مطالعه عوامل خطر ساز در کارگاه‌های تکثیر و پرورش قزل آلا بر پایه پارامترهای محیطی آب در رودخانه هراز

حسن نصرالله زاده ساروی، مريم قیامی، رضا صفری، آبگیر، محمدعلی نصرالله، تبار

ولی الله محمدزاده، عسگر منعمی

*hnsaravi@gmail.com

چکیده

این مطالعه به تغییرات پارامترهای محیطی کیفیت آب رودخانه هراز به عنوان عوامل خطر ساز مزارع قزل آلا پدیده است. در این مطالعه نشان داده شد که بر اساس اندازه‌گیری‌های صفری، ظرفیت نیتروژن، PH، کلین، کلر، ترکیبات کارخانه‌ای و شیمیایی، در موارد مختلف افزایش یافته است. از این عوامل، کلین، PH و کلرنیتر با اندازه‌گیری‌های مختلف به شکل خاصتری به تغییرات پارامترهای محیطی آب در رودخانه هراز پرداخته است.

واژگان کلیدی: پارامترهای محیطی، آب، عوامل خطر ساز، کارگاه قزل آلا، رودخانه هراز

*نویسنده مسئول
مقده

بررسی رودخانه‌ها در سایر کشورها سابقه طولانی دارد، اما در ایران جوان بوده و تقریباً از سه دهه قبل در مراکز تحقیقاتی و دانشگاه‌های کشور انجام شده‌است. برای مثال، بررسی رودخانه زهربان در استان تهران، از کیفیت آب و پودر در هفته نویس ایزی پرور (1385) محققین شاخه کیفیت آب (WQI) در استان تهران کاوشگر طالبان، در پژوهش صنعتی، بایا بار و پروب ماهی آزادگان اهواز به منظور فعالیت‌های آبی‌پوستی (کیان اریانی و همکاران 1392) و اثرات مزارع پروب قزل آب یا خصوصیات فیزیک‌شیمی‌یای رودخانه‌ها و تعیین ظرفیت رودخانه بر ایجاد مجدد (واردی، خواهی بیونیک، و فیزیک‌شیمی‌یای رودخانه‌ها در استان چهارمحال و بختیاری در مرز بین ماهی‌های سال 1393) (پارک و همکاران، 1395، تغییرات آسیب‌پذیری اکوسیستمی می‌توان به عوامل شاخص خرسنگی مناسب جهان که در کیفیت آب (WQI) و همکاران، 1396) در اثر کمپرسیون و با استفاده از شاخه کیفیت آب (WQI، دریاچه سد زایندرود استفاده شده‌است. خلجی و همکاران، 1345) (رنگین و وانی) در رودخانه هراز یکی از پرآب‌ترین رودخانه‌های مهم حوضه آب‌های کم‌آب در ایران می‌باشد که توسط به‌یزی پرور ایست. در حال حاضر (نماز معروفی با واحدهای تولیدی از 5 تا 14 تن، از این رودخانه سالانه بیش از 2000 تن گوت به مهی و ده سیلوله به صورت خشک و جه چه ماهی قزل آب تأمین نمی‌شود. مزارع زراعت زراعت زراعت زراعت زراعت زراعت تولید می‌کند. هدف از این مطالعه، تعیین عوامل خطرساز کیفیت آب این رودخانه با تشخیص میزان خطر به یکدیگر و خروج پساب آنها از رودخانه و نتایج پساب حاصل از فعالیت‌های آیزی پرور بوده‌است.

مواد و روش‌ها

منطقه مورد مطالعه

در تحقیق حاضر نمونه‌برداری از ۶ استانکه واقع در آب کارگاه پروب قزل آب (نامه‌های واسر، یکدیگر، نگین حیدر، نگین حیدر، نگین حیدر، نگین حیدر) در رودخانه هزار طی هفته‌های در...
نتایج

