ارزیابی ذخیره صدف ملامیس
در سواحل استان بوشهر، خلیج فارس

نصير نیامیده
nmaimandi@yahoo.com

پژوهشکده میکرو کشور، بوشهر صندوخ پستی: ۱۷۴۲
تاریخ دریافت: اسفند ۱۳۸۸
تاریخ پذیرش: فروردین ۱۳۹۰

چکیده
ارزیابی ذخیره صدف دوکفاه ملامیس (Solen brevis Gray, 1832) در خط ساحلی بوشهر (موقتیت جغرافیایی
(Solen brevis Gray, 1832) در یک دوره هرکال یکساله از ماه‌های به آمری ابزار (Solen brevis Gray, 1832)
گذاشته شد. نتایج نشان داد که تعداد ذخیره گردیده در فصول مختلف سال با توزیع مکانیکی در
برندهای ملامیس در منطقه بوشهر. در این بیان این گونه را با انجام آزمایشات نمود. سالری
مشابه در سواحل بوشهر در مناطق مختلف ذخیره گردیده. نتایج نشان داد که تعداد ذخیره
گردیده در فصول مختلف سال با توزیع مکانیکی در
منطقه بوشهر. در این بیان این گونه را با انجام آزمایشات نمود. سالری
مشابه در سواحل بوشهر در مناطق مختلف ذخیره
گردیده. نتایج نشان داد که تعداد ذخیره
گردیده در فصول مختلف سال با توزیع مکانیکی در
منطقه بوشهر. در این بیان این گونه را با انجام آزمایشات نمود. سالری
مشابه در سواحل بوشهر در مناطق مختلف ذخیره
گردیده. نتایج نشان داد که تعداد ذخیره
گردیده در فصول مختلف سال با توزیع مکانیکی در
منطقه بوشهر. در این بیان این گونه را با انجام آزمایشات نمود. سالری
مشابه در سواحل بوشهر در مناطق مختلف ذخیره
گردیده. نتایج نشان داد که تعداد ذخیره
گردیده در فصول مختلف سال با توزیع مکانیکی در
منطقه بوشهر. در این بیان این گونه را با انجام آزمایشات نمود. سالری
مشابه در سواحل بوشهر در مناطق مختلف ذخیره
گردیده. نتایج نشان داد که تعداد ذخیره
گردیده در فصول مختلف سال با توزیع مکانیکی در
منطقه بوشهر. در این بیان این گونه را با انجام آزمایشات نمود. سالری
مشابه در سواحل بوشهر در مناطق مختلف ذخیره
گردیده. نتایج نشان داد که تعداد ذخیره
گردیده در فصول مختلف سال با توزیع مکانیکی در
منطقه بوشهر. در این بیان این گونه را با انجام آزمایشات نمود. سالری
مشابه در سواحل بوشهر در مناطق مختلف ذخیره
گردیده. نتایج نشان داد که تعداد ذخیره
گردیده در فصول مختلف سال با توزیع مکانیکی در
منطقه بوشهر. در این بیان این گونه را با انجام آزمایشات نمود. سالری
مشابه در سواحل بوشهر در مناطق مختلف ذخیره
گردیده. نتایج نشان داد که تعداد ذخیره
گردیده در فصول مختلف سال با توزیع مکانیکی در
منطقه بوشهر. در این بیان این گونه را با انجام آزمایشات نمود. سالری
مشابه در سواحل بوشهر در مناطق مختلف ذخیره
گردیده. نتایج نشان داد که تعداد ذخیره
گردیده در فصول مختلف سال با توزیع مکانیکی در
منطقه بوشهر. در این بیان این گونه را با انجام آزمایشات نمود. سالری
مشابه در سواحل بوشهر در مناطق مختلف ذخیره
گردیده. نتایج نشان داد که تعداد ذخیره

