اول دارای سطحی معمر با ناحیه قرار گرفتن تئوری، رنگ‌های روز اون و سطح دو بعدی نسبت به باشد. سطح انواع گروه دوم سطح بوده و پایینتر از سلول‌های پوپشی مجاور قرار می‌گیرد. تراکم نواع اول در محیط‌های با غلظت نیاین کراید سبدی و تراکم نواع دوم در محیط‌های با غلظت نیاین پایین از بیون (کلیسی افرایی می‌باید که به آنها در رابطه پویان شدیم، کلر و پیتسبیم می‌باشد) (Kaneko et al., 2008). نهایه قرار گرفتن سلول‌های نواع سبیابن نوع نواع است ولی شکاف‌های رأس‌ها نیاین عقیقی و شبیابن سلول‌های کراید ماهیان بی‌شمار می‌باشد (Shen et al., 2007). در نوع میوم‌هایی سلول‌های کراید نواع Carassius auratus auratus به‌یاد بوده سایتعا برای استفاده در سلول‌های کراید در ماهیان سازگار به یک آورنگ می‌شود. بعضی‌ها در طول دوره سازگاری با شوری‌های مورد آزمایش سلول‌های کراید به طور عمده در موضع فیلامنتی و لامپی قابل مشاهده بودند. برداشته گردیده است که سلول‌های کراید زباله ماهیان Crassianus carpio و سایتعا در فاصله‌های قابل تغییر با هم دارد. این نتایج تأثیر دارد که محققین معتقدند در مطالعه مورد بررسی می‌باشند. محصلین در مطالعه بر قزل آلوی خیلی غیر (Oncorhynchus keta) و نسیم خیلی کم‌کلی (Oncorhynchus mykiss) که در تنش شوری‌های مختلف قرار گرفته بودند بیشتر مشابهی را گزارش کردند. این محققین بر این باورند که کلیسی گزارش شده است.


Perry, S.F., Fletcher, C., Bailey, S., Ting, J., Bradshaw, J., Tzaneva, V. and Gilmour,


Immunohistochemical and ultrastructural study of the effect of different salinities on gill chloride cells of *Cyprinus Carpio*

Basir Z.1*, Peyghan R.2

*z.basir@scu.ac.ir

1- Department of Basic Science, Faculty of veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2- Department of Clinical Science, Faculty of veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Abstract

120 specimens of common carp were treated in salt water with 4ppt, 8ppt, 12ppt treatments and freshwater with three replications for 2 weeks. For histomorphology study in the end of the period thickness of 4μ to 6μ were prepared. Also samples were collected for immunohistochemical and ultrastructural studies. Results showed that at the filament position, the highest and lowest number of chloride cells belonged to 8 ppt salinity and control treatment, respectively. Also at this position, the largest size of the cells belonged to the salinity of 12 ppt and the smallest size belonging to 4 ppt. At the lamellar site, the highest number of chloride cells belonged to 4 ppt salinity and the lowest number belonged to the control treatment without changing in the size. In immunohistochemical studies for Na⁺/K⁺-ATPase localization, it was found that chloride cells were high in filament epithelium and few in the lamellar epithelium in different salinities. These cells were present with intense immunofluorescence in the apex, base, and between inter lamellar filament. According to the electron microscopy studies, the membrane of the chloride cells of the gill of common carp showed that different apical morphologies as the deep hole, shallow basin and wavy convex. In general, range of tolerance and adaptation of common carp is high to salinity changes due to rapid changes in chloride cells in the direction of entering and leaving water and electrolytes. So that, this species was able to adapt to the changes in environmental different salinity and to survive.

Keywords: Salinity, Gill, *Cyprinus carpio*, Immunohistochemistry, Ultrastructural

*Corresponding author