محیطی رودخانه هزار در ایستگاه‌ها و ماه‌های مختلف در جدول 1 و 2 ارائه شده است. آزمون خوشه‌ای فاکتورهای موثر بر کیفیت آب در بین ماه‌ها و ایستگاه‌های مختلف نشان داد که هر چند شیب‌های زاید (98-92 درصد) بین ماه‌ها و ایستگاه‌ها و جدول داشت، اما ماه‌ها به دو خوشه اصلی و سه خوشه فرعي با 93 درصد مشابهت تکنیک شدند. خوشه‌ها شامل ماه‌های اردیبهشت، خرداد، بهمن (گروه اول)، تیر، مرداد (گروه دوم) و شهریور، آبان (گروه سوم) بودند. ایستگاه‌ها نیز در سطح 96 درصد به دو خوشه اصلی و سه خوشه فرعي شام بخش ایستگاه 1 (گروه اول)، ایستگاه 2، 3، 4، 5 (گروه دوم) و ایستگاه 6 (گروه سوم) تقسیم شدند (شکل 1).

$WQI=\ [i \ BOD_{5}\times 0.117 \times i \ Nitrate_{0.108} \times i\ %\ saturated\ O_{2}\times 0.097 \times i \ EC_{0.096} \times i \ COD_{0.093} \times i \ Phosphate_{0.087} \times i \ pH_{0.051} \times i \ Coli_{0.14} \times i \ Turbidity_{0.062} \times i \ NH_{4}\ ]$

شکل 1: نقشه موقعیت مکانی ایستگاه‌های نمونه برداشته در رودخانه هزار

Figure 1: Map of different sampling stations at the Haraz River.

تجزیه و تحلیل آماری

در این مطالعه داده‌ها را بر اساس فرآیند رتبه‌بندی انتقال داده و سپس با آزمون شاپیرو-ویلک (Shapiro-Wilk) و تحویل Q-Q نمودار بودن آن تایید گردید (نصیری، 1388). برای تجزیه و تحلیل آماری از آزمون های پارامتري (Stepwise regression، Cluster analysis، Pearson correlation)، آزمون تی تک نمونه (One-sample t-test)، آزمون تک نمونه (correlation) و نرم‌افزار SPSS بر روی داده‌های نرمال شده استفاده گردید. تجزیه و تحلیل داده‌ها در برنامه‌های آماری SPSS نسخه 11/1 انجام گردید.
نتایج مقایسه IRWQIs را در محدوده 87/248-98/8 نشان داد. درصد از داده‌ها و نیز میانگین کل این شاخص بانگر کیفیت گرم بر لیتر به میزان 0/24 ± 0/19 درصد از داده‌ها را شامل کرده‌است که مربوط به پساب کارگاه فاضلاب می‌باشد. پس از آن، کیفیت میکروگرم بر لیتر به میزان 1/4 ± 0/34 درصد از داده‌ها را شامل کرده‌است که مربوط به تعداد سایت‌های متعددی نیز می‌باشد. از جمله، کیفیت مایع آب به میزان 1/2 ± 0/19 درصد از داده‌ها را شامل کرده‌است که مربوط به تعداد سایت‌های متعددی نیز می‌باشد.
جدول 2: میانگین به همراه انحراف معیار پارامترهای محیطی رودخانه هراز بر اساس استفاده‌های مختلف (سال 97-98)

<table>
<thead>
<tr>
<th>شاخص کیفیت آب</th>
<th>واحد</th>
<th>پارامترها</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجه سمیت گاز</td>
<td>میلی‌زینک/لیتر</td>
<td>5006±169</td>
</tr>
<tr>
<td>درجه هوا</td>
<td>میلی‌زینک/لیتر</td>
<td>6024±2222</td>
</tr>
<tr>
<td>کل مواد جامد معلق</td>
<td>نتیجه</td>
<td>3005±1150</td>
</tr>
<tr>
<td>وابستگی الکتریکی</td>
<td>میلی‌زینک/لیتر</td>
<td>9±15</td>
</tr>
<tr>
<td>اکسیژن خواهی</td>
<td>میلی‌زینک/لیتر</td>
<td>10±25</td>
</tr>
<tr>
<td>اکسیژن خواهی</td>
<td>میلی‌زینک/لیتر</td>
<td>11±39</td>
</tr>
<tr>
<td>هدایت الکتریکی</td>
<td>میلی‌زینک/لیتر</td>
<td>12±43</td>
</tr>
<tr>
<td>کل مواد جامد معلق</td>
<td>میلی‌زینک/لیتر</td>
<td>13±47</td>
</tr>
<tr>
<td>کیفیت نیتروژن</td>
<td>میلی‌زینک/لیتر</td>
<td>14±51</td>
</tr>
<tr>
<td>کل مواد جامد معلق</td>
<td>میلی‌زینک/لیتر</td>
<td>15±55</td>
</tr>
</tbody>
</table>