لینک کلیدی: زبونده، صدف، Solen brevis

مقدمه
درخیال صدفها تحصیلات متعددی در ایران صورت
گرفته است. اولین تحصیل در سال 1865 توسط یک اتاقی با
نام Arturo Issel تهیه گردید که در سواحل بوشهر ۱۷ گونه
صدف را تشخیص داد (Bosch et al., 1995) در سال 1877
از موزه خورشیدشیبان یک گونه صدف را در سواحل
خلیج فارس تشخیص دادند. در سال 1969 این
مدوره با اولین بار نام کارگذاری علمی شدند. در سال 1970

123
تحقیقات انجام گرفته در خورشود صدف‌های خلیج فارس به تحقیقی که توسط روتاسیان (1977) روی صدف خلیج فارس انجام گرفته ایست. اشاره نمود.

حسین زاده صحافی (1383) نیز در خورشود زیست‌شناسی توبل (Solen roseomaculatus) مثل نمونه‌های است. مالاییس (نام محلی این گونه می‌باشد که در مورد صدف‌های مایریوگلاس جوانی) (Jackknife clam) (razor clam)

 costing گاردنر و سایر صدف‌های مایریوگلاس مانند (Saccostrea cucullata) (Solen roseomaculatus) (jackknife clam) (razor clam)

 تحقیق های بین‌المللی انجام گرفته است. این صدف در توکیو پرورش می‌گردد به جمله‌ای مولفه‌های جدید. ریزرسی جنیی داده می‌شد. مصرف دیگر این صدف در سرواح (Solen brevis) می‌باشد. سید مالاییس با فرآیندی ایجاد نوک تیز به می‌گردد. مدل این سرواحا حالت ارتباط داشته و با مدل زیست سیستم گونه‌ها مانند خرچنگ‌های متخی فنریت است. بیشتر تحقیقاتی که در مورد صدف‌ها انجام شده است سرواحا موله‌گزار بوده و سایر مناطق خلیج فارس از جمله جهانی می‌باشد. این صدف در توکیو پرورش می‌گردد به جمله صدف‌های مایریوگلاس مانند (Saccostrea cucullata) (Solen roseomaculatus) (jackknife clam) (razor clam)

 تحقیق های بین‌المللی انجام گرفته است. این صدف در توکیو پرورش می‌گردد به جمله‌ای مولفه‌های جدید. ریزرسی جنیی داده می‌شد. مصرف دیگر این صدف در سرواحا حالت ارتباط داشته و با مدل زیست سیستم گونه‌ها مانند خرچنگ‌های متخی فنریت است. بیشتر تحقیقاتی که در مورد صدف‌ها انجام شده است سرواحا موله‌گزار بوده و سایر مناطق خلیج فارس از جمله جهانی می‌باشد. این صدف در توکیو پرورش می‌گردد به جمله صدف‌های مایریوگلاس مانند (Saccostrea cucullata) (Solen roseomaculatus) (jackknife clam) (razor clam)

 بیشتر تحقیقاتی که در مورد صدف‌ها انجام شده است سرواحا موله‌گزار بوده و سایر مناطق خلیج فارس از جمله جهانی می‌باشد. این صدف در توکیو پرورش می‌گردد به جمله صدف‌های مایریوگلاس مانند (Saccostrea cucullata) (Solen roseomaculatus) (jackknife clam) (razor clam)

 بیشتر تحقیقاتی که در مورد صدف‌ها انجام شده است سرواحا موله‌گزار بوده و سایر مناطق خلیج فارس از جمله جهانی می‌باشد. این صدف در توکیو پرورش می‌گردد به جمله صدف‌های مایریوگلاس مانند (Saccostrea cucullata) (Solen roseomaculatus) (jackknife clam) (razor clam)

 بیشتر تحقیقاتی که در مورد صدف‌ها انجام شده است سرواحا موله‌گزار بوده و سایر مناطق خلیج فارس از جمله جهانی می‌باشد. این صدف در توکیو پرورش می‌گردد به جمله صدف‌های مایریوگلاس مانند (Saccostrea cucullata) (Solen roseomaculatus) (jackknife clam) (razor clam)

