تیمیان الگوی پراکنش سلول‌های کلراید آبشش در بی‌هیالان
(
Salmo trutta caspius
) سازگار با آب شیرین

حیله رجبی؛ صابر خانم‌خانه؛ سهیلا فلاح و جمشید امیری مقدم

surp78@gmail.com

دانشکده متابولیسم و علوم دریایی، دانشگاه تربیت مدرس، نور صندوق پستی: ۲۵۶

تاریخ دریافت: شهریور ۱۳۸۸

چکیده
این تحقیق در سال ۱۳۸۷ با هدف تعیین محل حضور سلول‌های غنی از آنزیم
Na⁺,K⁺-ATPase (سلول‌های کلراید) و
(Salmo trutta caspius
) و
در آب شیرین به‌همراه آب‌های آزاد دریای خزر

متفاوت ۵ و ۲۵ گرمگانه که در آب شیرین تکثیر و رشد پایدار بودند، انجام گرفت. باند‌شاسی آبشش با استفاده از
IgG5

و

ایمونوهوستومی‌ی انجام شد. به منظور شمارش سلول‌های در واحدهای سطح، تصاویر مرئی و
Fluorescent

بررسی گردید. حضور سلول‌های فلورورنست در بالاترین آبشش در روز نخست و
Image Tools

و رشته‌ها و کمان آبشش مشخص گردید. تعداد سلول‌های کلراید رشدی و مجموع سلول‌های کلراید تیغه‌ای و رشته‌ای ۱

میلی‌متری بر از سطح آبشش در سه هفته، در وزن ۵ و ۱۵ و ۲۵ گرم نمایش داد. همچنین درصد سطح اشغال شده توسط سلول‌های کلراید

در وزن ۵ گرم کاهش معنی‌داری نسبت به وزن دیگر داشت. همچنین درصد سطح اشغال شده توسط سلول‌های کلراید

تیغه‌ای نسبت به کل مقطع آبشش در وزن ۵ و ۱۵ و ۲۵ گرم و سلول‌های کلراید رشدی، در وزن ۵ گرم بیش از سه برابر وزن به

با توجه به نتایج بدست آمده می‌توان یاد کرد که وزن تاثیر بسزایی در توانایی و قابلیت تنظیم اسیدی در ماهیان هم سن

دارد و با توجه به مهاجرتی که به آب دریای خزر افتد، این اتفاق بی‌همالان با وزن پیشتر به تغییرات سلول‌های کلراید از

نظر تعداد و مکان، آمادگی مناسبی با استرس شوری محیط جدید را خواهد داشت. همچنین در صورتی که همین ماهی‌ها تا

اوزان بالایی در آب شیرین نگهداری شوند سازش آنها در جهت آب شیرین پیشت نمی‌شود.

لیست کلیدی: تعیین آنزیم،
IgG5

Na⁺,K⁺-ATPase

Salmo trutta caspius

نویسنده مسئول

*
مقدمه

ماهی آزاد دریای خزر (Salmo trutta caspius, Kessler 1877) از جمله ماهیان بومی و مهاجر (آسانسور) حوزه جنوبی دریای خزر به‌شکل که از ارتفاع عمق‌های و اقتصادی و روش‌های ۱۳۷۱. از جمله راه‌های جلوگیری از انتقال این گونه به‌عنوان ناگهانی، تکنیک‌های مصفوی و راه‌هایی که به دریا می‌باشد که توسط مرکز تکنیک و پرورش ماهیان سردایی شیبیده کرده، این اتاق دوم، جهت کاهش توان حمل شوری و Evans et al., 2005; Nordile et al., 1989; Cote et al., 1996

_means نمونه‌های از ماهیان در اثر مختلف. ۵۰ گرم انجام می‌گیرد. یکی از مهم‌ترین تکنیک در راه‌هایی، وزن‌های می‌باشد. طی‌بندی هر چه ماهی در وزن بالاتری راه‌هایی شد و درد حاصل شده با دو تیمار دسترس کننده بوده و دو تیمار دسترس کننده بوده. ۲۵۷۰۰۰ نیم‌تیپین که در آزاد ماهیان باید شده که آن‌ها مانند دانستگی درگیرتیک توان حمل شوری و Evans et al., 2005; Nordile et al., 1989; Cote et al., 1996

Downloaded from isfj.ir at 20:51 +0330 on Tuesday October 1st 2019 [DOI: 10.22092/ISFJ.2017.109991]
تسویج نمایانگر ۲.۱ از مدل سنجش میکروسکوپی نمونه‌های آزمایشی به پایش یک ترکیب فیتو اسید احتیاطی شده است. نهایت این مدل به این حال رهگیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کند. اندازه‌گیری‌های این مدل از این مدل برای اندازه‌گیری یافته‌ها و بهبود می‌کнд.
نتایج شمارش سلول‌های کلراید در آبیش به ماهیان آزاد خزر هم سن و با ارزش متفاوت. نشان داد که در هر میلیمتر مربع از سطح مقطع بافت آبیش در بین 5 گرم حذف 3 سلول کلراید و در بین 15 گرم 2825 سلول کلراید و در بین 25 گرم حذف 3164 سلول کلراید وجود دارد. این که بیشترین تعداد آنها روی تیغه قرار داشته است، علتی از این تعداد سلول حذف 130 سلول کلراید تیغه در بین 5 گرم می‌باشد.