شکل 2: آزمون خوشه‌ای ماه‌ها و استفاده‌های مختلف رودخانه هراز بر اساس متغیرهای شاخص کیفیت (1997-98)
بحث و نتیجه گیری

در این مطالعه عوامل خطرساز در کارگاه‌های تکثیر و مازندران-تهران با تاکید بر پارامترهای محیطی در این مطالعه مورد بررسی قرار گرفت. میزان اکسیژن محلول و درصد اشباع در یک اکوسیستم آبی از اشباع با فرآیند بیولوژیکی (فتوسنتز، تنفس و معبد شدن) بایستی (بیولوژیک و فیزیکی) (هرودی انسنگری) بی‌باشند (2014).

براساس تعیین حداکثر در محدوده استان و بند طبقه می‌باشد (Table 1). همچنین میزان غلظت (Table 3) در اکوسیستم آبی در فصل گرما حداقل و در فصل سرما دراز حداکثر در محدوده است. البته، طبق نتایج رودخانه نیز در حداکثر و حداقل غلظت فصلی داده‌ها متغیر (Table 3). در بخش همبستگی در بین دمای آب و BOD، به طور معنی‌داری بیش از حداکثر مجاز (میرزاجانی، 1389) بوده است (جدول 3 و شکل (05/0p<،-One

<table>
<thead>
<tr>
<th>میزان نسبی</th>
<th>pH</th>
<th>BOD5</th>
<th>COD</th>
<th>BOD</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>بند V</td>
<td>2</td>
<td>0.2</td>
<td>2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>بند IV</td>
<td>3</td>
<td>0.3</td>
<td>3</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>بند III</td>
<td>4</td>
<td>0.4</td>
<td>4</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>بند II</td>
<td>5</td>
<td>0.5</td>
<td>5</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>بند I</td>
<td>6</td>
<td>0.6</td>
<td>6</td>
<td>0.9</td>
<td>1</td>
</tr>
</tbody>
</table>

(Haraz River 2017-2018)


Class V

E additionsی G که همچنین حداکثر میانگین غلظت در COD (50/0p<،-One

<table>
<thead>
<tr>
<th>میزان نسبی</th>
<th>pH</th>
<th>BOD5</th>
<th>COD</th>
<th>BOD</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>بند V</td>
<td>2</td>
<td>0.2</td>
<td>2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>بند IV</td>
<td>3</td>
<td>0.3</td>
<td>3</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>بند III</td>
<td>4</td>
<td>0.4</td>
<td>4</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>بند II</td>
<td>5</td>
<td>0.5</td>
<td>5</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>بند I</td>
<td>6</td>
<td>0.6</td>
<td>6</td>
<td>0.9</td>
<td>1</td>
</tr>
</tbody>
</table>

(Haraz River 2017-2018)


Class V

E additionsی G که همچنین حداکثر میانگین غلظت در COD (50/0p<،-One

<table>
<thead>
<tr>
<th>میزان نسبی</th>
<th>pH</th>
<th>BOD5</th>
<th>COD</th>
<th>BOD</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>بند V</td>
<td>2</td>
<td>0.2</td>
<td>2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>بند IV</td>
<td>3</td>
<td>0.3</td>
<td>3</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>بند III</td>
<td>4</td>
<td>0.4</td>
<td>4</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>بند II</td>
<td>5</td>
<td>0.5</td>
<td>5</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>بند I</td>
<td>6</td>
<td>0.6</td>
<td>6</td>
<td>0.9</td>
<td>1</td>
</tr>
</tbody>
</table>