 بیشتر تحقیقاتی که در مورد صدف‌ها انجام شده است سرواحا موله‌گزار بوده و سایر مناطق خلیج فارس از جمله جهانی می‌باشد. این صدف در توکیو پرورش می‌گردد به جمله صدف‌های مایریوگلاس مانند (Saccostrea cucullata) (Solen roseomaculatus) (jackknife clam) (razor clam)

 بیشتر تحقیقاتی که در مورد صدف‌ها انجام شده است سرواحا موله‌گزار بوده و سایر مناطق خلیج فارس از جمله جهانی می‌باشد. این صدف در توکیو پرورش می‌گردد به جمله صدف‌های مایریوگلاس مانند (Saccostrea cucullata) (Solen roseomaculatus) (jackknife clam) (razor clam)

 بیشتر تحقیقاتی که در مورد صدف‌ها انجام شده است سرواحا موله‌گزار بوده و سایر مناطق خلیج فارس از جمله جهانی می‌باشد. این صدف در توکیو پرورش می‌گردد به جمله صدف‌های مایریوگلاس مانند (Saccostrea cucullata) (Solen roseomaculatus) (jackknife clam) (razor clam)

 بیشتر تحقیقاتی که در مورد صدف‌ها انجام شده است سرواحا موله‌گزار بوده و سایر مناطق خلیج فارس از جمله جهانی می‌باشد. این صدف در توکیو پرورش می‌گردد به جمله صدف‌های مایریوگلاس مانند (Saccostrea cucullata) (Solen roseomaculatus) (jackknife clam) (razor clam)

 بیشتر تحقیقاتی که در مورد صدف‌ها انجام شده است سرواحا موله‌گزار بوده و سایر مناطق خلیج فارس از جمله جهانی می‌باشد. این صدف در توکیو پرورش می‌گردد به جمله صدف‌های مایریوگلاس مانند (Saccostrea cucullata) (Solen roseomaculatus) (jackknife clam) (razor clam)
میانگین نموداری شمارش شده در کوارداتها محاسبه شد و این میانگین بعنوان پایه‌گذاری تعیین میانگین جمعیت‌ها در منطقه بکار گرفته شد. تخمین کل ذخیره (N) در منطقه سوردیرسی، از کل میانگین‌های محاسبه شده در مساحتی که کوارداتها بکار برده شدهاند صورت گرفت. در این خصوصی A کل مساحت منطقه پراکنش و A مساحت کواردات می‌باشد. با فرمول زیر میزان تعداد صدف در هر منطقه (N) محاسبه گردید.

\[N = \frac{(A/a) \times \sum x / n}{W = aL^b} \]

در فرمول فوق W وزن (گرم)، L طول (سانتی‌متر) و a و b ضرایب ثابت می‌باشند.

پراکنش‌های طولی نموداری جمع‌آوری شده در هر ماه جهت رسم نمودار رشد سالانه و محاسبه پارامترهای رشد (یا پارامترهای رشد (K, L, b) با استفاده از مدل‌های برترالانسی (Sparr & Venema, 1992) شرح زیر انجام گرفت.

\[L_t = L_\infty \left(1 - e^{-K(t-t_0)}\right) \]

در معادله فوق L، L∞ طول آبی در زمان t و ضریب رشد که طول مجانب و بسن در طول صفر می‌باشد. کلیه محاسبات فوق در برنامه کامپیوتری LFDA انجام گرفته است. انجام گرفته است. انجام گرفته است.

\[\bar{N} = \ln K + 2 \ln L_\infty \]

به شکل تصادفی از کل جمعیت صدف‌ها در منطقه نمونه‌برداری و محاسبه گردید. از فرمول زیر جهت تعیین رابطه طول و وزن استفاده گردید.
با استفاده از پارامترهای رشد به دست آمده از معادله ترمینال میزان سن حداکثر (T_max) بر اساس زیر می‌باشد.

