مقاله علمی-پژوهشی:
آلودگی میکروپلاستیک در رسوبات تالاب انزلی، جنوب غربی دریای خزر
(استان گیلان)
مجد راستا، مسعود ستاری1، مجتبی شکرالله زاده طالشی2، جاوید ایمانپور نمین1

*msattari@guilan.ac.ir

1- گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صمغ سرا، ایران. کد پستی: 19139-96419.
2- گروه علوم دریایی، بیوشیمیک حریق آبی خزر، دانشگاه گیلان، رشت، ایران.

چکیده
وقوع و فراوانی میکروپلاستیک‌ها (MPs) در رسوبات تالاب انزلی برای اولین بار در این مطالعه بررسی شد. نمونه‌برداری از رسوبات با استفاده از گرب و ۷۰۰وین در بهار ۱۳۹۷ انجام شد. میکروپلاستیک‌ها بعد از جادسازی از طریق محلول NaCl شده، با یک استروی میکروسکوپ نظارت شدند. تعداد میکروپلاستیک‌ها در محدوده ۱۲۸-۲۷۰±۱۳۰ قطعه در ۱۰۰ گرم از رسوب خشک (۱۵۰ نمونه) در یک کیلوگرم رسوب خشک) بود. این مقادیر با تعداد ۱۰±۲۲۰ قطعه میکروپلاستیک در ۱۰۰ گرم رسوب خشک و ایستگاه ۹ با تعداد ۱۴۵±۱۷۵ قطعه میکروپلاستیک در ۱۰۰ گرم رسوب خشک برابر دارای بیشترین و کمترین میزان آلودگی بودند. این نتایج تمامی میکروپلاستیک‌ها در محدوده ۵-۲۰ میلی متر بود. میکروپلاستیک‌ها در اندازه ۲-۳ میلی متر با ۳۷٪، ۱-۳ میلی متر با ۲۳٪ و چکو با ۹٪ رابطه داشتند. طبقات تک یا دو بانه و غیره از نظر مدفوع، زمان رسوب‌های قرمز، سیرا و آبی بیشتر با ۴۱٪ و ۲۴٪ درایی بیشترین فراوانی رنگ دارین نمونه‌ها بودند. در مجموع، ۵ پلیمر پیش‌ترین چسبانی بودند (PP، پلی استر (PES)، پلی پروپیلن (PAN) اتانل) و پلی اکریلونیترل (PE) شناسایی شد. این تحقیق به عنوان اولین مطالعه، داده‌های اصلی در حوزه حضور میکروپلاستیک‌ها را در ناحیه انزلی ترتیب زده که دسترسی نامنح با برای متوسط آنها را برای موج‌های آبی و غذا و سپس انتقال احتمال آنها را به پاسخ انتخاب می‌کند. نتایج بدست آمده اطلاعات مقیدی را برای تحقیقات بیشتر ارائه می‌دهد.

لیست کلیدی: میکروپلاستیک، تالاب انزلی، آلودگی، پلیمر

۱۲۱
روی برش است زیرا تهدیدی برای حیات وحش است و می‌توان تاثیرات انتقالی مهمی در شیلات داشته باشد. (Ryan et al., 2009)

میکروپلاستیک‌ها قطعه‌ای بسیار ریزی هستند که معمولاً در انتها کمتر از 5 میلی‌متر (2009) به طور کلی میکروپلاستیک‌ها به دو دسته میکروپلاستیک‌های نیوترونسیون (Barnes et al., 2009) و میکروپلاستیک‌های سبزتنده (Cole et al., 2011) تقسیم می‌شود. میکروپلاستیک‌های سبزتنده در میانه، تاکنون این مقدار که در طی چندمیلی‌متری در چندین سال انجام شده است، حاصل می‌شود. (Gouin et al., 2015)

روی برش است زیرا تهدیدی برای حیات وحش است و می‌توان تاثیرات انتقالی مهمی در شیلات داشته باشد. (Ryan et al., 2009)

میکروپلاستیک‌ها قطعه‌ای بسیار ریزی هستند که معمولاً در انتها کمتر از 5 میلی‌متر (2009) به طور کلی میکروپلاستیک‌ها به دو دسته میکروپلاستیک‌های نیوترونسیون (Barnes et al., 2009) و میکروپلاستیک‌های سبزتنده (Cole et al., 2011) تقسیم می‌شود. میکروپلاستیک‌های سبزتنده در میانه، تاکنون این مقدار که در طی چندمیلی‌متری در چندین سال انجام شده است، حاصل می‌شود. (Gouin et al., 2015)

