مطالعه ترکیب اسیدهای آمینه لارو تاسماهی ایرانی

نتیجه‌گیری

بحث

چکیده

هدف از این تحقیق مقایسه ترکیب اسیدهای آمینه ضروری لارو تاسماهی ایرانی (Acipenser persicus) و دافنی (Acipenser persicus) با آمیزه pH 5/5 گرم در لیتر آب افزوده گرم شده. لاروها پس از جذب کیسه زده (1-10-9) برداشته و سپس سیس، رژیم طبق شرایط کارگاه با دافنی تغذیه شدند. نمونه برداری از لاروها در روزهای چهاردهم و چهلم انجام شد. نتایج نشان داد که در میان اسیدهای آمینه ضروری لارو تاسماهی ایرانی، اسیدهای آمینه آرزنی، لوئیس و میوتون نسبت به سایر اسیدهای آمیزه‌های ضروری دارای بالاترین میزان و هیستیدین (9/1 درصد) دارای کمترین مقادیر هستند. در حالیکه در نمونه آمیزه دافنی، میوتون و آرزنی دارای بالاترین مقادیر بودند. در آمیزه و دافنی، برای اسید آمیزه هیستیدین (9/1 درصد) و قلیل آلانین (8/1 درصد) دارای کمترین مقادیر بودند. مقایسه بین ترکیب اسیدهای آمیزه دافنی و غذای زده نشان داده که اسید آمیزه ضروری فدل آلانین در روز 14 (5/5) و روز چهلم (3/4) بیشتر از آن آمیزه محدود کننده می‌باشد. بنابراین، باید به جیره افزوده شوند.

لغات کلیدی: آمیزه آمیه، تاسماهی ایرانی، لارو، آمیزه دافنی

*پریسندع مسئول
Macedonia

Acipenser persicus

Aragao et al. (2004 a)

Saavedra et al. (2006)

Diplodus sargus

Pilaria et al. (2006)

Sole senegalensis

Murray cod trout cod (Gunasekera et al., 1999)

pH

Jenway 3510

(3510 WTW 82362)

pH

Adelgidis pezado

Harrington et al. (2006)

Saavedra et al. (2004 b)

Artemia urmiana

Artemia urmiana

Downloaded from isfj.ir at 1:10 +0430 on Sunday May 26th 2019

[DOI: 10.22092/ISFJ.2017.109986]
روش تعبیر ترکیب اسیدهای آمینه عضله شالی ۲ مرحله
در (Lindroth & Mopper, 1979) هضم و استفاده اسیدهای آمینه
مرحله هسته ۱: گرم نمونه با فرآیند خشک شده در دستگاه فریزر
 оперون-۷۰۱۲ (Freez drier) در ایرا بی و یکی از اسیدهای
به لوله‌های خاک اضافه شده و به میزان ۱/۵ میلی لیتر اسید
کلرید الکتریکی ۶ نرمال به آن اضافه شده. محوطه داخل لوله با گاز
نیترژن خاک شد. سپس در اون با دمای ۱۱۰ درجه سانتی‌گراد
به متغیر ۲۴ ساعت گرفته شد. پس از این زمان حجم اسید
موجود در هر لولا نا حجم ۲۵ میلی لیتر با آب خاکی ریق
به متغیر فیلترهای سر سرگگی ۵۰ میکروتیکویی
محلول فیلتر تشد در نهایت ۱۰ میکرو لیتر محلول فیلتر شده
به ظرف شیشه‌ای مخصوص ریخته و تحت شرایط خلاص
گرفته شد. بعد از خشک شدن نمونه در خیال قرار داده شدند.
در مرحله اول: ۱۰ میکروتیکویی نمونه به هوله فضای داخل
ایسید آمینه خشک شده اضافه شد و بعد از مخلوط کردن مجدد
۴۰ میکروتیکویی نمونه در مخلوط داخل هوله جهت
انکوپاسیون گردید. بعد از این مرحله ۵۰ میکروتیکویی محلول اسید
کلرید الکتریکی ۱۷۵ مولار به ترتیب اضافه تا واکنش متقابل شود.
نها ۲۰ میکروتیکویی از ترکیب ۲۰ تا تیزت انتخاب مخصوص به
دستگاه D-14163 (B) HPLC مشخص (دی‌ساخت دما) (با مشخصات
دستگاه) و دمای ۲۵ سانتی‌متر (دما ۲۵۰ mm OPA specific column RP
۱۸ × ۴x۴ (دما) و دمای ۲۰ درجه نانوتاباکتری تشد.
برای تعیین تغییر نسبی بین ترکیب اسیدهای آمینه ضروری لارو
و غذای مصرفی جهت مخلوط نمونه اسیدهای آمینه محدود کرده، از
(Conceicco et al., 2003) اسید آمینه محدود کرده (IAA diet - IAA larvae) ×
۱۰۰ (IAA larvae) ۱۵