\[T_{\text{max}} = t_o - \left(\frac{1}{k} \ln \left(\frac{1}{L_i/L} \right) \right) \]

(King, 2006)

\[T_{\text{max}} = t_o - \left(\frac{3}{K} \right) \]

(Taylor, 1960)

\[M = \frac{2.996}{0.95} L_\infty \]

نتایج

این گونه در ۴ منطقه بویانیل خاورپیازی، کالو و پرچین مشاهده گردید. فراوانی دیکره سالانه در منطقه بویانیل بیشتر از سه منطقه دیگر بود و نسبت داده‌های حضوپراکنش آن در ۲ منطقه دیگر محدود بود. در منطقه بویانیل تعداد سالانه سالانه در منطقه سالانه (آب و مهار)، زیر سالانه (آب و مهار)، زیر سالانه (آب و مهار) و زیر سالانه (آب و مهار) این گونه در منطقه بویانیل، به بیشترین میزان میزان صدف زده شد.

جدول ۱: میانگین تعداد صدف ملالیس زنه در منطقه بویانیل، آبی‌های بوشهر (۱۳۸۸-۱۳۸۹)

<table>
<thead>
<tr>
<th>ماه</th>
<th>تعداد کودکن</th>
<th>تعداد ماده</th>
<th>تعداد ماده</th>
<th>تعداد ماده</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماه</td>
<td>کل</td>
<td>دیده</td>
<td>همراه</td>
<td>میراد</td>
</tr>
<tr>
<td>آذر</td>
<td>۳۰</td>
<td>۴</td>
<td>۲۷</td>
<td>۱۴</td>
</tr>
<tr>
<td>دی</td>
<td>۳۴</td>
<td>۴</td>
<td>۳۰</td>
<td>۱۸</td>
</tr>
<tr>
<td>بهمن</td>
<td>۴۰</td>
<td>۱۵</td>
<td>۲۵</td>
<td>۱۵</td>
</tr>
<tr>
<td>دیزد</td>
<td>۴۲</td>
<td>۱۵</td>
<td>۲۷</td>
<td>۱۵</td>
</tr>
<tr>
<td>تعداد کل</td>
<td>۱۳۸۷</td>
<td>۶۹</td>
<td>۶۲</td>
<td>۴۶</td>
</tr>
</tbody>
</table>

توسط زده (تعداد کائولوتروپ میمی) ۱۳۸۹

کودکن (تعداد کائولوتروپ میمی) ۱۳۸۹

نمودار ۱: فراوانی تعداد طولی صدف ملالیس (Solen brevis) در منطقه بویانیل، استان بوشهر (۱۳۸۸-۱۳۸۹)
نمودار ۵: نمودار میانگین طول و انحراف معیار صدف ملاپس (Solen brevis) در سواحل استان بوشهر (۱۳۸۸-۹۷)

نمودار ۶: نمودار پارامترهای زرد در صدف ملاپس (Solen brevis) در سواحل استان بوشهر (۱۳۸۸-۹۷)

در سواحل استان بوشهر (Solen brevis)

امام. شرکتی مواردی از اندازه‌گیری شده در فصل زمستان در کالو (۹/۲۲ درصد) و بیشترین میزان در بوپاتیل (۶/۸۰ درصد) دیده شد. نتایج نشان دهنده در حداکثر نسبت وزن نسبی بین صدف یافته‌ای ملاپس محاسبه گردید. در این خصوص طول و وزن ۴ عدد صدف با کولپس و ترازوی حساس اندازه‌گیری شد و رابطه آنها درصد زیر بسته اند. (نمودار ۴)

$$ W = 0.69 e^{0.01 L} $$

نتایج داتای جهی در مناطق مورد بررسی در زمستان نشان داد که کمترین میزان شن (۱/۲۲ درصد و ماسه (۶/۸۰ درصد) در خور بوپاتیل، سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰ درصد) در با کولپس. سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰ درصد) در زیر بسته اند. (نمودار ۴)