روی برش است زیرا تهدیدی برای حیات وحش است و می‌توان تاثیرات انتقالی مهمی در شیلات داشته باشد. (Ryan et al., 2009)

میکروپلاستیک‌ها قطعه‌ای بسیار ریزی هستند که معمولاً در انتها کمتر از 5 میلی‌متر (2009) به طور کلی میکروپلاستیک‌ها به دو دسته میکروپلاستیک‌های نیوترونسیون (Barnes et al., 2009) و میکروپلاستیک‌های سبزتنده (Cole et al., 2011) تقسیم می‌شود. میکروپلاستیک‌های سبزتنده در میانه، تاکنون این مقدار که در طی چندمیلی‌متری در چندین سال انجام شده است، حاصل می‌شود. (Gouin et al., 2015)

روی برش است زیرا تهدیدی برای حیات وحش است و می‌توان تاثیرات انتقالی مهمی در شیلات داشته باشد. (Ryan et al., 2009)

میکروپلاستیک‌ها قطعه‌ای بسیار ریزی هستند که معمولاً در انتها کمتر از 5 میلی‌متر (2009) به طور کلی میکروپلاستیک‌ها به دو دسته میکروپلاستیک‌های نیوترونسیون (Barnes et al., 2009) و میکروپلاستیک‌های سبزتنده (Cole et al., 2011) تقسیم می‌شود. میکروپلاستیک‌های سبزتنده در میانه، تاکنون این مقدار که در طی چندمیلی‌متری در چندین سال انجام شده است، حاصل می‌شود. (Gouin et al., 2015)
مواد و روش‌ها
نمونه‌برداری از رسواد تالاب انزی به منظور بررسی ذرات میکروپلاستیک و تعیین میزان اصل آنها از طریق شناسایی و تعیین تکمیلی انجام شد. برای انجام این

![عکس شماره 1: موقعیت‌گذاری نمونه‌برداری از رسواد تالاب انزی](https://example.com/figure1)

\textbf{شکل 1: ایستگاه‌های نمونه‌برداری از رسوادن تالاب انزی}

\textbf{ترکیب شیمیایی انجام شده. برای انجام این

\textbf{جداسازی نمونه‌ها با استفاده از محیط اشباع NaCl}

بعد از خشک شدن، براي جلاژبری از ورود ذرات بزرگتر از 1 میلی‌متر به نمونه‌ها، رسوادن در اکت 5 میلی‌متری غربی شدند. 100 گرم از رسوادن هر ایستگاه با قاشق استیل خشک توسط تراز روز 10/0 گرم وزنی و در بستر 1000 میلی لیتری ریخته شد و سپس (Corcoran et al., 2009) NaCl محیط اشباع به شکل داد. در این مدت 15-20 دقیقه بهتر 20 درصد تکان داده شد تا

\textbf{دماده‌ی نمونه‌ها با استفاده از محیط اشباع NaCl}

بعد از خشک شدن، برای جلاژبری از ورود ذرات بزرگتر از 1 میلی‌متر به نمونه‌ها، رسوادن در اکت 5 میلی‌متری غربی شدند. 100 گرم از رسوادن هر ایستگاه با قاشق استیل خشک توسط تراز روز 10/0 گرم وزنی و در بستر 1000 میلی لیتری ریخته شد و سپس (Corcoran et al., 2009) NaCl محیط اشباع به شکل داده شد. در این مدت 15-20 دقیقه بهتر 20 درصد تکان داده شد تا

\textbf{ترکیب شیمیایی انجام شده. برای انجام این

\textbf{جداسازی نمونه‌ها با استفاده از محیط اشباع NaCl}

بعد از خشک شدن، برای جلاژبری از ورود ذرات بزرگتر از 1 میلی‌متر به نمونه‌ها، رسوادن در اکت 5 میلی‌متری غربی شدند. 100 گرم از رسوادن هر ایستگاه با قاشق استیل خشک توسط تراز روز 10/0 گرم وزنی و در بستر 1000 میلی لیتری ریخته شد و سپس (Corcoran et al., 2009) NaCl محیط اشباع به شکل داده شد. در این مدت 15-20 دقیقه بهتر 20 درصد تکان داده شد تا