نمایه تعداد سلول‌های کلراید تیغه در سه وزن نشان دهنده افزایش معنی‌دار تعداد سلول‌های کلراید در بین 15 و 25 گرم نسبت به وزن 5 گرم بوده است. البته تعداد کل سلول‌های کلراید (مجموع سلول‌های کلراید تیغه و رشتی) و تعداد سلول‌های کلراید رشتی از اختراعی در بین وزن نشان استاد (توضیح 3) درصد سطح اشغال شده توسط سلول‌های کلراید در در بین 15 گرم بیش از وزن 5 گرم بوده و این درصد سطح اشغال شده توسط سلول‌های کلراید تیغه و درصد کل سطح اشغال شده توسط سلول‌های کلراید در وزن 15 گرم بیش از وزن 5 گرم نسبت به وزن 5 گرم دیگر افزایش معنی‌داری داشته است (توضیح 4).
شکل 1: پتینشنی کلاسیک آیسش بچه ماهی آزاد در دیای خزر (رنگ آمیزی با همانتوکسین - لیوزین)

شکل 2-1: برش طولی از کمان آیسش و مشاهده موقعیت رشته‌های آیسش ریو کمان
شکل 2-2: تصویر سیتوم پرائنتی در پات خوزه در بخش میانی کمان آیسش و در پایه رشته‌ها
شکل 3: برش طولی یک رشته آیسش
شکل 4-1: سلولهای ناشناخته ای نیمی آیسش: سلولهای کلاپالد، سلولهای سکف‌دار و سلولهای مکوسوس و بیلار
شکل 4-2: نمای تزایدی از سلول مکوسوس و همچنین موقعیت سلول کلاپالد در ناحیه در ناحیه
شکل 4-3: سلولهای کلاپالد در ناحیه پایه نیمه و در روز نیمه

اختصاصات:
 Filament (شمع‌های طولانی)، Chloride Cell (کلرید)، Blood Vessel (سیتوم)، Blood (شراوع)، Cartilage (کارتیژن)، Mucous (مکوسوس)، Lamellae (لاملیای)، Gill Septopus (پهلوگیری‌ها)، Gill Arch (پرائنتی‌ها)، Lamella (لاملیای)، Mucus (مکوسوس)، Nucleus (نواکن‌ها)، Plate (پلاکت‌ها)، Pavement Cell (کلرید)، Pillar Cell (پیلر‌ها)، RBC (پرائنتی‌ها)، PC (پلاکت‌ها)، GA (گیل‌های بزرگ)، GS (ماکولا ایتی‌ها)، BV (سیتوم‌ها)، C (کلرید‌ها)، Pic (پیلر‌های ماکولا)، MC (ماکولا ایتی‌ها)، N (نواکن‌ها)، L (پرائنتی‌ها).
تغییرات سلول‌های کلاژندر در پاتولوژی آبزیان

شکل 2: مکان‌های سلول‌های غنی از آنزیم Na⁺,K⁺-ATPase در پهنه ماهی آزاد خزر (به روش ایمونو‌هیستوکمپی)

شکل 1-1: بررسی طلایی رشته آتشینی در نمونه شاهد

شکل 1-6: نمونه‌های آتشفشانی در نواحی مختلف ظاهر شده‌اند.

شکل 1-1 و 1-4: بررسی طلایی رشته و تغییرات سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 1-4 و 1-6: بررسی عدم افزایش مقدار سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 1-6: نمای نزدیک از بررسی سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2: در این تصویر، شکل‌های سلول‌های کلاژندر به صورت تخم مرغی با کمک لیزر احتمالاً در نواحی مختلف مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رونده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رRONده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رRONده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رRONده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم رRONده مشاهده شده است.

شکل 2-2: پرداختن سلول‌های کلاژندر در نواحی مختلف سیستم RBC
نمودار 1: نتایج بین تعداد سلولهای کلایرید تیغه‌ای و رشته‌ای در یک میلیمتر مربع از سطح آبشک در هر یک از اورزان 15 و 25 گرم (حروف و علائم نامش انده، اختلاف معنیدار در سطح (0.05) (P) بین دو گروه سلولهای کلایرید تیغه‌ای و رشته‌ای در هر وزن می‌باشد.