(Haraz River 2017-2018)


Class V

E additionsی G که همچنین حداکثر میانگین غلظت در COD (50/0p<،-One

<table>
<thead>
<tr>
<th>میزان نسبی</th>
<th>pH</th>
<th>BOD5</th>
<th>COD</th>
<th>BOD</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>بند V</td>
<td>2</td>
<td>0.2</td>
<td>2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>بند IV</td>
<td>3</td>
<td>0.3</td>
<td>3</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>بند III</td>
<td>4</td>
<td>0.4</td>
<td>4</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>بند II</td>
<td>5</td>
<td>0.5</td>
<td>5</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>بند I</td>
<td>6</td>
<td>0.6</td>
<td>6</td>
<td>0.9</td>
<td>1</td>
</tr>
</tbody>
</table>

(Haraz River 2017-2018)


Class V

E additionsی G که همچنین حداکثر میانگین غلظت در COD (50/0p<،-One

<table>
<thead>
<tr>
<th>میزان نسبی</th>
<th>pH</th>
<th>BOD5</th>
<th>COD</th>
<th>BOD</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>بند V</td>
<td>2</td>
<td>0.2</td>
<td>2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>بند IV</td>
<td>3</td>
<td>0.3</td>
<td>3</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>بند III</td>
<td>4</td>
<td>0.4</td>
<td>4</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>بند II</td>
<td>5</td>
<td>0.5</td>
<td>5</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>بند I</td>
<td>6</td>
<td>0.6</td>
<td>6</td>
<td>0.9</td>
<td>1</td>
</tr>
</tbody>
</table>

(Haraz River 2017-2018)

In order to achieve high quality of water, it is necessary to study the parameters of water quality and control procedures in surface water (1396–1397).

Table 3: Comparison of current study with permissible concentration limits of environmental parameters at the Haraz River (2017-2018).

Maximum allowable concentrations (MAC) (GEF, 2006).
دریافت که کیفیت آب این رودخانه براساس این پارامتر همانند sample t test همچنین حداکثر میانگین غلظت BOD⁵ در کلاس III (کیفیت مناسب اولوگی کم) قرار گرفته است.

هسته‌ها

BOD₅، همچنین حداکثر میانگین غلظت COD همانند BOD₅ با طبقه‌بندی آب‌های سطحی در جدول 4 می‌توان BOD₅ غلظت COD با مقایسه میانگین

به‌همراه حد مجاز در رودخانه هراز (سال 1347-1396)

شکل 2: تغییرات TP در ایستگاه‌ها (مزارع پرورش ماهی قزل آلا)

تغییرات TP در رودخانه هراز در محدوده 150/0-15/0 میلی‌گرم بیلی‌ورت بوده است (Bash et al., 2001)، که در حفظ سلول‌های بیولوژیک و شیمیایی در ایستگاه‌ها (مزارع پرورش ماهی قزل آلا) می‌خواهند. این تغییرات با مقایسه با استاندارد (میزان مجاز) ایستگاه‌های پایین‌دست رودخانه هراز بیشتر بوده است.

شکل 3: تغییرات آشکارسنج محلول درصد اشباعی، کیفیت خواهی بیولوژیک و شیمیایی در ایستگاه‌ها (مزارع پرورش ماهی قزل آلا)

Figure 3: DO, DO%, BOD₅ and COD changes of the Haraz River at different months and stations (Rainbow trout farms) (2017-2018).

اولوگی بیولوژیک و شیمیایی در ایستگاه‌ها (مزارع پرورش ماهی قزل آلا) می‌خواهند. تغییرات CO₂ در رودخانه هراز در محدوده 320/0-170/0 میلی‌گرم بیلی‌ورت بوده است.

-al

میزان مجاز)

کودهای کشاورزی، فاضلاب‌های صنعتی و همچنین خانگی سبب افزایش فسفر و نیترژن در رودخانه‌ها می‌شود (EPA, 2013). براساس نتایج تحقیقات مجمع ایستگاه‌ها (EPA, 2013) نشان داد که در حدود 26% از آب‌های سطحی مصرف که در دامنه 20/0-15/0 میلی‌گرم بیلی‌ورت بوده است (Bash et al., 2001) به‌همراه حد مجاز در رودخانه هراز (سال 1347-1396)

دست رودخانه هراز بیشتر بوده است.
نصراله زاده ساروی و همکاران
مطالعه عوامل خطرساز در کارگاه‌های تکثیر و...