\textbf{جداسازی نمونه‌ها با استفاده از محیط اشباع NaCl}

بعد از خشک شدن، برای جلاژبری از ورود ذرات بزرگتر از 1 میلی‌متر به نمونه‌ها، رسوادن در اکت 5 میلی‌متری غربی شدند. 100 گرام از رسوادن هر ایستگاه با قاشق استیل خشک توسط تراز روز 10/0 گرم وزنی و در بستر 1000 میلی لیتری ریخته شد و سپس (Corcoran et al., 2009) NaCl محیط اشباع به شکل داده شد. در این مدت 15-20 دقیقه بهتر 20 درصد تکان داده شد تا

\textbf{جداسازی نمونه‌ها با استفاده از محیط اشباع NaCl}

بعد از خشک شدن، برای جلاژبری از ورود ذرات بزرگتر از 1 میلی‌متر به نمونه‌ها، رسوادن در اکت 5 میلی‌متری غربی شدند. 100 گرام از رسوادن هر ایستگاه با قاشق استیل خشک توسط تراز روز 10/0 گرم وزنی و در بستر 1000 میلی لیتری ریخته شد و سپس (Corcoran et al., 2009) NaCl محیط اشباع به شکل داده شد. در این مدت 15-20 دقیقه بهتر 20 درصد تکان داده شد تا

\textbf{جداسازی نمونه‌ها با استفاده از محیط اشباع NaCl}

بعد از خشک شدن، برای جلاژبری از ورود ذرات بزرگتر از 1 میلی‌متر به نمونه‌ها، رسوادن در اکت 5 میلی‌متری غربی شدند. 100 گرام از رسوادن هر ایستگاه با قاشق استیل خشک توسط تراز روز 10/0 گرم وزنی و در بستر 1000 میلی لیتری ریخته شد و سپس (Corcoran et al., 2009) NaCl محیط اشباع به شکل داده شد. در این مدت 15-20 دقیقه بهتر 20 درصد تکان داده شد تا

\textbf{جداسازی نمونه‌ها با استفاده از محیط اشباع NaCl}

بعد از خشک شدن، برای جلاژبری از ورود ذرات بزرگتر از 1 میلی‌متر به نمونه‌ها، رسوادن در اکت 5 میلی‌متری غربی شدند. 100 گرام از رسوادن هر ایستگاه با قاشق استیل خشک توسط تراز روز 10/0 گرم وزنی و در بستر 1000 میلی لیتری ریخته شد و سپس (Corcoran et al., 2009) NaCl محیط اشباع به شکل داده شد. در این مدت 15-20 دقیقه بهتر 20 درصد تکان داده شد تا

\textbf{جداسازی نمونه‌ها با استفاده از محیط اشباع NaCl}

بعد از خشک شدن، برای جلاژبری از ورود ذرات بزرگتر از 1 میلی‌متر به نمونه‌ها، رسوادن در اکت 5 میلی‌متری غربی شدند. 100 گرام از رسوادن هر ایستگاه با قاشق استیل خشک توسط تراز روز 10/0 گرم وزنی و در بستر 1000 میلی لیتری ریخته شد و سپس (Corcoran et al., 2009) NaCl محیط اشباع به شکل داده شد. در این مدت 15-20 دقیقه بهتر 20 درصد تکان داده شد تا

\textbf{جداسازی نمونه‌ها با استفاده از محیط اشباع NaCl}

بعد از خشک شدن، برای جلاژبری از ورود ذرات بزرگتر از 1 میلی‌متر به نمونه‌ها، رسوادن در اکت 5 میلی‌متری غربی شدند. 100 گرام از رسوادن هر ایستگاه با قاشق استیل خشک توسط تراز روز 10/0 گرم وزنی و در بستر 1000 میلی لیتری ریخته شد و سپس (Corcoran et al., 2009) NaCl محیط اشباع به شکل داده شد. در این مدت 15-20 دقیقه بهتر 20 درصد تکان داده شد تا

