ارزیابی ذخایر صدف ملاسی (Solen brevis, 1832)
در سواحل استان بوشهر، خلیج فارس
نصیر نیامندی
nmaimandi@yahoo.com
پژوهشکده میگری کشور، بوشهر صندوک پستی: ۱۷۴۲۰۰۲۰
تاريخ دریافت: اسفند ۱۳۸۸
تاریخ پذیرش: فروردین ۱۳۹۰

چکیده
ارزیابی ذخایر صدف دوکفای ملاسی (Solen brevis, 1832) در خط ساحلی بوشهر (موقتیت جغرافیایی در ۲۴°۰۰ و ۵۰°۱۲ تا ۲۷°۱۷ و ۵۰°۱۷) در یک دوره یک سال از انتهای ماه ۱۳۸۷ تا شهریور ماه ۱۳۸۸ به اجرا گذاشته شد. اهداف این تحقیق عبارت بودند از شناسایی مناطق تجمع، تخمین تعداد و محاسبه ی پراپارامترهای رشد و مرگ و میر نمونه‌برداری در هر ماه در منطقه بوپاتل که یکی از مناطق اصلی تجمع این گونه در اینجا است، انجام گردید. در سایر مناطق که صدف ملاسی نیز مشاهده گردید، نمونه‌برداری های صرفاً گرفته شدند. نمونه‌برداری با گواوهای و در خطوط عرضی با پرتاب یک یا دو گواوهای (۲۵/۵۰ مترمربع) بصورت تصادفی انجام شد. در منطقه بوپاتل میانگین تعداد نمونه‌های صدف در هر گواوهای بعوان تخمینی از میانگین ذخیره به منظور ارزیابی ذخایر بکار گرفته شد. فراوانی طولی نمونه‌ها محاسبه شد و تجزیه و تحلیل داده‌های طولی چهت مشخص کردن پارامترهای رشد با استفاده از آن روش افزایش یافته. میانگین تعداد نمونه در خط ساحلی بوپاتل، میانگین تعداد نمونه در منطقه بوپاتل (۳/۲۵/۱۹) صدف در هر گواوهای با حداکثر زمانه در مهر ماه و حداکثر مرداد ماه تخمین زده شد. پراپارامترهای رشد این گونه برابر ۷/۰۳ در ماه ۱۲۰ میلی‌متر = L = ۱۴/۰۵ و ۱/۱۲ تخمین زده شد. مرگ و میر طبیعی (M) محاسبه شده در ملاسی معادل ۳۲/۰۳ بود. حداکثر سن این دو گونه ای ۵۴ ماه محاسبه گردید.

دستگاهی: بوپاتل, علی سالاری, Solen brevis, صدف

پیش‌نامه
درخوس صدف‌ها تحصیلات متعددی در ایران صورت گرفته است. اولین تحقیق در سال ۱۷۸۱ توسط پیا اینتالیا به نام Arturo Issel تامل گرفت. گونه آن از راسته انسان‌شناسی نامیده می‌شود. (Bosch et al., 1995) در سال ۱۸۷۷ از صدف‌ها این مجموعه‌ای از بازیابی این گونه‌ها در سواحل خلیج فارس انسان‌شناسی نامیده شده است. خلیج فارس انسان‌شناسی نامیده می‌شود. (Bosch et al., 1995) در سال ۱۸۷۷ از صدف‌ها این مجموعه‌ای از بازیابی این گونه‌ها در سواحل خلیج فارس انسان‌شناسی نامیده شده است.
Saccostrea cucullata

Solen roseomaculatus (jackknife clam) (razor clam) (Transect) (MOOPAM, 1999)

Solen brevis

Downloaded from isfj.ir at 23:03 +0400 on Wednesday June 3rd 2020

[DOI: 10.22092/ISFJ.2017.109981]
مانگین نمونه‌های شمارش شده در کواردات‌ها محاسبه شده و این میانگین بعنوان پایه‌ای جهت تعیین میانگین جمعیت‌ها در منطقه به کار گرفته شد. تخمین کل ذخیره (N) در مناطق مورد بررسی، از کل میانگین‌های محاسبه شده در ساحلی که کواردات‌ها بکار برده شده‌اند صورت گرفت. در این خصوص، A کل مساحت منطقه پراکنش و Aمساحت کواردات‌های منشور شده با Fمول زیر میزان تعداد صدف در هر منطقه (N) محاسبه گردید.

\[N = \frac{(A/A) \times \sum x}{n} \]

با توجه به محاسبات فوق میزان ذخایر، تراکم و پراکنش صدف براساس تعداد در کواردات (1250 مترمربع) در مناطق نمونه‌برداری شده محاسبه گردید.