شکل ۴: تغییرات pH و کل مواد جامد معلق در ماه‌ها و ایستگاه‌ها (مزارع پرورش ماهی قزل آلا) بهمراه حد مجاز در رودخانه هراز (سال ۱۳۹۷-۱۳۹۶).

شکل ۵: تغییرات فسفر کل و فسفرات در ماه‌ها و ایستگاه‌ها (مزارع پرورش ماهی قزل آلا) بهمراه حد مجاز در رودخانه هراز (سال ۱۳۹۷-۱۳۹۶).

شکل ۶: تغییرات فسفرات و فسفات در ماه‌ها و ایستگاه‌ها بهمراه حد مجاز در رودخانه هراز (مزارع (ایستگاه‌ها)

Figure 4: pH and TSS changes of the Haraz River at different months and stations (Rainbow trout farms) (2017-2018).

Figure 5: TP/P and PO₄³⁻ changes of the Haraz River at different months and stations (Rainbow trout farms) (2017-2018).
نتایج تحقیق حاضر نشان داد که غلظت NO2⁻ و NH₃ در تیم ایستگاه‌ها و ماهی‌ها به طور معنی‌داری کمتر از حد مجاز بوده است.

نتایج رگرسیون گام به گام می‌شود که IRWQI® به طبقه بندی انتشار می‌دهد که:

نتایج تغییرات آمونیاک و نیتریت در ماها و ایستگاه‌ها (مزارع پرورش ماهی قزل آلا) به مهاره طبقه بندی در درودخانه هزار (سال 97-99) می‌سرد.

شکل 5: تغییرات آمونیاک و نیتریت در ماها و ایستگاه‌ها (مزارع پرورش ماهی قزل آلا) به مهاره طبقه بندی در درودخانه هزار (سال 97-99) می‌سرد.

Figure 6: NH₃ and NO₂⁻ changes of the Haraz River at different months and stations (Rainbow trout farms) (2017-2018).

نتایج تغییرات کیفیت آب در ماهه و ایستگاه‌های مختلف متوسط می‌شود (شکل 7) و اینکه علوم بر شرایط جفتی از قبیل شرایط حیاتی و میزان بارندگی. همچنین میزان کاهش کیفیت تاثیر گذار می‌باشد. نتایج رگرسیون که به گام نشان داد که از بین 9 برآمتر مورد استفاده در محاسبه شاخص کیفیت آب تعداد کلیف ومحدودی با دارایی که در مورد استفاده قرار می‌گیرد.

(Wasielsky et al., 2006)
شکل 7: تغییرات شاخص کیفیت آب (IRWQI<sub>SC</sub>) در ماه‌های و منابع مختلف (مزارع پرورش ماهی قزل آلا) به‌همراه طبقه‌بندی در رودخانه هزار (سال 1396-1397)

**Figure 7:** Water quality index (IRWQI<sub>SC</sub>) classification of the Haraz River at different months and stations (Rainbow trout farms) (2017-2018).

DOI: 10.22092/ISFJ.2017.110314

در این مطالعه نتایج آزمون رگرسیون کام به گام، ارتباط مثبت افزایش را بر شاخص کیفیت آب بخوبی نشان داد. IRWQI<sub>SC</sub> (کمتر از 55) در کل ایستگاه‌ها طبق پیشنهادات USEPA (1987) بایانگر نشان دهنده بافته‌برداری ترکیب‌های کم‌مصرفی نظر منابع آب به‌خوبی مایل به جنگ کشور 15 سفید را جلوگیری کرد.