\textbf{جداسازی نمونه‌ها با استفاده از محیط اشباع NaCl}

بعد از خشک شدن، برای جلاژبری از ورود ذرات بزرگتر از 1 میلی‌متر به نمونه‌ها، رسوادن در اکت 5 میلی‌متری غربی شدند. 100 گرام از رسوادن هر ایستگاه با قاشق استیل خشک توسط تراز روز 10/0 گرم وزنی و در بستر 1000 میلی لیتری ریخته شد و سپس (Corcoran et al., 2009) NaCl محیط اشباع به شکل داده شد. در این مدت 15-20 دقیقه بهتر 20 درصد تکان داده شد تا

1 Van Veen Grab
تجزیه و تحلیل آماری
داده‌ها ابتدا برای اطمنی‌سازی نمرات بودن با آزمون شاپرکو-ویلک بررسی شدند. سپس داده‌ها با استفاده از آزمون نیاتبرداری کورسکال - والپس ۳ در سطح اطمینان ۹۵% بررسی شدند. مقایسه بین میانگین‌ها با آزمون Mann-Whitney SPSS انجام شد. آنالیز داده‌ها با استفاده از نرم‌افزار Excel نسخه ۲۰۱۰ ترسیم شدند.

نتایج
فراوانی میکروپلیاستیک‌ها
میکروپلیاستیک‌ها در تمام ۱۱ استگاه نمونه برداری یافته شدند. میانگین تعداد آنها واقعی (مقدار درصدی) از مجموع مقدار نمونه درصدی می‌باشد. درصدی تعداد استگاه‌های ۲۸٪ بررسی شدند. این استگاه ۲۰ نمونه‌ای در نتایج قطعه در یک کیلوگرم روسوب خشک (۲۸٪) قطعه در یک کیلوگرم روسوب خشک (۲۸٪) قطعه در یک کیلوگرم خنثی سازی/فروش خشکی شدند. میزان تعداد میکروپلیاستیک از لحاظ فراوانی در تعداد نمونه‌های ۹۵٪ با تعداد ۱۲ قطعه در ۱۰۰ گرم روسوب خشک بزرگ‌ترین و کمترین تعداد میکروپلیاستیک از لحاظ فراوانی را به خود اختصاص دادند. (شکل ۲). بر اساس آزمون کروسکال والپس و من ویتی اخلاقی متغیر آماری بین استگاه‌های مورد بررسی مشاهده شد (p<0.05).

شناختی بلوپلیمر میکروپلیاستیک‌ها بوسیله دستگاه FTIR
طیف نشان مادون قرمز تبدیل کرده به (ATR)
روش
برای تعیین تركیب بلوری میکروپلیاستیک‌های خارج شده از روسوب به روش ATR از دستگاه طیف‌سنج تبدیل فوریه مادون قرمز (NIR and Obbard, 2014) و نیکوتین تک‌ساخت شرکت تمویل آمریکا، موجب به منفی‌فکاری (OMNIC) استفاده شد. (ATR) سطح آنالیزور کریستال ZnSe با ضخامت اندازه‌گیری شد. محدوده مورد بررسی (4000-650) cm⁻¹ و نتایج ارزیابی به وسیله تحقیقات خود کامل‌تر می‌باشد. سپس طیف‌ها به منظور سنگش امکان تفکیک و شناسایی بلوربرداری میکروپلیاستیک‌ها بر اساس شکل و موقعیتی نوپردازی آزمایش شدند.

شکل ۲: مینگین و انحراف معیار تعداد میکروپلیاستیک‌ها در استگاه‌های مختلف

Figure 2: Mean ± S.D of microplastics in sediment of Anzali Wetland

۱ Shapiro-wilk
۲ Kruskal-Wallis
۳ Mann-Whitney U
کهیاره و غشایی تقسیم‌نده شدند. نتایج نشان داد میکروپلاستیک‌های بیشترین میزان فراوانی را در تمام ایستگاه‌ها دارند (شکل ۳ ب). در این تحقیق، میکروپلاستیک‌های جداسازی شده در ۷ رنگ سیاه، قرمز، آبی، زرد، بنفش، سبز و سفید مشاهده شدند. رنگ قرمز، سیاه و آبی بترتیب با ۳/۴، ۳/۸ و ۲/۶ درصد بیشترین فراوانی داشتند. و رنگ بنفش و زرد بترتیب با ۱/۲ و ۱/۸ درصد بیشترین فراوانی بودند (شکل ۳ پ).}