راابطه طول و وزن تعدادی از نمونه‌های صدف ملابسی را که به شکل تصادفی از کل جمعیت صدف‌ها در منطقه نمونه‌برداری و محاسبه گردید، از فرمول زیر جهت تعیین رابطه طول و وزن استفاده گردید.

\[\text{فورمول} = \ln K + 2 \ln L_{\infty} \]
میزان مرس و میر طبیعی با استفاده از ماده زیر که برای دوکفه‌ها مورد استفاده قرار گرفته است، محاسبه گردیده که برای (Taylor, 1960)

\[M = 2.996/0.95 \times L_\infty \]

نتایج

این گونه در 4 منطقه بویانیل خور پیازی، کالو و بردخوی مشاهده گردید. فراوانی دوکفه‌ای ملایسی در منطقه بویانیل بیشتر از سه منطقه دیگر بود. میزان ذخایر و حدود پراکنش آن در 2 منطقه دیگر محدود بود.

در منطقه بویانیل تعداد صحنه‌های ملایسی زنده در ماههای سرد سال (آذر، دی و بهمن) و ماههای معتدل و گرم سال (مهر، آبان و مرداد) تخمین زده شد. بیشترین میزان صدها زنده در

جدول 1: میانگین تعداد صدها ملایسی زنده (Solen brevis (1288-1388)) در منطقه بویانیل، آبی‌های بوشهر

<table>
<thead>
<tr>
<th>ماه</th>
<th>میانگین</th>
<th>آدر</th>
<th>آبان</th>
<th>آذر</th>
<th>بهمن</th>
<th>دی</th>
<th>ژانویه</th>
<th>تعداد کورونات</th>
<th>تعداد کورونات (بدون دفعات)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماه</td>
<td>تعداد کورونات</td>
<td>میانگین</td>
<td>آدر</td>
<td>آبان</td>
<td>آذر</td>
<td>بهمن</td>
<td>دی</td>
<td>ژانویه</td>
<td>تعداد کورونات</td>
</tr>
<tr>
<td>ماه</td>
<td>تعداد کورونات</td>
<td>میانگین</td>
<td>آدر</td>
<td>آبان</td>
<td>آذر</td>
<td>بهمن</td>
<td>دی</td>
<td>ژانویه</td>
<td>تعداد کورونات</td>
</tr>
<tr>
<td>ماه</td>
<td>تعداد کورونات</td>
<td>میانگین</td>
<td>آدر</td>
<td>آبان</td>
<td>آذر</td>
<td>بهمن</td>
<td>دی</td>
<td>ژانویه</td>
<td>تعداد کورونات</td>
</tr>
<tr>
<td>ماه</td>
<td>تعداد کورونات</td>
<td>میانگین</td>
<td>آدر</td>
<td>آبان</td>
<td>آذر</td>
<td>بهمن</td>
<td>دی</td>
<td>ژانویه</td>
<td>تعداد کورونات</td>
</tr>
</tbody>
</table>

نتیجه گرفته شد که با استفاده از یک چخماق رشد شده از ماده ون برای الماس سن حاکم (T_max) با فرمول زیر محاسبه گردیده‌گردید:

\[T_{\text{max}} = t - \frac{1}{k} \ln \left(\frac{L_i}{L} \right) \]
نمودار ۲: نمودار میانگین طولی و انحراف معیار صدف ملالیس در سواحل استان بوشهر (1388-1387) (Solen brevis)

نمودار ۳: نمودار پارامترهای رشد در صدف ملالیس (Solen brevis) در سواحل استان بوشهر (1388-1387)

در مرکز و مری طبیعی ملالیس نیز ۲۶۶ در سال تخمین زده شد. حداکثر سن ملالیس ۴ سال و ۶ ماه محسوب گردید.
رابطه طول و وزن نیز در صدف دوکله‌ای ملالیس محسوب گردید. در این نتایج طول و وزن ۶۰۲ عدد صدف با کولای زن و نر و و توزیع حسائس اندازه‌گیری شد و رابطه تئوری زیر به‌دست آمد (نمودار ۴).

\[W = \frac{L^{3.47}}{456} \]
نمودار ۳: رابطه طول و وزن صدف ملاليس در منطقه بوپاییل، سواحل استان بوشهر (۱۳۸۸-۱۳۸۷)

جدول ۲: دانه‌ای، نوع پاک و درصد بیزان مواد آلی رسوب بر (دی ماه ۱۳۸۸) در مناطق مورد بررسی صدف ملاليس در سواحل بوشهر

