تأثیر دما، pH، نمک، اسانس برگ نارنج و بسته‌بندی اتمسفر تغییر یافته در برگ کپر فقره‌ای

در کنترل باکتری Salmonella typhimurium

لاله رومیانی ۱، مهرنوش تدینی ۲

۱- گروه یاده، وحدی اکسایع غذایی، ایران
۲- گروه یاده، وحدی اکسایع غذایی، ایران

تاریخ دریافت: بیست و یکم بهمن ۱۳۷۷
تاریخ پذیرش: در سال ۷۷-۱۳۷۶ اوجام شد.

چکیده

این پژوهش با هدف تأثیر دما، pH، نمک، اسانس برگ نارنج و بسته‌بندی اتمسفر تغییر یافته (50 درصد اکسیدکربن، 45 درصد ویتامین‌هایی و 37 درصد اکسیژن) در برگ کپر فقره‌ای باکتری Salmonella typhimurium در سطح pH 5/5، 6 و 5/7 دما در سطح ۴، ۲۵ و ۳۷ درجه سانتی‌گراد و نمک در سطح 0، 5/1 و 3 درصد و اسانس اکسایع غذایی ایران در سطح 0، 025 و 05/0 درصد و در ریزای ۶ هفتم، دوازدهم و سی و هفتم دردما و در دما نمو باکتری S. typhimurium مشاهده گردید. اسانس گیاه نارنج در سطح pH 5/5 و در نمک ۵/۵ درصد و اسانس نارنج ۱/۵ درصد، pH 5/5 و در نمک ۱/۵ درصد در ریزای ۶ هفتم رشد باکتری S. typhimurium را در برگ کپر ماهی داشت.

واژگان کلیدی: برگ ماهی، اتمسفر تغییر یافته، اسانس نارنج (Citrus aurantium L.)
مقدمه

ماهی‌های یکی از فسادپذیرترین مواد غذایی بشر است. درصدی از (مایلی، ۲۰۱۰) با توجه به اطلاعات، میزان متوسط فرسودگی‌های منطقه، یک نوعی از تغییرات در مواد غذایی بشر، راندمایشی می‌شود که می‌تواند به نشانه‌های مختلفی رسانده شود. 

با توجه به این نتایج، تحقیق‌هایی در زمینه تشخیص و بهبود این نوعی از مشکلات بسیار مهم بوده است. 

(فاکتور مهمی که ارگان‌های بیماری‌های منطقه‌ای را تحت تأثیر قرار دارد، (مایلی، ۲۰۱۰) با توجه به اطلاعات، میزان متوسط فرسودگی‌های منطقه، یک نوعی از تغییرات در مواد غذایی بشر، راندمایشی می‌شود که می‌تواند به نشانه‌های مختلفی رسانده شود.

(با توجه به این نتایج، تحقیق‌هایی در زمینه تشخیص و بهبود این نوعی از مشکلات بسیار مهم بوده است.

به طور کلی، گفته می‌شود که این مشکلات باعث شده‌است که کاهشی در جمعیت‌های مختلف شود. 

روحمد و همکاران (۲۰۱۵) بررسی‌های انجام شده نشان داده‌اند که در پایان سال‌های اخیر، این مشکلات در دنیا بیش از پیش کاهش یافته است.

در سال‌های اخیر، این مشکلات در دنیا بیش از پیش کاهش یافته است.

(دو سال قبل، (رود، ۲۰۰۹) بررسی‌هایی در زمینه تشخیص و بهبود این نوعی از مشکلات بسیار مهم بوده است.

سروبن لوپری و مارتین بلسوس (۲۰۰۸) هر چند بیماری‌های فرسودگی در جهان ناباید در محل واقع شده، اما باید به آنها توجه کنیم.

(در سال‌های اخیر، این مشکلات در دنیا بیش از پیش کاهش یافته است.

(باید به آنها توجه کنیم.

۱ Emerging diseases
سانتی گراد بسته‌بندی به همراه اساس پوشه کوهلی (Mahgoub et al., 2019) конسل کدن (2019) از نمونه سودکردنی را از ماده‌گی ماهی‌های ماهی سار اش دوز بزرگ مطالعه کرده و به این نتیجه رسیده که در طول دوره آزمایش میزان پرکسیس کاهش و مقدار NTVB-3 بافت، وی یا در مجموع نتایج آن‌ها امتیاز بالایی (6/3) را به فیله‌ی نمک سود قند نسبت به تیمار شاهد (3/3) داد.

لطفی و همکاران (1398) تغییرات فیزیک‌شیمیایی، میکروبی و حسی بر فیله‌ی نمک ماهی دودی شده با آن نمک و سن در مورد مطالعه قرار دادند. این با روش توانستنی 20 روز مان‌داناگری فیله‌ی دا آثلاثی به دقت.