رنگ، شکل و اندازه میکروپلاستیک‌ها

اندازه تمامی میکروپلاستیک‌ها در محدوده ۰/۳-۵ میلی متر بود. میکروپلاستیک‌ها از لحاظ اندازه در ۶ دسته مختلف تقسیم بندی شدند. نتایج نشان داد که دسته ۲-۵ میلی متری با ۳۷/۳ درصد بیشترین فراوانی بوده در حالتی که دسته‌های ۲-۳ و ۴-۵ میلی متری با ۴۵/۳ و ۱۷/۵ درصد بیشترین فراوانی بودند (شکل ۳ الف). از لحاظ شکل، میکروپلاستیک‌ها در ۳ دسته‌ی رشته‌ای,

![Diagram of microplastics classification by size, shape, and color]

شکل ۳: تقسیم‌نده میکروپلاستیک‌های جداسازی شده از رسوبات تلاب از نظر اندازه (الف)، شکل (ب) و رنگ (پ).

Figure 3: Classification of microplastics in terms of size (a), shape (b) and color (c) in different stations
بررسی شدند. در مجموع ۵ پلیمر مختلف شامل پلی‌استیلن (PE)، پلی‌پروپیلن (PP)، پلی‌استر (PEST)، پلی‌آکریلونیتریل (PAN) و پلی‌اکریلن (PE) در رسوبات تافت شدند (شکل ۴).

شناختی انواع پلیمر
برای شناختی پلیمر میکروپلاستیک‌ها از دستگاه ATR-FTIR استفاده شد. در مجموع ۲۰ میکروپلاستیک به طور تصادفی از استخراج‌کننده دیگر دارای بیشترین میزان اندازه‌بندی بود. با استفاده از موج‌های بردشته و از نظر نوع پلیمری

شکل ۴: پلیمرهای تافت شده در رسوبات تالاب انزالي. a: پلی‌اکریلونیتریل، b: پلی‌پروپیلن، c: پلی‌استر، d: پلی‌استین، e: پلی‌اکریلن

Figure 4: Polymers found in the sediments of Anzali wetland. a: Polyacrylonitrile, b: Polyethylene, c: Polypropylene, d: Polyester and e: Polystyrene
بحث

نتیجه‌ی این مطالعه نشان می‌دهد که در میکروپلاستیک در تمام استعدادهای مورد بررسی حضور دارند که دهندگان بر این اتفاق متوجه نبودند.

تعداد میکروپلاستیک‌ها در رنگ‌های مختلف سیاه، قهوه‌ای، زرد، بنفش، سبز و سفید مشاهده شدند. رنگ قهوه‌ای و سیاه برتری با 34/1% و 30/8% بیشتر درون تالاب می‌تواند از علی‌الودیگی بالاتر باشد. این افتتاحیه 870 گرم سبز و 96 گرم فیلتری در کنار نیزرضای ناحیه‌های جنوبی از طرف درون تالاب می‌تواند بالاتر باشد.

در پی تحقیق بیشتری در میکروپلاستیک‌ها جداسازی شده در رنگ‌های مختلف سیاه، قهوه‌ای، زرد، بنفش، سبز و سفید مشاهده شدند. رنگ قهوه‌ای و سیاه برتری با 34/1% و 30/8% بیشتر درون تالاب می‌تواند از علی‌الودیگی بالاتر باشد. این افتتاحیه 870 گرم سبز و 96 گرم فیلتری در کنار نیزرضای ناحیه‌های جنوبی از طرف درون تالاب می‌تواند بالاتر باشد.

در نتیجه‌ی این مطالعه نشان می‌دهد که در میکروپلاستیک در تمام استعدادهای مورد بررسی حضور دارند که دهندگان بر این اتفاق متوجه نبودند.