نمودار 2: نتایج بین درصد سطح اشغال شده توسط سلولهای کلایرید تیغه‌ای و رشته‌ای در یک میلیمتر مربع از سطح آبشک در هر یک از اورزان 15 و 25 گرم (حروف و علائم نامش انده، اختلاف معنیدار در سطح (0.05) (P) بین دو گروه سلولهای کلایرید تیغه‌ای و رشته‌ای در هر وزن می‌باشد.

55
نمودار ۳: تفاوت تعداد سلول‌های کلراد در یک میلیمتر مربع از سطح آئش در هر یک از اوران ۵ و ۲۵ گرم (حرف و علائم ناشانه‌نامه‌ای مشاهده می‌شود)

نمودار ۴: تفاوت بین درصد سطح اشغال شده توسط سلول‌های کلراد در یک میلیمتر مربع از سطح آئش در هر یک از اوران ۵ و ۲۵ گرم (حرف و علائم ناشانه‌نامه‌ای مشاهده می‌شود)
بحث

در تصاویر بالا فنیشناسی، جمعیت‌های سلول‌های کلریت در ناحیه تیغ‌های و در ناحیه پایه تیغ (در بخش پایه تیغ و در ناحیه بین تیغ‌های و در سایر نواحی رشته) مشاهده شدند. نتایج سایر محققان روی گونه‌های مختلف ماهیان و در شرایط مختلف تیغ‌های مثبت و سلول‌های کلریت هم در بخش تیغ‌های و هم در بخش رشته‌ای آبش بوده است (خوشومد و همکاران، 2009a). در حالی که در این مطالعات انجام گرفته بروی گونه‌های دیگر از قبل قزل آقای رنگی کمان (Polyodon) Paddlefish (Witters et al., 1996) ماهی P. Pompeius و ماهی (Kravshkina et al., 2000) spatula/Na+,K+-ATPase

در آب شیرین سلول‌های کلریت در ناحیه پایه تیغ و انتقال پاتولوژی ازبین ندارد. در محققان ازبین N+,K+-ATPase

در آب شیرین سلول‌های کلریت در ناحیه پایه تیغ و انتقال پاتولوژی ازبین ندارد. در محققان ازبین N+,K+-ATPase

در آب شیرین سلول‌های کلریت در ناحیه پایه تیغ و انتقال پاتولوژی ازبین N+,K+-ATPase

در آب شیرین سلول‌های کلریت در ناحیه پایه تیغ و انتقال پاتولوژی ازبین N+,K+-ATPase
Nordile et al., 1989; Cote et al., 1996; Evans et al., 2005; Robert, 2000

Na+,K+-ATPase.

Silurus glanis Na+,K+-ATPase

Franlin Na+,K+-ATPase.

Robert, 2000

In the series of the paper, the author references to:

Nordile et al., 1989; Cote et al., 1996; Evans et al., 2005; Robert, 2000

Fraklin Na+,K+-ATPase.

Distribution pattern of branchial chloride cells in smolt

Salmo trutta caspius fries of the Caspian Sea
during freshwater adaptation

Rajabi H.; Khodabandeh S. *; Fallah S. and Amirimoghadam J.

Sarp78@yahoo.com

Department of Natural Resources and Marine Science, Tarbiat Modares University,
P.O.Box: 14115-356 Noor, Iran

Received: September 2009 Accepted: April 2011

Keywords: Osmoregulation, _Salmo trutta caspius_, Na⁺,K⁺-ATPase, IgG₅, Caspian Sea

Abstract

The immunolocalization of Na⁺,K⁺-ATPase rich-cells (chloride cells) and their distribution pattern in smolt _Salmo trutta caspius_ fries of the Caspian Sea weighing 5, 15, 25 grams during freshwater adaptation was studied in 2008. Gill samples were fixed in Bouin’s solution, and after hydration, the samples were paraffinized and sectioned. Na⁺,K⁺-ATPase localization was performed using IgG₅ antibody and immunohystoshimy technique. In order to count cells in gill area, immunofluorescence light microscopy pictures was analyzed using Image Tool 2.1 software. Chloride cells were found on gill arch, lamellae and filament. Filamentary chloride cells and their total number (chloride cells in lamellae and filament) had no significant difference in all 5, 15, 25g specimens but lamellar chloride cells in 5g fries was significantly decreased. Also, percentage of lamellae chloride cells in 15g specimens and those of filament chloride cells in 5g fries was higher than other weights. According to our results, weight has important impact on osmoregulation ability in same age fishes. Fries with higher weight can resist salinity stress after migration to Caspian Sea through production of more chloride cells and change in their position but those which remain in freshwater for a long time, would adapt easily to the new environment.

Corresponding author