نتایج
اسید آمینه ضروری موجود در غذا IAA diet
اسید آمینه ضروری موجود در بلند لارو IAA larvae
میانگین ۹ اسید آمینه ضروری و ۶ اسید آمینه غیر ضروری
لارو ناساساهی ایرانسی، در روز چهاردهم (تغذیه با آرنتیمیا) با
جدول 1: تركیب اسیدهای آمینه لارو تاسماهی ایرانی تجویزه شده با...

<table>
<thead>
<tr>
<th>دافتن</th>
<th>آرتیمیا</th>
<th>روز چهلم</th>
<th>روز چهاردهم</th>
<th>اسید آمینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>nd</td>
<td>9/39±0/44</td>
<td>8/85±0/22</td>
<td>6/67±0/41</td>
<td>آورزین</td>
</tr>
<tr>
<td></td>
<td>6/73±0/32</td>
<td>8/85±0/22</td>
<td>6/67±0/41</td>
<td>هیستیدین</td>
</tr>
<tr>
<td></td>
<td>7/53±0/32</td>
<td>7/53±0/32</td>
<td>0/73±0/41</td>
<td>ایزوئسین</td>
</tr>
<tr>
<td></td>
<td>8/79±0/32</td>
<td>8/79±0/32</td>
<td>0/73±0/41</td>
<td>لوسین</td>
</tr>
<tr>
<td></td>
<td>3/6±0/32</td>
<td>3/6±0/32</td>
<td>0/73±0/41</td>
<td>لیزین</td>
</tr>
<tr>
<td></td>
<td>7/16±0/42</td>
<td>7/16±0/42</td>
<td>0/73±0/41</td>
<td>قفل آلانین</td>
</tr>
<tr>
<td></td>
<td>7/19±0/43</td>
<td>7/19±0/43</td>
<td>0/73±0/41</td>
<td>ترتوسین</td>
</tr>
<tr>
<td></td>
<td>3/10±0/32</td>
<td>3/10±0/32</td>
<td>0/73±0/41</td>
<td>والین</td>
</tr>
<tr>
<td></td>
<td>8/67±0/42</td>
<td>8/67±0/42</td>
<td>0/73±0/41</td>
<td>متانین</td>
</tr>
<tr>
<td></td>
<td>13/6±1/43</td>
<td>13/6±1/43</td>
<td>0/73±0/41</td>
<td>مجموع اسید آمینه ضروری</td>
</tr>
<tr>
<td></td>
<td>3/01±0/34</td>
<td>3/01±0/34</td>
<td>0/73±0/41</td>
<td>اسید گلوتامیک</td>
</tr>
<tr>
<td></td>
<td>7/56±0/35</td>
<td>7/56±0/35</td>
<td>0/73±0/41</td>
<td>سرین</td>
</tr>
<tr>
<td></td>
<td>8/5±0/34</td>
<td>8/5±0/34</td>
<td>0/73±0/41</td>
<td>اسید آسارتیک</td>
</tr>
<tr>
<td></td>
<td>7/68±0/36</td>
<td>7/68±0/36</td>
<td>0/73±0/41</td>
<td>سلنیوم</td>
</tr>
<tr>
<td></td>
<td>9/16±0/37</td>
<td>9/16±0/37</td>
<td>0/73±0/41</td>
<td>کلافیین</td>
</tr>
<tr>
<td></td>
<td>7/11±0/38</td>
<td>7/11±0/38</td>
<td>0/73±0/41</td>
<td>آلانین</td>
</tr>
<tr>
<td></td>
<td>9/67±0/39</td>
<td>9/67±0/39</td>
<td>0/73±0/41</td>
<td>نیزورین</td>
</tr>
<tr>
<td></td>
<td>3/95±0/40</td>
<td>3/95±0/40</td>
<td>0/73±0/41</td>
<td>مجموع اسید آمینه غیرضروری</td>
</tr>
</tbody>
</table>