کالو (۹/۲۲ درصد) و بوپاتیل (۶/۸۰) در خور بوپاتیل، سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در با کولپس. سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در زیر بسته اند. (نمودار ۴)

کالو (۹/۲۲ درصد) و بوپاتیل (۶/۸۰) در خور بوپاتیل، سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در با کولپس. سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در زیر بسته اند. (نمودار ۴)

کالو (۹/۲۲ درصد) و بوپاتیل (۶/۸۰) در خور بوپاتیل، سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در با کولپس. سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در زیر بسته اند. (نمودار ۴)

کالو (۹/۲۲ درصد) و بوپاتیل (۶/۸۰) در خور بوپاتیل، سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در با کولپس. سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در زیر بسته اند. (نمودار ۴)

کالو (۹/۲۲ درصد) و بوپاتیل (۶/۸۰) در خور بوپاتیل، سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در با کولپس. سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در زیر بسته اند. (نمودار ۴)

کالو (۹/۲۲ درصد) و بوپاتیل (۶/۸۰) در خور بوپاتیل، سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در با کولپس. سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در زیر بسته اند. (نمودار ۴)

کالو (۹/۲۲ درصد) و بوپاتیل (۶/۸۰) در خور بوپاتیل، سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در با کولپس. سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در زیر بسته اند. (نمودار ۴)

کالو (۹/۲۲ درصد) و بوپاتیل (۶/۸۰) در خور بوپاتیل، سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در با کولپس. سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در زیر بسته اند. (نمودار ۴)

کالو (۹/۲۲ درصد) و بوپاتیل (۶/۸۰) در خور بوپاتیل، سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در با کولپس. سیستم (۱/۲۲ درصد) در خور بوپاتیل و رس (۶/۸۰) در زیر بسته اند. (نمودار ۴)
نمودار ۴. رابطه طول و وزن صدف ملاکس در منطقه بویانیل، سواحل استان بوشهر (۱۳۸۸-۹۳)

جدول ۲. دانه‌بندی نوع پاتون و درصد بیماری‌های آمیا آی سروب بستر (در ماه ۱۳۸۸) در منطقه مورد بررسی صدف ملاکس در سواحل بوشهر

<table>
<thead>
<tr>
<th>مواد آلی</th>
<th>نوع رسوب (قطر دانه‌ها به میکرون)</th>
<th>مشاهده</th>
<th>رضایت</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>یوه نیا</td>
<td>رس گل</td>
<td>شن و ماسه</td>
<td>۲/۰۰۰و</td>
<td>>۲/۰۰۰</td>
</tr>
<tr>
<td>یوه نیا</td>
<td>رس</td>
<td>رس گل</td>
<td>۲/۰۰۰و</td>
<td>>۲/۰۰۰</td>
</tr>
<tr>
<td>یوه نیا</td>
<td>رس گل</td>
<td>رس و ماسه</td>
<td>۲/۰۰۰و</td>
<td>>۲/۰۰۰</td>
</tr>
<tr>
<td>یوه نیا</td>
<td>رس و ماسه</td>
<td>رس و ماسه</td>
<td>۲/۰۰۰و</td>
<td>>۲/۰۰۰</td>
</tr>
</tbody>
</table>
جدول 3: دانه‌بندی نوع بافت و درصد میزان مواد آلی رسوب بستر (مردماه ماه 1389) مناطق مورد بررسی ملایس در سواحل بوشهر

<table>
<thead>
<tr>
<th>مواد آلی به روش شیمیایی</th>
<th>نوع رسوب (فطر دانه‌ها به میکرون)</th>
<th>رنگ</th>
<th>انتکا (تاریخ)</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>سولن سپ. (Veeravaitaya, 2007)</td>
<td>سولن سپ. (Veeravaitaya, 2007)</td>
<td>سولن سپ. (Veeravaitaya, 2007)</td>
<td>برخوار</td>
<td>88/05/15</td>
</tr>
<tr>
<td>سولن بیرگن (Sparre & Venema, 1992)</td>
<td>سولن بیرگن (Sparre & Venema, 1992)</td>
<td>سولن بیرگن (Sparre & Venema, 1992)</td>
<td>خور بوپایل</td>
<td>88/05/15</td>
</tr>
</tbody>
</table>

