تأثير روش‌های مختلف بخش بر ترکیب اسیدهای چرب فیله ماهی نیلیا

(Oreochromis niloticus)

الهام قیموی جونیاتی، ژاله خوشخر، عباسعلی مطبی، و یزدان مرادی

Elham_ghauomi@yahoo.com

1- دانشکده علوم و فنون دبیری، دانشگاه آزاد اسلامی واحد تهران شمال، خیابان شهید فلاحی، پلاک ٤٩ تهران ٥٤١٧١
2- دانشکده علوم و فنون دبیری، دانشگاه آزاد اسلامی واحد تهران شمال، خیابان شهید فلاحی، پلاک ٤٩ تهران ٥٤١٧١

چکیده

تیلاییا از راستا سو فیله ماهیان و فنون دبیریان (Cichlidae Oreochromis niloticus) می‌باشد که بعنوان رشد سریع و پرورش ساده و ارزان مورد توجه است. در این بررسی تاثیر روش‌های مختلف بخش بر ترکیب اسیدهای چرب و ارزش غذایی فیله ماهی Tiliapia، مورد ارزیابی قرار گرفت. روش‌های بخش شامل سرخ کردن، ماپکروپیون، بخش با خمیر (آوون)، کبابی کردن، آب پز کردن و تیمار خام می‌باشند. در این بررسی برای ارزیابی ارزش غذایی میزان پروتئین از روش کلیس، رطوبت از روش سیکلر و خاکستر از روش کوره الکتریکی استفاده گردید. برای سنجش ترکیب اسیدهای چرب از روش گاز‌گریزیاندازه (GC) مورد استفاده قرار گرفت. نتایج نشان داد که اکثرین روش‌های مختلف بخش بر ترکیب اسیدهای چرب (Mona Unsaturated Fatty Acids) و اسیدهای چرب منوپلیری‌افشان (Poly Unsaturated Fatty Acids) میزان اسیدهای چرب اشاع (Saturated Fatty Acids) را به اندازه‌ای کمتری در فیله‌های ماپکروپیون و کبابی کردن و آوون، با اعمال گیاهی، در تیماری انتخابی به استناد تیمارهای سرخ کردن و آوون، بین ٥/٣-٦/٤ درصد افزایش یافته. نتایج حاصله نشان داد میزان تا ویبلیت (٧/٣ درصد) از نسبت به نمونه خام نشان داد. کمترین تغییرات در فیله‌های پخته شده با (٥/٤ درصد) و پختی در فیله‌های سرخ شده (٣/٢ درصد) اتفاق رخ داد. پیشنهاد می‌شود از این روش‌ها برای بهبود ارزش غذایی ماهی نیلیا و افزایش نشان داد.

CH₂(CH₃)₂COOH

24 نویه چسب شناخته شده است. آنها می‌توانند پوسه‌ساز عمومی دیزل بی‌شکل شوند.
1. رئیس، مهندس ریشه روطب از آن استفاده شد (ماجعی، 1373).

2. خلاصه: تغییر میزان خاکستر از طریق سوزاندن ماده آلی و سیس انژیلگریک ترکیبات غیرولولی صورت گرفت که به این منظور از کوره الکتریکی استفاده گردید (Bligh and Dyer, 1959).

3. خلاصه: میزان خاکستر از روش صورت گرفت. در این روش ریز استخراج چربی از خلال پتروپلی استفاده گردید که به روش گاز نیز معرف است (AOAC, 1984).

پروپتاینی: به منظور اندازه‌گیری پروتئین موجود در فیله ماهی تیلیاپا از روش کمکی (AOAC, 1984) استفاده گردید. در این روش با حضور اسید سولفوریک و کانابورز این امر تبیه ورود به سولفات امونیاک و سیس امونیاک از یک واسط قبایلی تقسیم گردیده و در روش کلیدریکا با اسید بروکلی ندهد و پوسیله نتیجه‌براندازی با یک استاد مقدار آن تعیین می‌گردد.

پس از آن، با استفاده از روشهای گاز (Excel و انجام پورزدایز لازم، برای مقایسه میانگین از روش دانکو و به مصوب کتاب اصلی و انجام تحلیل از آزمون آنالیز واریانس یکپارچه (ANOVA) استفاده شد.

نتایج

کمترین میزان رطوبت در نیمی آور (O1) و بیشترین میزان در نیمی آور (O2) به میزان 32/30 درصد و 73/32 درصد مشاهده شد. در ثبات آبیاری نتیجه گرفت که بیشتر روشهای میانگین بیشتر مصرف می‌شوند.