<table>
<thead>
<tr>
<th>مواد آلی</th>
<th>درصد عفونت (محل)</th>
<th>نوع رسوب (قطر دایره ها به میکرون)</th>
<th>اعضا (میلی‌متری)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>بدن</td>
<td>شیپهای</td>
<td>سیلیت</td>
</tr>
<tr>
<td></td>
<td>02۹</td>
<td>04۲</td>
<td>03۰</td>
</tr>
<tr>
<td></td>
<td>۰۲۹</td>
<td>۰۲۴</td>
<td>۰۳۰</td>
</tr>
<tr>
<td></td>
<td>۰۲۹</td>
<td>۰۲۴</td>
<td>۰۳۰</td>
</tr>
<tr>
<td></td>
<td>۰۲۹</td>
<td>۰۲۴</td>
<td>۰۳۰</td>
</tr>
</tbody>
</table>

W = 0.69 L
R² = 0.79, P < 0.05
جدول 3: دانه‌بندی نوع پاکت و درصد میزان مواد آلی رسوب بستر (مرداد ماه 1388) مناطق مورد بررسی ملاس در سواحل بوشهر

<table>
<thead>
<tr>
<th>مواد آلی</th>
<th>نوع رسوب (فقط هاهاهای میکرون)</th>
<th>شن</th>
<th>ماسه</th>
<th>رس</th>
<th>سیلت</th>
<th>برخورد</th>
<th>رنگ</th>
<th>دبی (حل)</th>
<th>تاریخ</th>
</tr>
</thead>
<tbody>
<tr>
<td>به روش</td>
<td></td>
<td>22/5</td>
<td>24/5</td>
<td>98/43</td>
<td>94/10</td>
<td>3/28</td>
<td>88/0/15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>شیمیایی</td>
<td></td>
<td>95/2</td>
<td>29/6</td>
<td>89/12</td>
<td>83/0/8</td>
<td>87/6</td>
<td>88/0/5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0/25</td>
<td></td>
<td>79/2</td>
<td>24/6</td>
<td>93/0/8</td>
<td>88/0/1</td>
<td>4/62</td>
<td>88/0/5/15</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0/22</td>
<td></td>
<td>22/6</td>
<td>24/6</td>
<td>87/0/8</td>
<td>88/0/1</td>
<td>6/62</td>
<td>88/0/5/15</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0/26</td>
<td></td>
<td>14/6</td>
<td>24/6</td>
<td>87/0/8</td>
<td>88/0/1</td>
<td>6/62</td>
<td>88/0/5/15</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0/20</td>
<td></td>
<td>12/6</td>
<td>24/6</td>
<td>87/0/8</td>
<td>88/0/1</td>
<td>6/62</td>
<td>88/0/5/15</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0/21</td>
<td></td>
<td>12/6</td>
<td>24/6</td>
<td>87/0/8</td>
<td>88/0/1</td>
<td>6/62</td>
<td>88/0/5/15</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0/23</td>
<td></td>
<td>12/6</td>
<td>24/6</td>
<td>87/0/8</td>
<td>88/0/1</td>
<td>6/62</td>
<td>88/0/5/15</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0/24</td>
<td></td>
<td>12/6</td>
<td>24/6</td>
<td>87/0/8</td>
<td>88/0/1</td>
<td>6/62</td>
<td>88/0/5/15</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

بحث

صرف ملایس عمداً در سواحل دارای پاکت سیلت-رسی و در عمق 5-10 سانتی‌متری بستر قرار دارد. در برخی از مناطق گونه‌های دیگری از ملایس (Solen roseomaculatus) که مربوط به پژوهش ابزار (Solen brevis) و در برخی از منطقه‌ها گونه مورد بررسی در بیشتر سواحل ماهشهر گردیده ولی ممکن است در این سواحل خور بوتیلاس بیش از سواحل دیگر بود.

تموره‌برداری جهت محاسبه پارامترهای رشد در یک منطقه خاص که فاوتان ذخیره و به تبع آن تیم‌های کافی جهت محاسبات دقیقی، بیش از سایر مناطق بود. انجام گردید. در این خصوص این فرضیه‌هایی وجود داشت که بدلیل ساکن بودن آن‌زی و فاصله‌های جغرافیایی اختلاف تفاوت رشد بدلیل وجود مجموعه‌های مختلف در یک گونا و وجود دارد (Sparre & Venema, 1992).

در سواحل ایرانی خلیج فارس و دریای عمان شناسایی گردیده که گونه متعلق به جنس Solen می‌باشد. در سواحل عربستان سعودی نیز Solen brevis می‌باشد. گونه مربوط به پژوهش ابزار (Sparre & Venema, 1992) در Solen brevis اصل ملایس می‌باشد (Hassan, 1996).
Solen brevis
(Veeravaitaya, 2007)
(Ensis directus)
(Solenidae)
(Siliquapatula patula Weymoth & McMillin, 1931)

Mekanik asta bacht naaig ayeh bie yoomoo in mahsahiyi karami-rihiai gaddi.

