تعیین الگوی پراکنش سلول‌های کلراید آبشش در بچه ماهیان Salmo trutta caspiusدو قابستانه آزاد خزر (Salmo trutta caspius) سازگار با آب شیرین

حیطه جنبی؛ صاحب‌خاننده مهیاپه هلیا فلاح و جمشید امیری مقدم

surp78@gmail.com

دانشکده مطالعات طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، صندوق پستی: ۲۵۶، تاریخ دریافت: شهروز ۱۳۸۸، تاریخ پذیرش: فروردین ۱۳۹۰

چکیده

این تحقیق در سال ۱۳۸۷ با هدف تعیین محل حضور سلول‌های غنی از آنزیم Na⁺, K⁺-ATPase (سلول‌های کلراید) و Salmo trutta caspius (هم سن با اوزان) پروری ناحیه پراکنش آنان در آبشش بچه ماهیان در قابستانه آزاد دریای خزر متفوت ۱۵ و ۲۵ گرم که در آب شیرین تکثیر و رشد یافته بودند، انجام گرفت. با شناسایی آبشش با استفاده از IgGa، رنگ آمیزی هیامینوسپرین-الوزین و مکان‌یابی آنزیم

ایمونو‌هیستوسپشی انجام شد. به منظور شمارش سلول‌های در هر سطح، تصاویر گرفته شده با میکروسکوپ بوری و مایریکس توتوری در واحد سطح تصویر گرفته شده با مایریکس توتوری و software Image Tools 2.1 نشان داد. این تحقیق اشکال شده توسط سلول‌های کلراید روی تیغه و رشته‌ها و کمان آبشش مشخص گردید. تعداد سلول‌های کلراید رشته‌ای و مجموع سلول‌های کلراید تیغه‌ای و رشته‌ای ۱ میلی‌متر مربع از ناحیه آبشش، در هر سه وزن ۵، ۱۵ و ۲۵ گرم تفاوت معنی‌داری را نشان نداد. اما سلول‌های کلراید تیغه‌ای در وزن ۵ گرم کاهش معنی‌داری نسبت به وزن دیگری داشت. همچنین درصد سطح اشکال شده توسط سلول‌های کلراید تیغه‌ای نسبت به کل مقطع آبشش، در وزن ۱۵ گرم و سلول‌های کلراید رشته‌ای، در وزن ۵ گرم بیش از سایر وزن‌ها بود.

با توجه به نتایج بدست آمده می‌توان یک بانک کرد که وزن تأثیر بسزایی بر توانایی و قابلیت تنظیم اسزی در ماهیان سه سن دارد و با توجه به نهج‌بری که به آب دریای خزر افتراق خواهید افتد بچه ماهیان با وزن بیشتر با تغییرات سلول‌های کلراید از نظر تعداد و مکان، آمدگی مقابله با استرس شوری مبهم جدا را خواهند داشت. همچنین در صورتی که همین ماها تا اوزان بالاتری در آب شیرین نگهداری شوند سازش آنان در جهت آب شیرین بیشتر تقویت می‌شود.

لکه کلیدی: تنظیم اسزی، دریای خزر، IgGa، Na⁺, K⁺-ATPase Salmo trutta caspius

نویسنده مسئول*
Salmo trutta caspius, Kessler 1877.

Evans et al., 2005; Nordile et al., 1989; Cote et al., 1996

IgGNa+,K+-ATPase
Nebel et al., 2005; Khodabandeh et al., 2005; Evans et al., 2005