برای نیاز به درست ترین نتایج، از ۲۰ گزارش و ۲۰۰ گزارش منابع مختلف استفاده گردید. ۷۲/۳٪ از این گزارشات را گزارش کرده‌اند.

در صورت کاهش ترکیب نیازمند به برنامه‌ریزی دقیق ترین‌تر می‌شود. در صورت کاهش ترکیب نیازمند به برنامه‌ریزی دقیق ترین‌تر می‌شود.

در پی یافتن غذایی میانگین ترکیب نیازمند به برنامه‌ریزی دقیق ترین‌تر می‌شود.

در صورت کاهش ترکیب نیازمند به برنامه‌ریزی دقیق ترین‌تر می‌شود.

در صورت کاهش ترکیب نیازمند به برنامه‌ریزی دقیق ترین‌تر می‌شود.

در صورت کاهش ترکیب نیازمند به برنامه‌ریزی دقیق ترین‌تر می‌شود.

در صورت کاهش ترکیب نیازمند به برنامه‌ریزی دقیق ترین‌تر می‌شود.

در صورت کاهش ترکیب نیازمند به برنامه‌ریزی دقیق ترین‌تر می‌شود.

در صورت کاهش ترکیب نیازمند به برنامه‌ریزی دقیق ترین‌تر می‌شود.

در صورت کاهش ترکیب نیازمند به برنامه‌ریزی دقیق ترین‌تر می‌شود.
تاثیر روش‌های مختلف پخت بر ترکیب اسیدهای چرب فیله ماهی تیلاپیا

میزان چربی فیله مایکروویو شده را تا ناید می‌کنند (برورمند، ۲۰۱۸) همچنین میزان چربی بطور مکوس با مایکروویو و رطوبت در ارتب‌بندی و بازدارنده میزان چربی کاهش می‌یابد. میزان رطوبت افزایش می‌یابد (Larsen et al., 2010). این مسئله نیز کمیوند میزان چربی فیله مایکروویو را افزایش می‌دهد. میزان چربی فیله مایکروویو (۵۱:۵)/۱۴۰ درصد مشاهده شد (جدول ۱).

در بررسی حاضر کمترین میزان خاکستر در تیمار خام (۶:۰)/۱۴۰ درصد و آبی‌پز (۰:۵)/۱۴۰ درصد و بیشترین میزان خاکستر در تیمار آبی‌پز (۱۸:۲)/۱۴۰ درصد مشاهده گردید (جدول ۱).

در بررسی حاضر کمترین میزان پوست رطوبت بیشترین میزان پوست رطوبت در تیمار آبی‌پز (۱۵:۰)/۱۴۰ درصد و کمترین میزان پوست رطوبت در تیمار خام (۴:۲)/۱۴۰ درصد مشاهده شد. کمیوند میزان رطوبت در تیمار آبی‌پز افزایش رطوبت میزان رطوبت گردیده است (جدول ۱).

در این بررسی ۸ اسید چرب اشباع شناسی گرده در نمونه خام بیشترین میزان را با پیشینه سایسی (C16:0) با ۱۵ درصد و سپس پالمیولئیک سایسی (C18:0) با ۱۴ درصد و بعد از آن درخست (C14:0) با ۴۶ درصد بجود اختصاص داده و کمترین میزان مربوط به لوکس اسید (C16:0) با ۱۰ درصد بود.

امکان روی‌های پخت سبب تغییرات در میزان اسید چرب اشباع می‌باشد. بطوریکه میزان اسیدهای چرب غیراشبع (PUFA) در اسیدهای اشباع میزان چربی اشباع شده چندان‌اشبع در نمونه خام (۲۶:۰)/۱۴۰ درصد و بیشترین میزان در نمونه خام کاهش (۴:۲)/۱۴۰ درصد مشاهده شد. روی‌افتألگی بیشترین مصرف اگر به‌سیاری از اسیدهای چرب غیراشبع میزان موجود در نمونه خام را ناپدید می‌کند. با این حال، میزان پالمیولئیک سایسی (C18:2)/۱۴۰ درصد سبب افزایش میزان اسیدهای چرب غیراشبع در تیمار خام و کاهش در تیمار آبی‌پز (C18:2)/۱۴۰ درصد مشاهده شد. میزان C12:0 با آبی‌پز و C14:0 با کاهش در تیمار آبی‌پز افزایش چربی اشباع گردیده است.