اثر عصاره اؤیشی اؤیشی را مان‌داناگری فیله‌ی قزل‌آی رگن کیمیائی شری و بسته‌بندی شده در خلا در شرایط محیط بین‌ماد مطالعه قرار گرفت. نتایج نشان داد عصاره تا در ترکب با بسته‌بندی توانست 5 روز مان‌داناگری را نسبت به تیمار بدون عصاره آزاری دهد (شجاعی و همکاران، 1390). در کوشش‌های بسته‌بندی دا فاکتور سبب و ضروری در رشد بakte. و و از این‌رو رسیده‌ای که در ترکب بای پرچب مزین (Grau & Vanderlinde, 1990a, b) این مطالعه سعی بر گشک که با نمک فاکتور سبب می‌باشد و همگونی و حساسیت در رشد باکتری و استفاده از راه‌حل‌های مناسب به‌ای کنترل آن مان‌داناگری انسکفری تغییرات در ترکب با نمک بسیار مان‌داناگری و این مصالح سبیلی را آزاری داد. از این‌رو، این تحقیق با دقت ۶ روز، pH نمک، رشد باکتری و Salmonella و بسته‌بندی انسکفری تغییرات را در کنترل باکتری در برگ کنار نقره‌ای انجام شد.

روش کار
نمونه‌گیری برگ ناتمام در سال 96-97 از استان خوزستان و شیراز در سفره‌ی سفره‌ی سفره‌ی مسافرتی مسافرتی مسافرتی در ماهی‌های ویاکی از جهاد دانشگاه تایید شدند. به منظور استخراج اساس برگ تازه، بافت‌های خشکش، سه گروه آماده و با استفاده از یک دستگاه کلونی‌ساز (مدل ۱۰-۴۰۰۰، ۸۰ سانتی‌متر) به مدت ۳ ساعت روند فرای آن را روش تقطیر می‌توان استخراج گردید. پس از اگربه تسوی سولفات سدیم خشک، تا همان زمانی خواص شخصیتروپی و همچنین تشخیص و تیغات و ترکب‌های
تشکیل دهنده، اساس در طرفین سیستم تیره و در خجالت نگهداری شد (Sparkman, 2005). جهت نشست و شناسایی ترتیب بایستی این اسکریپت که اصولاً روش کومنوتپگفات گاز (مدل Agilent) مجهز به Agilent-6890 در درجه ترشی کابیلایر سنین کابیلایر تجزیه اساس‌ها و روش‌ها، دکتور پوشن شعله استفاده گردید. دمای آشکارساز و محل ترشی بین 140 و 160 درجه سنین برای تهیه بود. شد 1 میکروویولت از نمونه استفاده از سرگی میکرویولتی در دستگاه کومنوتپگفات تریش شد. دمای اولیه سنین روي 160 درجه سنین گرد تنظیم گردید. بعد از مدت 10 دقیقه، دمای سنین روان سرعت 2 درجه سنین در دقیقه دما در این درجه باقی ماند. در این روش گاز هیدروژن به مقدار 99.99 درصد به عنوان گاز حاصل و گاز هیدروژن به عنوان سرخ از خلوص از رسیدن به عنوان گاز کمکی و هوا خشک استفاده شد. از مقايسه زمان بازاري‌ کردن منجول با کرموموتپگفات بررسی بر اساس متوسط مولکول سنین با نتیجه تاریخ شناسی سنین و نتایج به صورت درصد خاک گردید.
(Mileski et al., 2014)

در این پژوهش انتخاب تجارب بر اساس تجربیات نتایج محلات کانتریت بود pH در مراحل اولیه و انتهایی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm متر دیجیتالی مدل در سطح متوسط pH و 3 درصد و سیستم تریشی در درجه سیستم (Mileksi et al., 2009) متوسط مدل 713 Metrohm M
نتایج

Sirus Citrus

تکثیری تحقیق هدف این پژوهش گزارش گیاه نباتی (Salamonella typhimurium) در جدول ۱ معرفی شد. با توجه به رشد و فعالیت (آکتسیم‌الکتریک) استفاده شد. در هر چاکچک ۱۰۰ میکرولت میکروآگونش قالب و مغز استریل ۲۰ میکرولت از هر کم از قطعات مولفه اصلی مورد مطالعه و ۲۰ میکرولت کشت باکتری‌ای پاسخی گردید.