Na,K-ATPase
Evans et al., 2005

Na,K-ATPase
Evans et al., 2005

Na,K-ATPase
Evans et al., 2005

Downloaded from isfj.ir at 1:05 +0330 on Thursday October 31st 2019
راز دریاچه خزر. ۴ جفت کمان آیشی (Arch) در هر طرف سر کشکل شده است. هر کدام از این کمان‌ها در یک رشته‌ای شده است (شکل ۱-۱). سیستوم بی‌شک در یکی کمان آیشی و در یک رشته مهیه، می‌شود و در دارای باتفاصل از جنس غضروف است (شکل ۱-۱ و شکل ۲-۱). در بر روی یک مهر تنقلی شیمی‌ای رگه‌های خورنده و همچنین در ریز کمیاب پوسته‌های آناتی می‌شود. همچنین تعداد بی‌سابقه سلول‌های خوی در داخل رگه‌های قابل مشاهده است (شکل ۱-۲). تیغه‌های آناتی می‌شدند. سیستوم کشکل شدند، داده و پوسته‌ای آنار سلول‌های سنتگری‌سازی، سلول‌های میکروس و سلول‌های کرالیدی می‌شدند (شکل ۱-۲). سلول‌های کرالیتی فیل‌دار کرایک عضوی در نواحی مختلف بی‌سابقه پوسته در نواحی پایه تیغه و ریز شده و در دارای باتفاصل از نواحی پایه تیغه (شکل ۲-۵ و ۶-۵). تیغه‌های توسط میکروس و ژانکس سنتگری‌سازی شکل می‌شود و به نواحی پایه تیغه و ریز می‌شود (شکل ۲-۶). فیل‌دار کرایک عضوی فیل‌دار کرایک عضوی در نواحی مختلف بافت پوسته در نواحی پایه تیغه (شکل ۲-۵ و ۶-۵). تیغه‌های توسط میکروس و ژانکس سنتگری‌سازی شکل می‌شود و به نواحی پایه تیغه و ریز می‌شود (شکل ۲-۶). فیل‌دار کرایک عضوی فیل‌دار کرایک عضوی در نواحی مختلف بافت پوسته در نواحی پایه تیغه (شکل ۲-۵ و ۶-۵).

در نهایت در پراکنده، قالب‌گیری شده (Khodabandeh et al., 2005) کمان خارجی آیشی انتا جدایی و سیس در پراکنده قالب‌گیری شده. از قالب‌گیری بوسیله میکروتروم (ساخت شرکت دی ال سی) بر روی دیواره با قرار داده شدند. برای مطالعه ساختار Poly-L-Lysin پوشش بافت‌شناختی با شیمی‌ای مختلف کمان‌های آیشی، شیمی‌ای متریک روش‌های هم‌ناحیان- انتزین نگر آمیزه شده و با استفاده از میکروسکوپ نوری اکسپرس و تولید در نهایت در پراکنده، قالب‌گیری شده (Khodabandeh et al., 2005) کمان خارجی آیشی انتا جدایی و سیس در پراکنده قالب‌گیری شده. از قالب‌گیری بوسیله میکروتروم (ساخت شرکت دی ال سی) بر روی دیواره با قرار داده شدند. برای مطالعه ساختار Poly-L-Lysin پوشش بافت‌شناختی با شیمی‌ای مختلف کمان‌های آیشی، شیمی‌ای متریک روش‌های هم‌ناحیان- انتزین نگر آمیزه شده و با استفاده از میکروسکوپ نوری اکسپرس و تولید

۵۱
باینینگ کلرید سلامتی سطح‌های کلر آبک ذرت... رجبی و همکاران

حضور آنتی‌باینگ آنتی‌گونه فلوپروبیسیمی از خود نشان نمی‌دهد. اما سفالهای خونی بصرف انتفاضه‌ساز قابل رویت هستند (شکل 3-1). در لامیهای ایمونوهیستوپاتی کلاژن هر دو آنتی‌باینگ سلاله‌های کلرید فلوپروبیسیمی در بخش‌های مختلف بافت آبک ذرت قابل توجه، رشته و کمان آبک ذرت در ماهی آزاد دریای خزر مشاهده شدند (شکل 2-1 و شکل 4-2). در بخش عرضی از بافت آبک ذرت سلاله‌های ایمونوهیستوپاتیک نشان داده شده است که بیشتر پراکنده‌ای سلاله‌ای از اطراف سینوس وریدی مرکزی می‌باشند (شکل 3-2 و شکل 4-2). این سلاله‌ها به شکل گروه‌های مربوط به گروه‌های می‌باشند (شکل 4-2). ناحیه پراکنده‌گی سلاله‌ای در هر سه وزن مورد مطالعه، مشابه می‌باشد (شکل 3-6 و شکل 4-6).

نتایج شمارش سلاله‌های کلرید در آبک ذرت به ماهیان آزاد خزر هم سبب با ارزان‌ساختن، نشان داد که در هر میلی‌متریک از سطح مقطع بافت آبک ذرت در وزن 5 گرم، حداکثر 263 سلول کلرید در وزن 15 گرم، حداکثر 2825 سلول کلرید و در وزن 25 گرم، حداکثر 3266 سلول کلرید وجود دارد.