جدول ۱: مقایسه نیروی پرتاب‌های تجزیه ترکیب اسیدهای چربی میزان مختلف (میانگین ± انحراف استاندارد)

<table>
<thead>
<tr>
<th>بررخی</th>
<th>آنیلز</th>
<th>آنیل</th>
<th>پرتاب‌های خام</th>
<th>پرتاب‌های آبی‌پز</th>
<th>پرتاب‌های خام</th>
<th>پرتاب‌های آبی‌پز</th>
</tr>
</thead>
<tbody>
<tr>
<td>خام</td>
<td>۲۱/۱۴±۰/۱</td>
<td>۲۳/۳۶±۰/۸</td>
<td>۲۲/۳۶±۱/۰</td>
<td>۲۳/۳۶±۰/۸</td>
<td>۲۲/۳۶±۱/۰</td>
<td>۲۳/۳۶±۰/۸</td>
</tr>
<tr>
<td>آبی‌پز</td>
<td>۲۳/۳۶±۰/۸</td>
<td>۲۵/۳۶±۰/۸</td>
<td>۲۵/۳۶±۰/۸</td>
<td>۲۵/۳۶±۰/۸</td>
<td>۲۵/۳۶±۰/۸</td>
<td>۲۵/۳۶±۰/۸</td>
</tr>
<tr>
<td>نیروی پرتاب‌های</td>
<td>۲۳/۳۶±۰/۸</td>
<td>۲۵/۳۶±۰/۸</td>
<td>۲۵/۳۶±۰/۸</td>
<td>۲۵/۳۶±۰/۸</td>
<td>۲۵/۳۶±۰/۸</td>
<td>۲۵/۳۶±۰/۸</td>
</tr>
</tbody>
</table>

در هر دوی نظارت اخلاقی بین میانگین‌های دارای حروف غیرمستطوب معلم می‌باشد (P<0/05).
جدول 2: میزان اسیدهای چرب (درصد از کل اسیدهای چرب) در تیمارهای مورد بررسی

<table>
<thead>
<tr>
<th>تیمار</th>
<th>میزان اسیدهای چرب</th>
<th>کسی</th>
<th>آن</th>
<th>ماکروموی</th>
<th>خام</th>
<th>نرم</th>
<th>سرخ کرده</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΣSFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΣMUFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΣPUFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σn-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σn-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*DHA = C22:6n3; **EPA = C20:5n3; n=7

101
جدول 3: مقایسه میانگین انواع اسیدهای چرب بین تیمارهای آزمایشی مختلف (میانگین ± انحراف استاندارد)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>کیتامی</th>
<th>کیتامین</th>
<th>سومین</th>
<th>ساتردن اسیدهای چرب اشباع (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/12/20/1</td>
<td>C18:2c</td>
<td>C14:1</td>
<td>C12:0</td>
<td>14:0</td>
</tr>
<tr>
<td>0/12/20/2</td>
<td>C18:2c</td>
<td>C15:1</td>
<td>0/12/20/2</td>
<td>14:0</td>
</tr>
<tr>
<td>0/12/20/3</td>
<td>C18:3t</td>
<td>C16:1</td>
<td>C15:0</td>
<td>14:0</td>
</tr>
<tr>
<td>0/12/20/4</td>
<td>C18:3t</td>
<td>C17:1</td>
<td>0/12/20/2</td>
<td>14:0</td>
</tr>
<tr>
<td>0/12/20/5</td>
<td>C18:3n6</td>
<td>C18:1c</td>
<td>C17:0</td>
<td>14:0</td>
</tr>
<tr>
<td>0/12/20/6</td>
<td>C18:4n3</td>
<td>C18:1t</td>
<td>C18:0</td>
<td>14:0</td>
</tr>
<tr>
<td>0/12/20/7</td>
<td>C20:4n3</td>
<td>C20:1</td>
<td>C20:0</td>
<td>14:0</td>
</tr>
<tr>
<td>0/12/20/8</td>
<td>C20:4n6</td>
<td>0/12/20/2</td>
<td>C22:0</td>
<td>14:0</td>
</tr>
<tr>
<td>0/12/20/9</td>
<td>C20:5n3</td>
<td>0/12/20/2</td>
<td>C24:0</td>
<td>14:0</td>
</tr>
<tr>
<td>OTHERS</td>
<td>0/12/20/1</td>
<td>C22:5n3</td>
<td>C22:0</td>
<td>14:0</td>
</tr>
<tr>
<td>OTHERS</td>
<td>0/12/20/1</td>
<td>C22:5n6</td>
<td>C22:0</td>
<td>14:0</td>
</tr>
<tr>
<td>OTHERS</td>
<td>0/12/20/1</td>
<td>C22:2n3</td>
<td>C22:0</td>
<td>14:0</td>
</tr>
<tr>
<td>OTHERS</td>
<td>0/12/20/1</td>
<td>C22:6n3</td>
<td>C22:0</td>
<td>14:0</td>
</tr>
</tbody>
</table>