بحث

صدف ملایس عمدهاً در سواحل دارای بافت سیلنت-رسی و در عمق 10-5 سانتی‌متری بستر قرار دارند. در بخش از منابع. گونه‌های دیگری از ملایس (Solen spp.) در عمق 13-10 سانتی‌متری به پیشنهاد Veeravaitaya, 2007) در گونه Solen brevis و جنس نر و ماده در یک صفحه، قرار دارد. (Protandric hermaphrodite) و صفحه ابستر و پیشنهاد به ماده تیدیل می‌شوید. در مطالعات فیزیکی و گونه متعلق به جنس Solen در سواحل ایرانی خلیج فارس و دریای عمان شناسایی گردیده که گونه متعلق به دانه‌بندی حاضر یکی از آنها Solen brevis. گونه پاپایی از گونه‌های ملایس که گونه Abubakr، 2004) نیز از جمله آنها می‌باشد. شناسایی گردیده است (129)
میکرواست بیان نتایج ایپی پاکوس در محاسبه‌ی پرایمرهای رشد

(\(K, L\)) در مدیری که بوسیله‌ی قوانین پایداری صدف مالایسی در سواحل استان بوشهر، خلیج فارس

ارزیابی دخایی صدف مالایسی در سواحل استان بوشهر، خلیج فارس

نیایمی‌پزشک

همچنین رشد وزنی (8-9 ماه‌گی 2007) (Veeravaitaya).

Solen brevis

(VEERAVAITAYA, 2007)

(Ensis directus)

(Solenidae)

(Siliquapatul patula)

(Weymooth & McMillin, 1931) میکرواست بیان نتایج ایپی پاکوس در محاسبه‌ی پرایمرهای رشد

(\(K, L\)) در مدیری که بوسیله‌ی قوانین پایداری صدف مالایسی در سواحل استان بوشهر، خلیج فارس

ارزیابی دخایی صدف مالایسی در سواحل استان بوشهر، خلیج فارس

نیایمی‌پزشک

همچنین رشد وزنی (8-9 ماه‌گی 2007) (Veeravaitaya).

Solen brevis

(VEERAVAITAYA, 2007)

(Ensis directus)

(Solenidae)

(Siliquapatul patula)

(Weymooth & McMillin, 1931)
گونه‌ها اشاره شده است که عبارتند از: توسعه درختان حر جهت تکثیر و پرورش در مناطق زیست صدف، صید و پی‌پروری دریاپیویه‌ها، آب‌دانه‌های شیشه و آب‌دانه‌های صنایع (Veeravaitaya, 2007)