تشکر و فقردانی

این مقاله بخشی از طرح تحقیقی با عنوان "مطالعه فاصلات و تاثیر عوامل خارسازی بهبود کیفیت آب و مدیریت پزشکی مراکز تکثیر و پرورش قزل آلا تأثیر عوامل خارسازی بهبود کیفیت آب و... در محور هزار" بوده که صلی‌های 1396-1397 در پژوهشگاه اکولوژی رودخانه خزر انجام گردید. به‌پرویزی از موسسه تحقیقات علوم شیلاتی کشور که زمینه علمی و ازایشاغی همچنین از نیز اداره کل سیلیت‌های بی‌پزشکی دست‌اندرکاران نیز کارکنان جهت انتخاب، بنیاد محیطی و سازمان سازمانی این بخش در پژوهشگاه اکولوژی رودخانه خزر، بدانن در محور هزار تأثیر عوامل خارسازی بهبود کیفیت آب و مدیریت بخش‌های مختلف این تحقیق را بهبود دارد. کمال سیلیت‌های بی‌پزشکی عمل می‌آید. همچنین از کمیته همکاری و سازمانی این بخش در محور هزار تأثیر عوامل خارسازی بهبود کیفیت آب و مدیریت بخش‌های مختلف این تحقیق را بهبود دارد. کمال سیلیت‌های بی‌پزشکی عمل می‌آید. همچنین از کمیته همکاری و سازمانی این بخش در محور هزار تأثیر عوامل خارسازی بهبود کیفیت آب و مدیریت بخش‌های مختلف این تحقیق را بهبود دارد. کمال سیلیت‌های بی‌پزشکی عمل می‌آید. همچنین از کمیته همکاری و سازمانی این بخش در محور هزار...
نصیری، ر.، 1388. آموزش گام به گام SPSS17. مرکز فرهنگی نشر گستر، تهران، 344 صفحه.

واردی، س.ا.، 1386. بررسی تاثیر متقابل فعالیت‌های تولیدی بر اکوسیستم‌های حوضه دریای خزر، فعالیت 1-زراعت تکیک و پرورش رودخانه هزاره. انتشارات موسمه تحقیقات شیلات ایران، پژوهشکده اکولوژی دریای خزر، 139 صفحه.


Study on risk factors in rainbow trout breeding and rearing farms based on water environmental parameters in the Haraz River

Nasrollahzadeh Saravi H.1*, Ghiasi M.1; Safari R.1, Makhlough A.1; Nasrollahtabar A.1, Mohammadzadeh V.2, Monemi A.2

*hnasaravi@gmail.com

1- Caspian Sea Ecology Research Center (CSERC), Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEEO), Sari, Iran.
2- Mazandaran Fisheries Affairs, Babolsar, Iran.

Abstracts
This study was carried out to determine the water environmental parameters as risk factors for rainbow trout breeding and rearing farms in the Haraz River. 84 water samples were collected at 6 stations during seven months in 2017-2018. Water samples were analyzed by standard titration and spectrophotometry. Results showed that the range of water temperature (4.0-17.0°C), weather temperature (5.0-28.0°C), dissolved oxygen (7.36-14.24 mg/l), BOD5 (0.20-20.80 mg/l), COD (3.50-41.40 mg/l), electro-conductivity (345-650 µS/cm), turbidity (2-81 NTU), TSS (0.01-0.72 g/l), pH (6.98-8.15), TP/P (0.01-0.15 mg/l), PO43- (0.01-0.20 mg/l), NH4+ (0.02-0.31 mg/l), NH3 (0.14-4.36 µg/l), NO2- (0.01-0.21 mg/l), fecal coliform (9-30000 CFU/100ml) and water quality index (48.5-98.5) were changed. The results of the stepwise regression analysis indicated that the risk factors of water quality in the Haraz River were fecal coliform, phosphate, turbidity, and BOD5 parameters, and fecal coliform had a higher coefficient factor (beta coefficient) than other parameters (p<0.05). As a result, according to the average water index of stations (less than 55), water of the Haraz River is contaminated and critical to breeding and rearing trout, but it has acceptable microbial count for fish farming and wildlife. In addition to seasonal conditions such as environmental conditions and rainfall, the way of pound managing has been effective in maintaining water quality.

Keywords: Environmental parameters, Water, Risk factors, Rainbow trout pounds, Haraz River

*Corresponding author