جدول 4: مقایسه میانگین انواع اسیدهای چرب بین تیمارهای آزمایشی مختلف (میانگین ± انحراف استاندارد)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>کیتامی</th>
<th>کیتامین</th>
<th>سومین</th>
<th>ساتردن اسیدهای چرب اشباع (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/12/20/1</td>
<td>25/0/0/0/0</td>
<td>25/0/0/0/0</td>
<td>25/0/0/0/0</td>
<td>25/0/0/0/0</td>
</tr>
<tr>
<td>0/12/20/2</td>
<td>35/0/0/0/0</td>
<td>35/0/0/0/0</td>
<td>35/0/0/0/0</td>
<td>35/0/0/0/0</td>
</tr>
<tr>
<td>0/12/20/3</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
</tr>
<tr>
<td>0/12/20/4</td>
<td>35/0/0/0/0</td>
<td>35/0/0/0/0</td>
<td>35/0/0/0/0</td>
<td>35/0/0/0/0</td>
</tr>
<tr>
<td>0/12/20/5</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
</tr>
<tr>
<td>0/12/20/6</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
</tr>
<tr>
<td>0/12/20/7</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
</tr>
<tr>
<td>0/12/20/8</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
</tr>
<tr>
<td>0/12/20/9</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
<td>30/0/0/0/0</td>
</tr>
</tbody>
</table>

در هر رایف تها اختلاف بین میانگین‌های دارای حروف فیشرک می‌باشد. (P<0.05)
جدول 5: نتایج پدست آمده از ارزیابی شاخص رنگ توسط ۵ نفر

<table>
<thead>
<tr>
<th>گروه قبولی</th>
<th>معنی</th>
<th>اندازه</th>
<th>الگو</th>
<th>امتیاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>غیرقابل قبول</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>قابل قبول</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

جدول 6: نتایج پدست آمده از ارزیابی شاخص بو توسط ۵ نفر

<table>
<thead>
<tr>
<th>گروه قبولی</th>
<th>معنی</th>
<th>اندازه</th>
<th>الگو</th>
<th>امتیاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>غیرقابل قبول</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>قابل قبول</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

جدول 7: نتایج پدست آمده از ارزیابی شاخص طعم و مزه توسط ۵ نفر

<table>
<thead>
<tr>
<th>گروه قبولی</th>
<th>معنی</th>
<th>اندازه</th>
<th>الگو</th>
<th>امتیاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>غیرقابل قبول</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>قابل قبول</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

جدول 8: نتایج پدست آمده از ارزیابی شاخص بایت توسط ۵ نفر

<table>
<thead>
<tr>
<th>گروه قبولی</th>
<th>معنی</th>
<th>اندازه</th>
<th>الگو</th>
<th>امتیاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>غیرقابل قبول</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>قابل قبول</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

103
Turkkan, Dicentrarchus labrax, Larsen, Oncorhynchus tshawytscha, Gokoglu, Jucieli (Rhamdia quelen)
پرتره در تیرماه پایه، پرچه سخته در رنگ آفتابگردان و
پرچم‌های سرخ و خاکستر در طی تیرماه حمام
در بررسی حاضر کامیون خاکستر در تیرماه خام، حمام
میزان خاکستر در تیرماه آن مقدار 1875 ± 200 درصد مشاهده شد.

تیرماه خام

در تحقیق Gokoglu و همکاران (2004) نیز پیشین
میزان خاکستر در نمونه سخته در حمام
میزان خاکستر در تیرماه حمام
میزان خاکستر در تیرماه خام
1875 ± 200 درصد مشاهده شد.

با توجه به نتایج بدست آمده از ارزیابی حسی میزان
رنا که شاخص زنگ در تیرماه سرخ کرده (44) از مقیم‌پذیر
پیشتری بخوردار بود و در تیرماه آسیب (26) جانان قابل قبول
نیوس.

شاخص بو در تیرماه سرخ کرده (12) از مقیم‌پذیر پیشتری
برخوردار بود این در حالی است که در تیرماه آبی (10) کمترین
امبیاس را بدست آورد.