در سواحل بیشه‌دارتری به این صدف بخصوص در هنگام جزر کامل دریا برای صیدان بدون آنتی‌پاس که از اینجا قابل تعداد زیادی از مورد سواحل بصورت آسان‌تر به صید قلاب می‌پردازند. کاهش صدف در برخی از سواحل می‌تواند بدلیل صد برویه آن صورت گرفته باشد. در سواحل مناطق مورد بررسی منطقه پونتالیس از جزیره جنوبی مدیترانه و سواحل دیگر به دلیل خ ذخیری این مرکز از افراد مک‌کاندلیست است و به همین دلیل تا حدی خاورانی است. صورت می‌پردازند. در سواحل مورد بررسی آب‌دانه‌های نفتی به شکل قیرب در این مناطق دیده می‌شود که مقداری از رستک سواحل به همراه نمونه‌های صدف چهارت زنده به آزمایشگاه ذخیره خرید فرآیند منطقه‌بندی می‌گردد. نتایج آزمایش‌های انجام گرفته میزان آب‌دانه‌های با دلیل مصرف منطقه بیانی و بیش از حد میزان داده که این آب‌دانه در نمونه‌های صدف بیش از سواحل محل زنده آنها می‌باشد (مخصوصاً تجهیزات). با توجه به نتایج این تحقیق می‌توان آب‌دانه‌های نفتی را از عوامل محدودکننده پراکنش و کاهش صدف‌ها در منطقه مورد بررسی محاسبه نمود. محققان با توجه به شرایط قربانی، سه بخش آب‌دانه‌های ساحلی در منطقه مورد بررسی می‌توان به این نتیجه‌گیری دست یافت که عملی اصلی کاهش ذخایر و پراکنش بودند. در منطقه، پیشنهادی و پیش‌باز نسبت به منطقه پونتالیس از پراکنش یک ایزی می‌باشد. عامل دیگری که در خور پیاز مانده به گرده‌اندازی از بین بردن محل زیست آنی، جهت تکثیر و پروپش می‌باشد. در منطقه خاک‌دارپس و ناحیه حوضه‌های میکرو و انواعانت‌گل و لای حرف‌شده در محل زیست صدف باعث از بین رفتن کامل جمعیت صدف ممکن است. این منطقه شده که در بنه این اشاره به عملکرد پراکنش آب‌دانه‌های نفتی صید برویه و اثرات توسعه پورورش می‌گویند

۱۸ میلیون در ۱۸ سالانتی‌متری گرمی شده است. (Nickerson, 1975) با توجه به نتایج بدست آمده در تحقیق حاضر مشابه‌هایی در خصوصیات آب‌دانه‌های گونه‌های دیگر در منطقه مختلف جهان دیده می‌شود. سین گونه‌ای از این غار ۲۹ سال تحقیم زده شده است. این موضوع نشان دهنده دانسته و سیستم سنی در این دهه‌هایی منطقه‌بندی که می‌تواند به عنوان مختلط رابطه داشته باشد. جناییه این آب‌دانه نفیهای دیگر در فصول گرم سال صورت گرفته. می‌توان اولین برای روزان نمونه‌های مالاییس در سواحل بیشه‌زار نمود که برای تعبیه روزان دیگری تعبیه‌بندی می‌باشد. تحقیقات پیشرفته است.

جنگی بستر در هر دو گرم و سرد سال در محل زیست این گونه پیش می‌گردد. بمرز منطقه آنی در منطقه پراکنش مالاییس بسیار کم است. این می‌توان از وضعیت بستر کف در منطقه تجمع صدف مالاییس نتیجه‌گیری نمود. جنس قدیمی یک تکثیر است. گونه مزون نمایندگان در منطقه بیانی و در این میان‌رودارهای مالاییس که بستر بخواب تراکنش می‌باشد در دو نمونه داده شد. تفاوت میزان ذخیره خنثی زده شده به دست از دو راه می‌باشد (در دو میزان ۲۴ مالاییس در هر کوادرات و در مرداد ماه ۱۵۰ مالاییس در هر کوادرات) این نفاهت در میزان ذخیره را می‌توان در وضعیت یک بستر می‌باشد. در شناسایی این گونه در سواحل عربستان نشان دیده شده است. تحقیقات ویژه صفه در سواحل خلیج فارس می‌باشد. مطالعات زنبیلی این گونه در منطقه این گونه در سواحل خلیج فارس بررسی شده است. در سواحل استان هرمزگان این گونه شناسایی گردیده (حمززاده و همکاران, ۱۳۷۳) ولی با توجه به نتایج تحقیقات روی گونه‌های دیگر (Solen roseomaculatus) منطقه یکی می‌باشد. در نتایج مطالعه‌های که در مورد گونه‌های مالاییس در سواحل تالاب انجام گرفته و به چهار عامل برای این بیشتر ذخایر این
نیامندگی

ابزاری در نخیا صدف ملالیس در سواحل استان بوشهر، خلیج فارس

نشر نیامندگی

بهترین اهمیت از عوامل اصلی کاهش و محدودیت پراکنش صدف ملالیس در سواحل استان بوشهر می‌باشد.