که بیشترین تعداد آنها روی تغییر قرار داشته است. به‌ین این تعداد سلاله، حدود 130 سلول کلرید تبعیض که در وزن 5 گرم می‌باشد (شکل 3).
شکل ۱: پرفروشی کلاسیک آبشش باهی ماهی آزاد در راه خوردن (رنگ‌آمیزی با همانتوکسین - آنتزین)

شکل ۱-۱: برش طلایی از کمان آبشش و مشاهده موقعیت رشته‌های آبشش روی کمان
شکل ۱-۲: تصویر سیتیوم پریانی با فاقد خورشید در بخش میانی کمان آبشش و در پایه رشته‌ها
شکل ۱-۳: برش طلایی یک رشته آبشش
شکل ۱-۴: سلول‌های شکل دهندگانی آهی: سلول‌های کلاژن، سلول‌های سگنی، سلول‌های مکسی و سلول‌های تیز
شکل ۱-۵: سلول‌های تیز و تیزی‌ساز از سلول‌های مکسی و همچنین موقعیت سلول کلاژن در ناحیه بین تیز
شکل ۱-۶: سلول‌های تیز و تیزی‌ساز در ناحیه پایه تیز و در روی تیز

اختصاصات:
- ریش رنگی: F
- سلول کلاژن (Cartilage Cell)
- ترمه‌های مکسی (Mucous)
- ترمه‌های پریانی (Gill Septup) (Gill Arch)
- ترمه‌های آبشش (Gill Arch)
- کلیه‌های برز (Gill Arch)
- سلول پریانی (Pavicnt Cell)
- سلول بامی (Paviment Cell)
- نواحی سلول (Nucleus)
- کلیه‌های فرمز (Red Blood Cell)
در بیچ ماهی آزد خزر (به روش ایمونو‌هیستوشیمی) Na⁺,K⁺-ATPase می‌باشد.

شکل ۲: مکان‌بندی سلول‌های غنی از آنزیم Na⁺,K⁺-ATPase

- شکل ۱: بررسی طولی رشته آبیشی (نمودار شده).
- شکل ۲: با استفاده از کور IgG5 سلول‌های کارتیژ به رنگ سبز در روش‌های مختلف ظاهر شده‌اند.
- شکل ۳: بررسی طولی رشته و رنگ‌دهی سلول‌های کارتیژ در روش‌های مختلف در نواحی مختلف صورت گرفته‌اند.
- شکل ۴: بررسی عرضی از کشتی‌های عملیاتی پراکش سلول‌های کارتیژ در روش‌های مختلف در نواحی مختلف صورت گرفته‌اند.
- شکل ۵: نمای نازک‌بزرگ از بررسی عرضی.
- شکل ۶: در این تصویر شکل سلول‌های کارتیژ که بصورت تخم می‌رسفت مرغی است کاملاً از نمای نازک‌بزرگ نشان داده شده است.

- شکل ۷: پراکش سلول‌های کارتیژ در ورید ۵ گرم.
- شکل ۸: پراکش سلول‌های کارتیژ در ورید ۱۵ گرم.
- شکل ۹: پراکش سلول‌های کارتیژ در ورید ۲۵ گرم.

اختصاصات:
- CVS: خون‌بند (Central Venous Sinus)
- BV: خون‌بند افرن (Blood Vessel)
- CC: سلول کارتیژ (Cartilage)
- AV: خون‌بند میلری (Blood Vessel)
- RBC: خون‌بند رنگی (Red Blood Cell)
نمودار 1: تفاوت بین تعداد سلولهای کلرادی تیغهای و رشته‌ای در یک میلیمتر مربع از سطح آبشش در هر یک از اورزان 5، 15 و 25 گرم (حرف و علائم نامشانه نشان دهنده اختلاف معنی‌دار در سطح (0.05)<P) بین دو گروه سلولهای کلرادی تیغهای و رشته‌ای در هر وزن می‌باشند.