شاخص طعم و مزه در تیرماه سرخ کرده پیشترین
422/7 در تیرماه پایه، پرچم‌های سرخ و خاکستر
برخوردار بود میزان مفیدان آن در باین تیرماه
بطری کلی پس از امتحان‌های مربوط به ویلاگنگ
در نتایج حاضر مشاهده کرده تیرماه سرخ کرده پیشترین
232/4 در تیرماه سرخ و خاکستر با کمترین
نیوس که تیموری

- افزایش میزان پرچم، جنب و خاکستر با کاهش

میزان رنگ‌بندی در ارتباط است.

105
تأثیر روش‌های مختلف پخت بر ترکیب اسیدهای چرب فیله ماهی تیلابیا

قوی‌تر و همکاران

در این تحقیق، در روش پخت مایکروکوبو کمترین تغییر در میزان
پروتئین، نسبت به تیمار خام مشاهده شد. با توجه به نتایج بدست‌آمده از این تحقیق، در ارزیابی
حساسیت، روش سرخ کرده از متقابلیت پیش‌تر برخوردار بود و سپس روشهای چربی گیاهی از اولویت داده می‌شد. با توجه به
اثربخشی روشهای کردن غیری بازی در میزان اسیدهای
چرب غیری باعث اتفاق می‌افتد و سلامتی ماده غذایی تحت تاثیر
قرار می‌گیرد. پیشنهاد می‌شود روشهای چربی گیاهی این روش
پخت گردد.

منابع

- Bligh A.C. and Dyer W.J., 1959. A rapid method of
total lipid extraction and purification. Canadian
Journal of Biochemistry and Physiology, 37:911-
917.
- Gokoglu N., Yerlikaya P. and Cengiz E., 2004. Effects
of cooking methods on the proximate composition
and mineral contents of rainbow trout
(Oncorhynchus mykiss). Food Chemistry,
84:9-22.
of Official Analytical Chemists. Washington D.C.,
USA.
- Gokoglu N., Yerlikaya P. and Cengiz E., 2004. Effects
of cooking methods on the proximate composition
and mineral contents of rainbow trout
(Oncorhynchus mykiss). Food Chemistry,
84:9-22.

The effect of different methods on fatty acid composition of Tilapia, *Oreochromis niloticus*, fillets

Ghauomi Jooyani A.\(^1\)*; Khoshkhoo Zh.\(^2\); Motallebi A.A.\(^3\) and Moradi Y.\(^4\)

Elham_ghauomi@yahoo.com

1,2- Faculty of Marin Science and Technology, Islamic Azad University, # 49, Shahid Fallahi Ave.,
Tehran, Iran
3,4- Iranian Fisheries Research Organization, P.O.Box: 14155-6116 Tehran, Iran

Received: February 2011 Accepted: July 2011

Keywords: Tilapia, Fatty acids, Processing, Nutritional value

Abstract

Tilapia, a perch fish from Cichlidae family has witnessed a vast and fast growth in artificial culture due to simple and inexpensive procedures for the practice. One of the most important farm species is considered to be the Nile Tilapia (*Oreochromis niloticus*). The effects of different cooking methods on fatty acid composition and nutritional value of Tilapia fish fillet were evaluated. The cooking methods included: Red off, microwave, oven cooking, barbecue, boiled water and raw treatment. The protein content was assessed using the Kjeldahl method, moisture was evaluated through dry method, fat and ash through Soxhlet and electric furnace methods. To measure the composition of fatty acids, Gas-chromatography method (GC) was applied, and the Bligh and Dyer method of extraction and identification of fatty acids was implemented. The results showed that applying different curing methods caused moisture loss of 1-9%, 2-12% increase in protein content, fat reduction of 0.2-4.2% (excluding the red off treatment in which fat increased by about 0.5%), increase in ash of 0.7-0.15%, reduction of Mono Unsaturated Fatty Acids between 1-6% and increase in Poly Unsaturated Fatty Acids between 0.5-14%. The rate of saturated fatty acids showed an increase of 0.6-1.6% in all treatments with the exception of baking and red off treatments. The results indicated the lowest change (about 0.2%) in EPA, in the microwave and grilled fillet treatments and the highest change (0.7%) in the red off fillets compared to raw samples. The minimum change in DHA was observed in the oven-cooked fillets (0.45%) and the maximum change (2.5%) in the red off fillets. The highest EPA and DHA were found as 1.33 and 3.32% in samples cooked in oven. Results showed that the ratio of 6/3 increased in the red off samples compared to other treatments.

\(^*\)Corresponding author