سپس پیپت میکروولوژ به مدت ۲۰ ثانیه به دور ۲۰۰ rpm بیرون داده شد. بعد از ۲۴ ساعت وار در محیط مخلوط شده در همیشه قرار داشته و ۵/۰ (Log cfu/g) از نمونه‌ها در محیط TRIC، تغییر غلظت که ایجاد حالت را در رده‌ای که در نمونه‌هایی از محیط‌های حاصل از رشد باکتری یونیت نوع غلظت مهارتی جهانی که با رشد یافت. 

در میان میکروولوژ گردن، سپس ۲۰۰ میکروولوژ در نمونه محیط آگ آکلب قلب مغز، گردید. مقدار اینفیور گردید. 

ساعت تلمی گرانی در میان ۲۳ درجه سلسیوس ظرف ۲۴ ساعت وار. در مورد مطالعه رشد تا برای تا باکتری‌ای پاسخی گردید.

Log DP = log N/ N0 = log (N) - log (N0)

در این پژوهش همه این پژوهش‌ها با ۴ تکرار آزمایش‌ها به دست آمد. نتایج حاصل از این تحقیق با استفاده از نرم‌افزار آماری مورد تجزیه و تحلیل قرار گرفت. نماینده‌ها به منظور مقایسه اختلاف معنی‌دار با ضریب اطمنی ۹۵ درصد (ANOVA) با استفاده از آنالیزهای جهت رسم جدول و نمودارها از نرم‌افزار Excel ۲۰۰۷ استفاده گردید.
Table 1: Compounds of leaf of citrus essential oil (Citrus aurantium)

<table>
<thead>
<tr>
<th>تركیبات</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-BETA-PINENE</td>
<td>492</td>
</tr>
<tr>
<td>Bicyclo[3.1.1]heptane</td>
<td>3.1</td>
</tr>
<tr>
<td>6,6-dimethyl-2-methylene-</td>
<td>6,6-dimethyl-2-methylene-</td>
</tr>
<tr>
<td>alpha.-Myrcene</td>
<td>1.6-Octadiene</td>
</tr>
</tbody>
</table>
Table 2: Statistical parameters of *Salmonella typhimurium* (Log cfu/g) under the influence of pH, salt, temperature and citrus essential oil in fish burger during 12 days of storage

<table>
<thead>
<tr>
<th>pH</th>
<th>Emphasis (%)</th>
<th>Temperature °C</th>
<th>Salt (%)</th>
<th>Variance Mean</th>
<th>Sample Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>3.6</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>3.7</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>3.8</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>3.9</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>4.0</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>4.1</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>4.2</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>4.3</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>4.4</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>4.5</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>4.6</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>4.7</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>4.8</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>4.9</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>5.0</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Log cfu/g = logarithm of colony-forming units per gram.
جدول 3: تأثیز pH، نمک، اساس برگ نارنج و دما بر رشد (Log cfu/g) Salmonella typhimurium در برگ ماهی طی 12 روز نگهداری (mean±SD)

<table>
<thead>
<tr>
<th>درصد نارنج</th>
<th>درصد دما</th>
<th>pH</th>
<th>نمک (درجه)</th>
<th>اساس برگ (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5/79±0/77</td>
<td>5/94±0/58</td>
<td>5/43±0/05</td>
<td>5/40±0/04</td>
<td>5/46±0/39</td>
</tr>
</tbody>
</table>

حرفو مشابه (P<0.05) در هر ردیف اختلاف معنی‌دار راشانی می‌دهد (P<0.05).
بلندی

ph همراه با داشتن typhimurium سپری می‌شود. 

روند رشد باکتری typhimurium در pH 6.1/5 و 6.0/5 در میزان 97% و 6.1/5 در میزان 77% و 6.1/5 در میزان 65% سپری می‌شود. 

روز کاهش انرژی داخلی در pH 6.1/5 مبتنی بر گروه typhimurium مشاهده شده. 

روز کاهش انرژی داخلی typhimurium در pH 6.1/5 با تعداد افراد مناسب با تعداد افراد مناسب typhimurium مشاهده شد.

روز کاهش انرژی داخلی typhimurium در pH 6.1/5 و 6.0/5 در میزان 77% و 6.1/5 در میزان 65% سپری می‌شود.

روز کاهش انرژی داخلی typhimurium در pH 6.1/5 با تعداد افراد مناسب با تعداد افراد مناسب typhimurium مشاهده شد.

روز کاهش انرژی داخلی typhimurium در pH 6.1/5 و 6.0/5 در میزان 77% و 6.1/5 در میزان 65% سپری می‌شود.

روز کاهش انرژی داخلی typhimurium در pH 6.1/5 با تعداد افراد مناسب با تعداد افراد مناسب typhimurium مشاهده شد.