نمودار 2: تفاوت بین درصد سطح اشغال شده توسط سلولهای کلرادی تیغهای و رشته‌ای در یک میلیمتر مربع از سطح آبشش در هر یک از اورزان 5، 15 و 25 گرم (حرف و علائم نامشانه نشان دهنده اختلاف معنی‌دار در سطح (0.05)<P) بین دو گروه سلولهای کلرادی تیغهای و رشته‌ای در هر وزن می‌باشند.
نمودار ۳: تفاوت تعداد سلولهای کلراید در یک میلیوتم بر بیش از سطح آبش در هر یک از اروزان ۱۵ و ۲۵ گرم (حرفی و علامت نامشابه نشان‌دهنده اختلاف معنی‌دار در سطح (P<0.05) بین سه گروه وزنی می‌باشد).

نمودار ۴: تفاوت بین درصد سطح اشغال شده توسط سلولهای کلراید در یک میلیوتم بر بیش از سطح آبش در هر یک از اروزان ۱۵ و ۲۵ گرم (حرفی و علامت نامشابه نشان‌دهنده اختلاف معنی‌دار در سطح (P<0.05) بین سه گروه وزنی می‌باشد.)
In their studies, Khodabandeh et al. (2009a) and Witters et al. (1996) investigated the expression of Na⁺,K⁺-ATPase and NKCC proteins in different fish species. They found that paddlefish (Polyodon spathula) and gilthead sea bream (Sparus auratus) had lower levels of these enzymes compared to other species. Shikano & Fujio (1998) and Khodabandeh et al. (2009a, 2009b) reported similar findings in these species, suggesting that these proteins play a critical role in maintaining ion balance in aquatic environments.

Paddlefish (Polyodon spathula) and gilthead sea bream (Sparus auratus) are both important fish species, known for their high levels of Na⁺,K⁺-ATPase and NKCC proteins. These proteins are essential for maintaining proper ion balance within the fish's body, which is crucial for survival in freshwater environments. Shikano & Fujio (1998) and Khodabandeh et al. (2009a, 2009b) have conducted studies on these species, demonstrating the importance of these proteins in maintaining the osmotic balance within the fish's body.

In summary, the expression of Na⁺,K⁺-ATPase and NKCC proteins in paddlefish and gilthead sea bream is lower compared to other species, suggesting that these proteins play a critical role in maintaining ion balance in aquatic environments. Shikano & Fujio (1998) and Khodabandeh et al. (2009a, 2009b) have conducted studies on these species, demonstrating the importance of these proteins in maintaining the osmotic balance within the fish's body.
Nordile et al., 1989; Cote et al., 1996; Evans et al., 2005; Robert, 2000

Fraklin Na\(^+\), K\(^+\)-ATPase.

Silurus glanis Na\(^+\), K\(^+\)-ATPase.

Acipenser persicus

Salmo trutta caspius

Downloaded from isfj.ir at 1:05 +0330 on Thursday October 31st 2019 [DOI: 10.22092/ISFJ.2017.109991]

Distribution pattern of branchial chloride cells in smolt

Salmo trutta caspius fries of the Caspian Sea
during freshwater adaptation

Rajabi H.; Khodabandeh S.*; Fallah S. and Amirimoghadam J.

Surp78@yahoo.com

Department of Natural Resources and Marine Science, Tarbiat Modares University,
P.O.Box: 14115-356 Noor, Iran

Received: September 2009 Accepted: April 2011

Keywords: Osmoregulation, Salmo trutta caspius, Na⁺,K⁺-ATPase, IgGα5, Caspian Sea

Abstract

The immunolocalization of Na⁺,K⁺-ATPase rich-cells (chloride cells) and their distribution pattern in smolt Salmo trutta caspius fries of the Caspian Sea weighing 5, 15, 25 grams during freshwater adaptation was studied in 2008. Gill samples were fixed in Bouin’s solution, and after hydration, the samples were paraffinized and sectioned. Na⁺,K⁺-ATPase localization was performed using IgGα5 antibody and immunohistoshimy technique. In order to count cells in gill area, immunofluorescence light microscopy pictures was analyzed using Image Tool 2.1 software. Chloride cells were found on gill arch, lamellae and filament. Filamentary chloride cells and their total number (chloride cells in lamellae and filament) had no significant difference in all 5, 15, 25g specimens but lamellar chloride cells in 5g fries was significantly decreased. Also, percentage of lamellae chloride cells in 15g specimens and those of filament chloride cells in 5g fries was higher than other weights. According to our results, weight has important impact on osmoregulation ability in same age fishes. Fries with higher weight can resist salinity stress after migration to Caspian Sea through production of more chloride cells and change in their position but those which remain in freshwater for a long time, would adapt easily to the new environment.