نکته: nd = non detected. ± SD = میانگین ± SD. n=3.
جدول 2: تفاوت نسبی بین ترکیب اسیدهای آمینه ضروری لارو تاسماهی آبی و غذا مصری

<table>
<thead>
<tr>
<th>اسید آمینه</th>
<th>روز چهاردهم</th>
<th>روز چهلOSE</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>آرژین</td>
<td>18/76</td>
<td>16/26</td>
<td>0.8502</td>
</tr>
<tr>
<td>هیستیدین</td>
<td>12/24</td>
<td>12/24</td>
<td></td>
</tr>
<tr>
<td>ایزولوتین</td>
<td>32/88</td>
<td>32/88</td>
<td></td>
</tr>
<tr>
<td>لوسین</td>
<td>1/14</td>
<td>1/14</td>
<td></td>
</tr>
<tr>
<td>فیل آلانین</td>
<td>1/31</td>
<td>1/31</td>
<td></td>
</tr>
<tr>
<td>نترولین</td>
<td>5/41</td>
<td>5/41</td>
<td></td>
</tr>
<tr>
<td>والین</td>
<td>27/85</td>
<td>27/85</td>
<td></td>
</tr>
<tr>
<td>مترولین</td>
<td>19/23</td>
<td>19/23</td>
<td></td>
</tr>
</tbody>
</table>

* علائم (+) نشان‌دهنده کمبود اسید آمینه ضروری می‌باشد.

نمودار 2: همبستگی بین اسیدهای آمینه ضروری لارو و دالتی اسیدهای آمینه ضروری لارو و آرمیا

بحث

هدف از این مطالعه تعیین ترکیب اسیدهای آمینه لارو تاسماهی آبی در دو مرحله تنوشی با آرمیا و دالتی و مقایسه آن با ترکیب اسیدهای غذایی مصری است. این امر جهت تعیین کاستی‌های اسیدهای غذایی آمینه ضروری است. ترکیب اسیدهای آمینه ضروری (IAG) لارو ماهی بعنوان یک شاخه مناسب برای تخمین و تعیین احتمالات اسید آمینه (Watanabe & Kiron, 1994) غذای لارو ماهی بکار می‌رود. اسیدهای آمینه یک منبع مهم برای تامین اسیدهای ضروری در دوره لارو اسید آمینه در مرحله لاروی امری مهم و ضروری است. عدم تعداد اسیدهای آمینه ضروری در غذای اسیدهای آمینه و کاهش باردهی ضریب تبدیل اکسیداسیون اسیدهای آمینه و کاهش باردهی ضریب تبدیل
بکمود می‌باشد و در این مدل فیلم‌های انس، اسید امینه محدودکننده می‌باشد.

اسیدهای آمینه ضروری ترجمه برای تولید انرژی و اسیدهای آمینه ضروری چیت احتمالی سیستم آمینه و پرفوران های در برداشت استفاده قرار می‌گیرند. در اورومی کشف سلگی کیهانی که با استفاده از آزمایش عضلانی تحقیقات管理局ی به دست آمده است. این سلگی مشخص است که با استفاده از دیپلودوس دیگر می‌باشد (Ortiz-Delgado et al., 2006) در زمان تعقیب گونه دیگر دیگرگونه، اسیدهای آمینه ضروری و اسیدهای سلگی کیهانی که با استفاده از دیپلودوس دیگر می‌باشد (Ortiz-Delgado et al., 2006) در زمان تعقیب گونه دیگر دیگرگونه، اسیدهای آمینه ضروری و اسیدهای سلگی کیهانی که با استفاده از دیپلودوس دیگر می‌باشد (Ortiz-Delgado et al., 2006) در زمان تعقیب گونه دیگر دیگرگونه، اسیدهای آمینه ضروری و اسیدهای سلگی کیهانی که با استفاده از دیپلودوس دیگر می‌باشد (Ortiz-Delgado et al., 2006) در زمان تعقیب گونه دیگر دیگرگونه، اسیدهای آمینه ضروری و اسیدهای سلگی کیهانی که با استفاده از دیپلودوس دیگر می‌باشد (Ortiz-Delgado et al., 2006) در زمان تعقیب گونه دیگر D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس دیگرگونه گونه D. sargus (Saavedra et al., 2006)

در دیپلودوس D. sargus (Saavedra et al., 2006)