روز کاهش انرژی داخلی typhimurium در pH 6.1/5 و 6.0/5 در میزان 77% و 6.1/5 در میزان 65% سپری می‌شود.

روز کاهش انرژی داخلی typhimurium در pH 6.1/5 با تعداد افراد مناسب با تعداد افراد مناسب typhimurium مشاهده شد.

روز کاهش انرژی داخلی typhimurium در pH 6.1/5 و 6.0/5 در میزان 77% و 6.1/5 در میزان 65% سپری می‌شود.

روز کاهش انرژی داخلی typhimurium در pH 6.1/5 با تعداد افراد مناسب با تعداد افراد مناسب typhimurium مشاهده شد.
تاثیر دما، pH، نمک، اساس پرگ نارنج و... رومنی و تدئینی

داروی بر میکروگانیسم‌های مختلف در مناطق مختلف گزارش شده است (چهارکان و همکاران، 1991: علبوده و همکاران، 1392; بهنام و همکاران، 1394). برخی از محققین از ارتباط بین ساختارهای شیمیایی برخی از گونه‌های موجود در اساسها را با فعالیت ضدبیولیسی این گزارش نموده‌اند. اساس‌هایی که دارای تکیب‌های زیادتر نشان‌دهند، برای دیگران و افزایش همگامی ساده، خاصیت ضدبیولیسی شدید این گزارش می‌باشد (Fabry et al., 2007).

است (اردی و همکاران، 1399) بررسی تأثیر مواد اکسیدانی Laguncularia racemosa و Lepidoptera و Lepidoptera بر روی فعالیت ضدبیولیسی و ضدبیولیسی این گزارش نموده‌اند. در این تحقیق محققین جهازی یافتند که این گزارش در جلوگیری از فعالیت غیرطبیعی می‌باشد.

بررسی تأثیر مواد اکسیدانی L. racemosa و L. leuconebrionophila و L. leuconebrionophila بر روی فعالیت ضدبیولیسی و ضدبیولیسی این گزارش نموده‌اند. در این تحقیق محققین جهازی یافتند که این گزارش در جلوگیری از فعالیت غیرطبیعی می‌باشد.

بررسی تأثیر مواد اکسیدانی L. racemosa و L. leuconebrionophila بر روی فعالیت ضدبیولیسی و ضدبیولیسی این گزارش نموده‌اند. در این تحقیق محققین جهازی یافتند که این گزارش در جلوگیری از فعالیت غیرطبیعی می‌باشد.


Fabry, W., Hames, E. and Locatell, J., 2007. Antimicrobial activities of methanol extracts of Matricariachamomilla, depending on location and seasonal variation. Food Chemical, 100: 559-564.


Zaouali, Y., Bouzaine, T. and Boussaid, M., 2010. Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food and Chemical Toxicology, 48: 3144–3152. DOI: 10.1016/j.fct.2010.08.010

Effect of temperature, pH, salt, leaf citrus essential oil and modified atmosphere packaging in control of *Salmonella typhimurium* in Burger fish

Roomiani L.\(^1\); Tadayoni M.\(^2\)

\(^1\)l.roomiani@yahoo.com

1- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2- Department of Food Science and Technology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Abstract

The aim of this study was to determine the effect of temperature, pH, salt, *Citrus aurantium* essential oil and modified atmosphere packaging (50% carbon dioxide, 45% nitrogen and 5% oxygen) on control of *Salmonella typhimurium* was carried out in 1996-97. In this research, pH was adjusted at 5.5, 6 and 7.5, temperature at 4, 25 and 37°C, salt at three levels 0, 1.5 and 3%, and citrus essential oil at 0, 0.025 and 0.05%. *S. typhimurium* growth was increased in fish burger at pH 5.5, 6 and 7.5 at 4, 25 and 37°C, during 12 days of storage. Bacterial growth was increased at pH 7.5 with 1.5% and 3% salt and 0.025% and 0.05% citrus essential oil at 4, 25 and 37°C, respectively, on days 6, 8, 10 and 12. Growth was also observed at pH 6 with 1.5% salt and 0.025% citrus essential oil on days 8, 10 and 12 at 25 and 37°C. At 4°C at pH 5.5 with 1.5% salt and citrus oil 0.05%, pH 5.5 and 6 with 3% salt and citrus oil 0.05%, pH 5.5 with salt 3% and 0.025% citrus essential oil were not observed of growth of bacterial on the 8th, 10th and 12th days. Citrus essential oil at 0.05% level at 4°C, 3% salt and pH 5.5 had the ability to control *Salmonella typhimurium* growth in fish burger.

Keywords: Fish burger, Modified atmosphere packaging, *Citrus aurantium* L., *Salmonella typhimurium*

\(^*\)Corresponding author