تشکر و قدردانی

این تحقیق با حمایت ملی اداره کل شیلات استان بوشهر به اجرا درآمده است و بدون مختصه از راهنمای موسسه تحقیقات شیلات ایران و معاونین تحقیقاتی و برنامه‌ریزی و همچنین همکاران بخش اکولوژی موسسه که در تصویب و اجرای پروژه ایمپلنت را باید نمودند، تشکر و قدردانی می‌نماییم.

همچنین، از آقایان فرج انصاری، رسول غلام نظام و رسول حاجیزاده که از ابتدا گسته‌های عملیاتی پروژه شرکت داشته و تا پایان مبهمی پروژه را با پرداخت سپاسگزاری می‌گردند. از آقایان مهدی ایزدی‌نژاد و مهدی سهیدپیامی که در تجزیه و تحلیل اطلالات رسوبات جزیره و آتشفشانی آماری و آقایان مهندس تاکی و اسماعلی که در کارهای آزمایشگاهی همکاری داشتند، و سایر همکارانی که بهبود در اجرای این تحقیق باری رساندند، تشکر و قدردانی می‌گردد.

منابع

تجزیه پور، م.، 1373. بررسی تکمیلی سیستم‌های بهره‌برداری از ماهی تخم‌گذاری در سواحل استان بوشهر. تیره، 3: 243-253.
حسینزاده صخاچی، م.؛ دفکوئی، ب. و رامشی، ح.، 1377. اطلس تمواری خلیج فارس. موسسه تحقیقات شیلات ایران. 246 صفحه.
حسینزاده صخاچی، م.، 1380. زشت تیزیونی تولید مثل صدف در سواحل شمیرانات خلیج فارس. مجله پژوهش و زیست‌شناسی، شماره ۲۲. ۴۰ صفحه.
روستاپرانی، ب.، 1377. جمع‌آوری و پرورش مقدماتی صدف‌بندی Saccostrea cucullata در ناحیه بندلکه، استان هرمزگان. تحقیقات شیلاتی. تمواری خلیج فارس. ۵۷ صفحه.

کتاب

Pauly D. and Munro J.L., 1984. Once more on the growth comparison in fish and invertebrates. Fishbyte, 2:21P.

Stock assessment of the razor clam (*Solen brevis* Gray, 1832),
in Bushehr province coasts, Persian Gulf

Niamaimandi N.
nmaimandi@yahoo.com
Iran Shrimp Research Center, P.O.Box 1374, Bushehr, Iran
Received: March 2010 Accepted: April 2011

Keywords: Biomass, Shell, *Solen brevis*, Bushehr, Persian Gulf

Abstract

Stock assessment of edible bivalve, *Solen brevis* was carried out in Bushehr shoreline areas (50° 21′ E - 29° 41′ N to 52° 41′ E – 27° 17′ N) throughout the period of September 2008 till September 2009. The objectives of this study were identifying the distribution, and estimating the abundance, growth parameters and natural mortality of the bivalve. Solen specimens were collected monthly in Bupatil area and from three other areas at low tide. On each transect one or two quadrats (0.25 m²) were placed at random. To estimate the stock abundance, the mean number of shells in each quadrat was regarded as an estimate of stock mean. Length frequency was used to estimate growth and natural mortality parameters. Data analysis was conducted with the most recent version of LFDA statistical software.

The main distribution areas for live edible bivalve, *Solen brevis*, were located at Bupatil, Gasir, Kaloo, Piazi and Bordekhoon. The mean (±SD) abundance in Bupatil was estimated at 3.25±1.1 shells per quadrat with a maximum peak in October and minimum in August. The estimated growth parameters of this species was, $K = 0.7\ \text{Year}^{-1}$, $L_\infty = 120 \text{ mm}$ and $t_0 = -0.35$. Natural mortality rate (M) was estimated at 0.26 and the calculated maximum age (T_{max}) was 54 months.