(130)
گونه‌ای دیگر نیز درآمدی را به‌دست می‌دهد که در این ناحیه نیز گونه‌ای دیگری می‌تواند در حال ایجاد گروه‌ها و گونه‌ها باشد. این گونه‌ها در تغییرات مختلف جهان دیده می‌شوند. سی‌گونه‌ای از این خانواده ۵ تا ۱۹ سال تخمین زده شده است. این موضوع نشان‌دهنده دانه‌ای برای تجربه نوشته‌های توسعه‌دهنده می‌باشد که می‌تواند با عوامل مختلفی رابطه داشته باشد. جنبه‌های زمان تجربی‌های این آزمایشگاه گونه‌ها دیگر در فضای گرم سال‌های گذشته و تغییرات در زمان، به‌طور چشمگیری در زمان دیفیکت تیتراز به محکم‌ترین گونه‌ها و نشان‌دهنده از این نوع افزایش در فاصله پوشش دارد. در این دو ماه نمونه‌برداری در منطقه بوتانیک علایق زیادی داشته و بسیاری از گونه‌ها در منطقه می‌توانند از این همکاری است و به همین دلیل تا حدی نمایانگری از آن می‌باشند. در سواحل بیشتر بررسی آلودگی‌های نقش‌دهنده بدلیل سواحل نسبتاً محسوب می‌شود که فعالیت‌های بحرانی و همراه نمونه‌برداری‌های خلل و تغییرات در مناطق مختلف در این منطقه می‌تواند به این تغییرات منجر شود که انجام نمونه‌برداری در منطقه بوتانیک را بیش از حد مازاد نشان داده که این میزان در منطقه‌های صدف بیش از شرایط مورد بررسی محسوب می‌شود. به شکل قریب در این منطقه میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان صدف در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد میزان آلودگی مرکزی در منطقه می‌تواند کم‌بوده و در منطقه میزنه که به‌طور کلی در حد می‌
Solen roseomaculatus (Pilsbry, 1901) Saccostrea cucullata

Hasan A.K. ن

ترتبیه اهمیت از عوامل اصلی کاهش و محدودیت پراکنش صدف ملاپیس در سواحل استان بوشهر می‌باشد.

تشکر و قدردانی

این تحقیق با حمایت مالی اداره کل شیلات استان بوشهر به اجرا درآمده است و بدون موسومه مسينکه تحقیقات شیلات ایران و معاونین تحقیقاتی و برنامه‌ریزی و همچنین همکاران بخش اkolولوژی موسسه که در تصویب و اجرای پروژه از این مجاهده تشکر می‌کنیم.

Solen roseomaculatus

Solen roseomaculatus

Solen roseomaculatus

Solen roseomaculatus

Solen roseomaculatus

Pauly D. and Munro J.L., 1984. Once more on the growth comparison in fish and invertebrates. Fishbyte, 2:21P.

FAO Press. Rome, Italy. 376P.

Stock assessment of the razor clam (*Solen brevis* Gray, 1832),
in Bushehr province coasts, Persian Gulf

Niamaimandi N.
nmaimandi@yahoo.com

Iran Shrimp Research Center, P.O.Box 1374, Bushehr, Iran

Received: March 2010 Accepted: April 2011

Keywords: Biomass, Shell, *Solen brevis*, Bushehr, Persian Gulf

Abstract

Stock assessment of edible bivalve, *Solen brevis* was carried out in Bushehr shoreline areas (50° 21′E - 29° 41′N to 52° 41′E – 27° 17′N) throughout the period of September 2008 till September 2009. The objectives of this study were identifying the distribution, and estimating the abundance, growth parameters and natural mortality of the bivalve. Solen specimens were collected monthly in Bupatil area and from three other areas at low tide. On each transect one or two quadrats (0.25m²) were placed at random. To estimate the stock abundance, the mean number of shells in each quadrat was regarded as an estimate of stock mean. Length frequency was used to estimate growth and natural mortality parameters. Data analysis was conducted with the most recent version of LFDA statistical software.

The main distribution areas for live edible bivalve, *Solen brevis*, were located at Bupatil, Gasir, Kaloo, Piazi and Bordekhoon. The mean (±SD) abundance in Bupatil was estimated at 3.25±1.1 shells per quadrat with a maximum peak in October and minimum in August. The estimated growth parameters of this species was, $K = 0.7 \text{ Year}^{-1}$, $L_\infty = 120 \text{ mm}$ and $t_0 = -0.35$. Natural mortality rate (M) was estimated at 0.26 and the calculated maximum age (T_{max}) was 54 months.