تعداد میکروپلاستیک‌ها در رنگ‌های مختلف سیاه، قهوه‌ای، زرد، بنفش، سبز و سفید مشاهده شدند. رنگ قهوه‌ای و سیاه برتری با 34/1% و 30/8% بیشتر درون تالاب می‌تواند از علی‌الودیگی بالاتر باشد. این افتتاحیه 870 گرم سبز و 96 گرم فیلتری در کنار نیزرضای ناحیه‌های جنوبی از طرف درون تالاب می‌تواند بالاتر باشد.
rsp_AW.png
شبلات ایران. دوره 4، شماره 1، صفحه 75-87

Doi: 10.22092/ISIJ.2014.103095

سیف زاده، م. و پور، ع. و زارع گشتی، ق. و خالیی‌پور، غ. ۱۳۹۴. بررسی نسبت تسمیع سوم اله‌دان، دیازونین و اندرو هنگام بی‌ضد و غیر بی‌پروکتیکس در ماهی‌ها از تالاب اتی در محله علمی شیلات ایران. دوره ۲۷، شماره ۴، صفحه ۳۳-۴۳.
Doi: 10.22092/ISIJ.2015.100948

کاربنات، سم. و باتی، م. و گوشکن، ج. ۱۳۸۷. بررسی کنولاسیون راست و نحوزه اجرای آن در ایران و ارائه گزینه‌های جامع برای حفاظت از تالاب‌های ایران. پیام‌نامه ایرانی‌ساختاری. ارتش رئیس مدیریت مربوطی زیر - حقق حیات زیست دانشگاه آزاد اسلامی واحد علوم و تحقیقات دانشکده مهندسین زیست و انرژی. ۱۳۷۳. ۸۷–۸۸.

غذایی، ف. و زارع خوش‌افکل، م. ۱۳۹۰. بررسی اثرات ماشین الگو داشتن فراوانی در رسوبات تالاب اتی. مجله علمی شیلات ایران. شماره ۱۹.

Doi: 10.22092/ISIJ.2018.116858

مجله علمی شیلات ایران ۱۳۹۹ (۴)

شکر و قدردانی

از جناب آقای جراح جراحی، مهندس علی خدادست، آقای علی‌اصغر فیروز، دکتر خسرو تیموری، دکتر هما رحمتی نموده، ناحیه من، نامه، انجام این تحقیق که شکر و دستکاری گزارش موجود از آن اینجا شود.

ملاحظات

آمج، م. و یکانی، ع. و اپولاهاشی، در. ۱۳۹۴. اندازه‌گیری و مقایسه غلظت فراوانی سقیم‌کاران. دکتر، پژوهشی. کامبوبیوم. باکتری در بی‌پروکتیکس در تالاب اتی. مجله علمی (Esox lucius) ۱۳۹۹ (۴).

Doi: 10.22092/ISIJ.2020.110611.354

Lusher, A.L., McHugh, M. and Thompson, R.C., 2013. Occurrence of microplastics in the gastrointestinal tract of pelagic and

Microplastic pollutions in the Anzali Wetland sediments, Southwest Caspian Sea (Guilan Province, Iran)

Rasta M.¹; Sattari M.¹,²*; Shokrollahzadeh Taleshi M.³; Imanpour Namin J.¹

*msattari@guilan.ac.ir

1-Fisheries Department, Faculty of Natural Resources, University of Guilan. Box 1144, Sowmehsara, Iran.
2-Department of Marine biology, The Caspian Sea Research Center, University of Guilan, Rasht, Iran
3-Department of Marine Chemistry, Faculty of Marine and Ocean Science, University of Mazandaran, Babolsar, Iran

Abstract
Occurrence and abundance of Microplastics (MPs) were studied in sediments of the Anzali wetland for the first time in spring 2018. Sediment samplings were carried out using Van Ween Grab. After density separation in saline solution, MPs were counted by a stereomicroscope. The number of MPs was at the range of 14-282 items/100g dry sediment (140-2820 items/kg dry sediment). Stations 10 and 9 with 282 ± 171.14 and 14 ± 3 items/100g dry sediment exhibited the highest and lowest contaminations, respectively. The MPs gathered during the survey varied in size from 0.3 to 5 mm, and those with 1–2 mm in size had the highest frequency (37.3%). The dominant shape of MPs was fiber; Followed by fragments and films. Red, black, and blue were the most abundant colors by 34.1%, 30.8% and 26.4%, respectively. In total, 5 microplastic polymers including polystyrene (PS), polypropylene (PP), polyester (PEST), polyethylene (PE) and poly acrylonitrile (PAN) were identified. This first work provides original data on the presence of MPs, determining their bioavailability to organisms as seafood, and then possible transfer to human. The results provide useful information for further studies.

Keywords: Microplastic, Anzali wetland, Pollution, Polymer

*Corresponding author